• Title/Summary/Keyword: flat manifold

Search Result 78, Processing Time 0.025 seconds

MODULI SPACES OF 3-DIMENSIONAL FLAT MANIFOLDS

  • Kang, Eun-Sook
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.1065-1080
    • /
    • 2006
  • For 3-dimensional Bieberbach groups, we study the de-formation spaces in the group of isometries of $R^3$. First we calculate the discrete representation spaces and the automorphism groups. Then for each of these Bieberbach groups, we give complete descriptions of $Teichm\ddot{u}ller$ spaces, Chabauty spaces, and moduli spaces.

ON PSEUDO SEMI-PROJECTIVE SYMMETRIC MANIFOLDS

  • De, Uday Chand;Majhi, Pradip
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.391-413
    • /
    • 2018
  • In this paper we introduce a new tensor named semi-projective curvature tensor which generalizes the projective curvature tensor. First we deduce some basic geometric properties of semi-projective curvature tensor. Then we study pseudo semi-projective symmetric manifolds $(PSPS)_n$ which recover some known results of Chaki [5]. We provide several interesting results. Among others we prove that in a $(PSPS)_n$ if the associated vector field ${\rho}$ is a unit parallel vector field, then either the manifold reduces to a pseudosymmetric manifold or pseudo projective symmetric manifold. Moreover we deal with semi-projectively flat perfect fluid and dust fluid spacetimes respectively. As a consequence we obtain some important theorems. Next we consider the decomposability of $(PSPS)_n$. Finally, we construct a non-trivial Lorentzian metric of $(PSPS)_4$.

GRADIENT RICCI SOLITONS WITH HALF HARMONIC WEYL CURVATURE AND TWO RICCI EIGENVALUES

  • Kang, Yutae;Kim, Jongsu
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.585-594
    • /
    • 2022
  • In this article we classify four dimensional gradient Ricci solitons (M, g, f) with half harmonic Weyl curvature and at most two distinct Ricci-eigenvalues at each point. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, (V, g) is isometric to one of the following: (i) an Einstein manifold. (ii) a domain in the Riemannian product (ℝ2, g0) × (N, ${\tilde{g}}$), where g0 is the flat metric on ℝ2 and (N, ${\tilde{g}}$) is a two dimensional Riemannian manifold of constant curvature λ ≠ 0. (iii) a domain in ℝ × W with the warped product metric $ds^2+h(s)^2{\tilde{g}}$, where ${\tilde{g}}$ is a constant curved metric on a three dimensional manifold W.

RIGIDITY THEOREMS OF SOME DUALLY FLAT FINSLER METRICS AND ITS APPLICATIONS

  • Shen, Bin;Tian, Yanfang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1457-1469
    • /
    • 2016
  • In this paper, we study a class of Finsler metric. First, we find some rigidity results of the dually flat (${\alpha}$, ${\beta}$)-metric where the underline Riemannian metric ${\alpha}$ satisfies nonnegative curvature properties. We give a new geometric approach of the Monge-$Amp{\acute{e}}re$ type equation on $R^n$ by using those results. We also get the non-existence of the compact globally dually flat Riemannian manifold.

ON CONFORMALLY FLAT POLYNOMIAL (α, β)-METRICS WITH WEAKLY ISOTROPIC SCALAR CURVATURE

  • Chen, Bin;Xia, KaiWen
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.329-352
    • /
    • 2019
  • In this paper, we study conformally flat (${\alpha}$, ${\beta}$)-metrics in the form $F={\alpha}(1+{\sum_{j=1}^{m}}\;a_j({\frac{\beta}{\alpha}})^j)$ with $m{\geq}2$, where ${\alpha}$ is a Riemannian metric and ${\beta}$ is a 1-form on a smooth manifold M. We prove that if such conformally flat (${\alpha}$, ${\beta}$)-metric F is of weakly isotropic scalar curvature, then it must has zero scalar curvature. Moreover, if $a_{m-1}a_m{\neq}0$, then such metric is either locally Minkowskian or Riemannian.

p-BIHARMONIC HYPERSURFACES IN EINSTEIN SPACE AND CONFORMALLY FLAT SPACE

  • Ahmed Mohammed Cherif;Khadidja Mouffoki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.705-715
    • /
    • 2023
  • In this paper, we present some new properties for p-biharmonic hypersurfaces in a Riemannian manifold. We also characterize the p-biharmonic submanifolds in an Einstein space. We construct a new example of proper p-biharmonic hypersurfaces. We present some open problems.

HELICOIDAL MINIMAL SURFACES IN A CONFORMALLY FLAT 3-SPACE

  • Araujo, Kellcio Oliveira;Cui, Ningwei;Pina, Romildo da Silva
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.531-540
    • /
    • 2016
  • In this work, we introduce the complete Riemannian manifold $\mathbb{F}_3$ which is a three-dimensional real vector space endowed with a conformally flat metric that is a solution of the Einstein equation. We obtain a second order nonlinear ordinary differential equation that characterizes the helicoidal minimal surfaces in $\mathbb{F}_3$. We show that the helicoid is a complete minimal surface in $\mathbb{F}_3$. Moreover we obtain a local solution of this differential equation which is a two-parameter family of functions ${\lambda}_h,K_2$ explicitly given by an integral and defined on an open interval. Consequently, we show that the helicoidal motion applied on the curve defined from ${\lambda}_h,K_2$ gives a two-parameter family of helicoidal minimal surfaces in $\mathbb{F}_3$.

AFFINE YANG-MILLS CONNECTIONS ON NORMAL HOMOGENEOUS SPACES

  • Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.557-573
    • /
    • 2011
  • Let G be a compact and connected semisimple Lie group, H a closed subgroup, g (resp. h) the Lie algebra of G (resp. H), B the Killing form of g, g the normal metric on the homogeneous space G/H which is induced by -B. Let D be an invarint connection with Weyl structure (D, g, ${\omega}$) in the tangent bundle over the normal homogeneous Riemannian manifold (G/H, g) which is projectively flat. Then, the affine connection D on (G/H, g) is a Yang-Mills connection if and only if D is the Levi-Civita connection on (G/H, g).

Conformally invariant tensors on hermitian manifolds

  • Matsuo, Koji
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.455-463
    • /
    • 1996
  • In [3] and [4], Kitahara, Pak and the author obtained the conformally invariant tensor $B_0$, which is an algebraic Hermitian analogue of the Weyl conformal curvature tensor W in the Riemannian geometry, by the decomposition of the curvature tensor H of the Hermitian connection and the notion of semi-curvature-like tensors of Tanno (see[7]). In [5], the author defined a conformally invariant tensor $B_0$ on a Hermitian manifold as a modification of $B_0$. Moreover he introduced the notion of local conformal Hermitian-flatness of Hermitian manifolds and proved that the vanishing of this tensor $B_0$ together with some condition for the scalar curvatures is a necessary and sufficient condition for a Hermitian manifold to be locally conformally Hermitian-flat.

  • PDF