Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.4.321

Nano-thick Nickel Silicide and Polycrystalline Silicon on Polyimide Substrate with Extremely Low Temperature Catalytic CVD  

Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
Choi, Yongyoon (Department of Materials Science and Engineering, University of Seoul)
Han, Jungjo (Department of Materials Science and Engineering, University of Seoul)
Kim, Gunil (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Korean Journal of Metals and Materials / v.49, no.4, 2011 , pp. 321-328 More about this Journal
Abstract
The 30 nm-thick Ni layers was deposited on a flexible polyimide substrate with an e-beam evaporation. Subsequently, we deposited a Si layer using a catalytic CVD (Cat-CVD) in a hydride amorphous silicon (${\alpha}$-Si:H) process of $T_{s}=180^{\circ}C$ with varying thicknesses of 55, 75, 145, and 220 nm. The sheet resistance, phase, degree of the crystallization, microstructure, composition, and surface roughness were measured by a four-point probe, HRXRD, micro-Raman spectroscopy, FE-SEM, TEM, AES, and SPM. We confirmed that our newly proposed Cat-CVD process simultaneously formed both NiSi and crystallized Si without additional annealing. The NiSi showed low sheet resistance of < $13{\Omega}$□, while carbon (C) diffused from the substrate led the resistance fluctuation with silicon deposition thickness. HRXRD and micro-Raman analysis also supported the existence of NiSi and crystallized (>66%) Si layers. TEM analysis showed uniform NiSi and silicon layers, and the thickness of the NiSi increased as Si deposition time increased. Based on the AES depth profiling, we confirmed that the carbon from the polyimide substrate diffused into the NiSi and Si layers during the Cat-CVD, which caused a pile-up of C at the interface. This carbon diffusion might lessen NiSi formation and increase the resistance of the NiSi.
Keywords
nickel silicide; Cat-CVD; hydrogenated amorphous silicon; polycrystalline silicon; polyimide films;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Paul A. Flimm, Donald S. Garder, and William D. Nix, IEEE Trans. Elec. Dev, ED 34, 689 (1987).
2 A. W. Blakers and T. Armour, Solar Energy Materials and Solar Cells 93, 1440 (2009).   DOI   ScienceOn
3 Y. Ichikawa, T. Yoshida, T. Hama, H. Sakai, and K. Harashima, Solar Energy Mater. Solar Cells 66, 107 (2001).   DOI   ScienceOn
4 Y. Y. Choi, K. I. Kim, J. S. Park, and O. S. Song, Kor. J. Met. Mater. 48, 133 (2010).   DOI   ScienceOn
5 J. P. Gambino and E. G. Colgan, Mater. Chem. Phys 52, 99 (1998).   DOI   ScienceOn
6 W. S. Hong, J. T. Walton, P. M. Luke, N. W. Wang, and F. P. Ziemba, IEEE Transactions on Nuclear Science 44, 961 (1997).   DOI   ScienceOn
7 J. R. Kim, Y. G. Choi, J. S. Park, and O. S. Song, J. Kor. Inst. Met. & Mater 46, 762 (2008).
8 A. Heya, N. Matsuo, T. Serikawa, and N. Kawamoto, Materials Transactions 48, 975 (2007).   DOI   ScienceOn
9 L. Pfeiffer, A. E. Gelman, K. A. Jackson, K. W. West, and J. L. Batstone, Applied Physics Letters 51, 1256 (1987).   DOI
10 E. G. Colgan, J. P. Gambino, and Q. Z. Hong, Mater. Sci. Engin. 16, 43 (1996).   DOI   ScienceOn
11 C. Lavoie, F. M. d'Heurle, C. Detavernier, and C. Cabral, J. Microelectronic Engin. 70, 144 (2003).   DOI   ScienceOn
12 S. Yamazaki, Japanese Patent 686,435, Appl. No. S43-41742 (1968).
13 S. Yamazaki, K. Wada, and I. Taniguchi, Jpn. J. Appl. Phys. 9 (1970).
14 H. Matsumura, Jpn. J. Appl. Phys. 25, L949 (1986).   DOI   ScienceOn
15 A. G. Sault and D. W. Goodman, Surf. Sci. 235, 28 (1990).   DOI   ScienceOn
16 B. P. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S. Crandall, and H. M. Branz, Thin Solid Films 395, 292 (2001).   DOI   ScienceOn
17 M. Karasawa, M. Sakai, K. Ishibashi, M. Tanaka, A. Masuda, and H. Matsumura, Proc. 21st Int. Display Research Conf. in Conjunction with 8th Int. Display Workshops, Nagoya, p. 1735 (2001).
18 A. Izumi and H. Matsumura, Jpn. J. Appl. Phys. 41, 4639 (2002).   DOI
19 D. B. Williams and C.B. Carter, Transmission Electron Microscopy Basics, $1^{st}$ed., pp. 152-170, Plenum Press, New York, USA (1996).
20 O. S. Song, K. I. Kim, and Y. Y. Choi, Kor. J. Met. Mater. 48, 660 (2010).