Property and Surface Morphology of Copper Foil on the Various Temperature of Electrolyte

전해액 온도에 의한 구리 박막의 표면형상과 물성 변화

  • Woo, Tae-Gyu (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Lee, Man-Hyung (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Park, Eun-Kwang (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Bae, Tea-Sung (Department of Dental Biomaterials and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University) ;
  • Lee, Min-Ho (Department of Dental Biomaterials and Institute of Oral Bioscience, School of Dentistry, Chonbuk National University) ;
  • Park, Il-Song (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Jung, Kwang-Hee (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University) ;
  • Seol, Kyeong-Won (Division of Advanced Materials Engineering, College of Engineering, Chonbuk National University)
  • 우태규 (전북대학교 공과대학 신소재공학부) ;
  • 이만형 (전북대학교 공과대학 신소재공학부) ;
  • 박은광 (전북대학교 공과대학 신소재공학부) ;
  • 배태성 (전북대학교 치과대학 치과재료학 및 구강생체과학연구소) ;
  • 이민호 (전북대학교 치과대학 치과재료학 및 구강생체과학연구소) ;
  • 박일송 (전북대학교 공과대학 신소재공학부) ;
  • 정광희 (전북대학교 공과대학 신소재공학부) ;
  • 설경원 (전북대학교 공과대학 신소재공학부)
  • Received : 2008.11.11
  • Published : 2009.04.25

Abstract

This study examined the effects of plated temperature on the surface morphology and property of an electrodeposited copper foil. The morphology, crystal structure and electric characteristics of the electrodeposited copper foil were examined by scanning electron microscopy, X-ray diffraction, and a four-point probe, respectively. The surface roughness, crystal growth orientation and resistivity could be controlled using various temperature of electrolyte. Large particles were observed on the surface of the copper layer electroplated onto the $30^{\circ}C$. However, a uniform surface, lower resistivity and high flexibility were obtained when a $50^{\circ}C$ electrolyte was used.

Keywords

References

  1. T. G. Chung, Y. H. Kim, and J. G. Na, J. Kor. Inst. Met. & Mater. 29, 1097 (1991)
  2. E. J. Lee and J. S. Kim, J. Inst. Ind. Technol. 6, 11 (1998)
  3. J. J. Kim and M. S. Kang, Hwahak Konghak 39, 721 (2001)
  4. B. S. Min, W. S. Chung, and I. G. Kim, J. Kor. Inst. Met. & Mater. 40, 12 (2002)
  5. S. Yoshimura, S. Yoshihara, T. Shirakashi, and E. Sato, Electrochim. Acta 39, 589 (1994) https://doi.org/10.1016/0013-4686(94)80105-3
  6. T. X. Liang, Y. Q. Liu, Z. Q. Fu, T. Y. Luo, and K. Y. Zhang, Thin Solid Films 473, 247 (2005) https://doi.org/10.1016/j.tsf.2004.07.073
  7. S. H. Kim, D. W. Lee, and K. H. Chung, Kor. J. Mater. Res. 9, 65 (1999)
  8. H. J. Kang, P. N. Park, S. J. Park, and S. Y. Choi, Electro. Technol. Res. 203, 8 (2003)
  9. P. V. Brande and R. Winand, Surf. Coat. Technol. 52, 1 (1992) https://doi.org/10.1016/0257-8972(92)90365-H
  10. Z. Zhou and T. J. O’Keefe, J. Appl. Electroch. 28, 461 (1998) https://doi.org/10.1023/A:1003209009910
  11. J. J. Yang, Y. L. Huang, and K. W. Xu, Surf. Coat. Technol. 201, 5574 (2007) https://doi.org/10.1016/j.surfcoat.2006.07.227
  12. T. G. Woo, I. S. Park, H. W. Lee, and K. W. Seol, J. Kor. Inst. Met. & Mater 45, 128 (2007)
  13. T. G. Woo, I. S. Park, H. W. Lee, M. H. Lee, E. K. Park, Y. K. Hwang, and K. W. Seol, J. Kor. Inst. Met. & Mater 45, 423 (2007)
  14. H. T. Yeom and J. S. Lee, Surf. Treat. Plat., p.49-58, Munundang, Seoul (2008)