Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.4.313

Property of Nano-thick Silicon Films Fabricated by Low Temperature Inductively Coupled Plasma Chemical Vapor Deposition Process  

Shen, Yun (Department of Materials Science and Engineering, University of Seoul)
Sim, Gapseop (Department of Materials Science and Engineering, University of Seoul)
Choi, Yongyoon (Department of Materials Science and Engineering, University of Seoul)
Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Korean Journal of Metals and Materials / v.49, no.4, 2011 , pp. 313-320 More about this Journal
Abstract
100 nm-thick hydrogenated amorphous silicon $({\alpha}-Si:H)$ films were deposited on a glass and glass/30 nm Ni substrates by inductively-coupled plasma chemical vapor deposition (ICP-CVD) at temperatures ranging from 100 to $550^{\circ}C$. The sheet resistance, microstructure, phase transformation and surface roughness of the films were characterized using a four-point probe, AFM (atomic force microscope), TEM (transmission electron microscope), AES (Auger electron spectroscopy), HR-XRD(high resolution X-ray diffraction), and micro-Raman spectroscopy. A nano-thick NiSi phase was formed at substrate temperatures >$400^{\circ}C$. AFM confirmed that the surface roughness did not change as the substrate temperature increased, but it increased abruptly to 6.6 nm above $400^{\circ}C$ on the glass/30 nm Ni substrates. HR-XRD and micro-Raman spectroscopy showed that all the Si samples were amorphous on the glass substrates, whereas crystalline silicon appeared at $550^{\circ}C$ on the glass/30 nm Ni substrates. These results show that crystalline NiSi and Si can be prepared simultaneously on Ni-inserted substrates.
Keywords
Si thin films; ICP-CVD; crystallization; TEM; low temperature process;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Y. Nakano, S. Goya, T. Watanabe, N. Yamashita, and Y. Yonekura, Thin Solid Films. 506, 33 (2006).
2 I. O. Parm, A. K. Kima, D. G. Lima, J. H. Leea, J. H. Heoa, J. Kimb, D. S. Kimb, S. H. Leeb, and J. Yia, Sol. Energy Materials. Sol. Cells. 74, 97 (2002).   DOI   ScienceOn
3 H. C. Lee, S. P. Hong, S. K. Kang, and G. Y. Yeom, Thin Solid Films. 517, 4100 (2009).   DOI   ScienceOn
4 Y. J. Lee, K. N. Kim, B. K. Song, and G. Y. Yeom, Thin Solid Films. 435, 419 (2003).
5 K. N. Kim, J. H. Lim, and G. Y. Yeom, Appl. Phys. Lett. 89, 251501 (2006).   DOI   ScienceOn
6 K. N. Kim, S. J. Jung, Y. J. Lee, G.Y. Yeom, S. H. Lee, and J. K. Lee, J. Appl. Phys. 97, 063302 (2005).   DOI   ScienceOn
7 H. B. Kim, H. C. Lee, K. N. Kim, and G. Y. Yeom, J. Vac. Sci. Technol. 26, 842 (2008).
8 Y. J. Lee, K. N. Kim, B. K. Song, and G. Y. Yeom, Thin Solid Films. 453, 275 (2003).
9 K. Nakazawa and K. Tanaka, J. Appl. Phys. 68, 1029 (1990).   DOI
10 S. Ashid, M. R. Shim, and M. A. Lieberman, J. Vac. Sci. Technol. 4, 391 (1996).
11 S. Miyagawa, S. Namo, K. Saitoh, K. Baba, and Y. Miyagawa, Surf, Coat. Technol. 128, 206 (2000).
12 H. C. Lee, G. Y. Yeom, Lee. J. K. Shin, S. I. Baik, and Y. W. Kim, J. Kor. Phys Soc. 47, 277 (2005).
13 Y. J. Lee, K. N. Kim, B. K. Song, and G. Y. Yeom, Mater. Sci. Semicond. Process. 5, 419 (2003).
14 N. Kosku, H. Murakami, S. Higashi, and S. Miyazaki, Surface Sci. 244, 39 (2005) .   DOI   ScienceOn
15 J. X. Wang, P. Q. Gao, M. Yin, Y. L. Qin, H. Q. Yan, J. S. Li, S. L. Peng, and D. Y. He, J. Alloys and Compounds. 481, 278 (2009).   DOI   ScienceOn
16 S. M. Han, S. J. Kim, J. H. Park, S. H. Choi, and M. K. Han, J. Non-Crystalline Solids. 354, 2264 (2008).
17 O. S. Song, K. I. Kim, and Y. Y. Choi, Kor. J. Met. Mater. 48, 660 (2010).
18 R. D. Knox, V. Dalal, B. Moradi, and G. Chumanov, J. Vac. Sci. Technol. 11, 1896 (1993).   DOI   ScienceOn