Honam Mathematical J. **33** (2011), No. 4, pp. 557–573 http://dx.doi.org/10.5831/HMJ.2011.33.4.557

AFFINE YANG-MILLS CONNECTIONS ON NORMAL HOMOGENEOUS SPACES

JOON-SIK PARK

Abstract. Let G be a compact and connected semisimple Lie group, H a closed subgroup, \mathfrak{g} (resp. \mathfrak{h}) the Lie algebra of G (resp. H), B the Killing form of \mathfrak{g} , g the normal metric on the homogeneous space G/H which is induced by -B. Let D be an invariat connection with Weyl structure (D, g, ω) in the tangent bundle over the normal homogeneous Riemannian manifold (G/H, g) which is projectively flat. Then, the affine connection D on (G/H, g) is a Yang-Mills connection if and only if D is the Levi-Civita connection on (G/H, g)

§1. Introduction

The problem of finding metrics and connections which are critical points of some functional plays an important role in global analysis and Riemannian geometry. A Yang-Mills connection is a critical point of the Yang-Mills functional

(1.1)
$$\mathcal{YM}(D) = \frac{1}{2} \int_M ||R^D||^2 v_g$$

on the space \mathfrak{C}_E of all connections in a smooth vector bundle E over a closed (compact and connected) Riemannian manifold (M, g), where \mathbb{R}^D is the curvature of $D \in \mathfrak{C}_E$. Equivalently, D is a Yang-Mills connection if it satisfies the Yang-Mills equation (cf. [2,8,13,14.17])

(1.2)
$$\delta_D R^D = 0,$$

(the Euler-Lagrange equations of the variational principle associated with (1.1)).

Received September 28, 2011. Accepted October 18, 2011.

²⁰⁰⁰ Mathematics Subject Classification. 53C07; 53A15.

Key words and phrases. Yang-Mills connection; Weyl structure; invariant connection; normal homogeneous Riemannian manifold.

If D is a connection in a vector bundle E with bundle metric h over a Riemannian manifold (M, g), then the connection D^* given by (1.3) $h(D_X^*s, t) = X(h(s, t)) - h(s, D_X t), \quad (X \in \mathfrak{X}(M)) \text{ and } s, t \in \Gamma(E))$

is referred to as *conjugate* (cf. [1, 10]) to D.

Recently, using the concept of conjugate connection, the present author obtained the following

Theorem 1.1 [11]. A connection D in a vector bundle E over a closed Riemannian manifold (M,g) is a Yang-Mills connection if and only if the conjugate connection D^* is a Yang-Mills connection.

If a tortion free affine connection D in the tangent bundle over a Riemannian manifold (M,g) satisfies $Dg = \omega \otimes g$ for a 1-form ω on M, then (D,g,ω) is called a *Weyl structure* (cf. [4,15]). By virtue of Theorem 1.1, the present author got the following

Theorem 1.2 [12]. Let D be a Yang-Mills connection with Wely structure (D, g, ω) in the tangent bundle TM over a closed Riemannian manifold (M, g). Then dw = 0.

Let G be a compact Lie group, H a closed subgroup of G, \mathfrak{g} (resp. \mathfrak{h}) the Lie algebra of G (resp. H), and \mathfrak{m} a subspace of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$. A homogeneous Riemannian metric g on G/H is said to be *normal* homogeneous if there exists Ad(G) invariant inner product \langle , \rangle on \mathfrak{g} such that $\langle \mathfrak{m}, \mathfrak{h} \rangle = 0$ and $\langle , \rangle_{\mathfrak{m}} = g_{\{H\}}$.

Through this paper, let G be a compact connected semisimple Lie group, H a closed subgroup of the group G, g (resp. \mathfrak{h}) the Lie algebra of G (resp. H), and B the Killing form of \mathfrak{g} , < , >:= -B, \mathfrak{m} the subspace of \mathfrak{g} such that < \mathfrak{m} , $\mathfrak{h} >= 0$ and $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$, and g the normal homogeneous Riemannian metric on the space G/H such that < , > $\mathfrak{m} = g_{\{H\}}$,

By the help of the second Bianchi identity $\delta_D R^D = 0$, the following is well known:

A necessary and sufficient condition for a connection D on a closed Riemannian manifold (M,g) to be a Yang-Mills connection is that the curvature tensor field for D is harmonic.

In general, the curvature tensor R^{∇} for the Levi-Clvita conection ∇ in TM over a closed Riemannian manifold (M, g) is not harmonic, and hence ∇ is not a Yang-Mills connection.

In this paper, we get a necessary and sufficient condition for the Levi-Civita connection ∇ on the normal homogeneous Riemannian manifold (G/H, g) to be a Yang-Mills connection (cf. Proposition 3.1, Theorem

3.4). And, using these results, Theorem 1.2 and the fact that the 1-form ω in the Weyl structure (D, g, ω) related to an invariant affine connection D on the normal homogeneous Riemannian manifold (G/H, g) is invariant on G/H (cf. Lemma 4.2), we get the following

Theorem 4.3. Let D be an invariant connection with Weyl structure (D, g, ω) in the tangent bundle over the normal homogeneous space (G/H, g), dim $G/H = m \ge 3$. Assume the connection D is projectively flat. Then, a necessary and sufficient condition for the connection D to be a Yang-Mills connection is $\omega = 0$.

Corollary 4.10. Under the same situation and assumption as in Theorem 4.3, the connection D is a Yang-Mills connection if and only if D coincides with the Levi-Civita connection ∇ on the normal homogeneous space (G/H, g).

§2. Yang-Mills connections in a vector bundle and Weyl structures in a tangent bundle

2.1. In this subsection, we treat the Yang-Mills equation in vector bundles over a closed Riemannian manifold (M, g), using the concept of conjugate connection.

Let E be a vector bundle, with bundle metric h, over an n-dimensional closed Riemannian manifold (M, g). Let $D \in \mathfrak{C}_E$ and ∇ the Levi-Civita connection on (M, g). The pair (D, ∇) induces a connection in product bundles $\bigwedge^p TM^* \otimes E$, denoted by D, as well. Set $A^p(E) := \Gamma(\bigwedge^p TM^* \otimes E)$. We consider the differential operator

$$d_D : A^p(E) \longrightarrow A^{p+1}(E),$$

$$(d_D \varphi)(X_1, X_2, \cdots, X_{p+1}) = \sum_{i=1}^{p+1} (-1)^{i+1} (D_{X_i} \varphi)(X_1, \cdots, \widehat{X}_i, \cdots, X_{p+1}),$$

$$\varphi \in A^p(E), \ X_i \in \mathfrak{X}(M) \ (i = 1, 2, \cdots, p+1),$$

which are defined by

$$d_D(\omega \otimes \xi) := d\omega \otimes \xi + (-1)^p \omega \wedge D\xi,$$

$$D_X(\omega \otimes \xi) := (\nabla_X \omega) \otimes \xi + \omega \otimes D_X \xi,$$

for $\omega \in \Gamma(\bigwedge^p TM^*)$, $\xi \in \Gamma(E)$ and $X \in \mathfrak{X}(M)$.

Let δ_D be the formal adjoint of d_D with respect to the L^2 -inner product

$$(\varphi,\psi) = \int_M <\varphi, \psi > v_g$$

for $\varphi, \psi \in A^p(E)$. Here \langle , \rangle is the bundle metric in $\bigwedge^p TM^* \otimes E$ induced by the pair (g, h) and v_g is the canonical volume form on (M, g). The following identity is elementary, yet crucial (cf. [2,3])

(2.1)
$$\delta_D \varphi = (-1)^{p+1} (*^{-1} \cdot d_{D^*} \cdot *)(\varphi) = (-1)^{np+1} (* \cdot d_{D^*} \cdot *)(\varphi)$$

for any $\varphi \in A^{p+1}(E)$. Here, $*: A^q(E) \longrightarrow A^{n-q}(E)$, $(0 \le q \le n)$, is the Hodge operator with respect to g. Let $\{e_i\}_{i=1}^n$ be a local orthonormal frame on (M, g) and $\{\theta^j\}_{j=1}^n$ the dual coframe. Let $\{d_\alpha\}_{\alpha=1}^r$ be a local orthonormal frame on (E, h) and $\{\sigma_\alpha\}_{\alpha=1}^r$ the dual coframe, where r is the rank of E. Note that (2.1) may also be written as (cf. [2])

(2.2)
$$(\delta_D \varphi)(X_1, \cdots, X_p) = -\sum_{i=1}^n (D_{e_i}^* \varphi)(e_i, X_1, \cdots, X_p).$$

The connections $D, D^* \in \mathfrak{C}_E$ naturally induce connections, denoted by the same symbols, in $\operatorname{End}(E)$ (:= $E \otimes E^*$). Then, a straightforward argument shows that $D, D^* \in \mathfrak{C}_{\operatorname{End}(E)}$ are conjugate connections. The following curvature property is immediate (cf. [2])

(2.3)
$$h(R^D(X,Y)s,t) = -h(s,R^{D^*}(X,Y)t)$$
, for $s,t \in \Gamma(E)$ and $X,Y \in \mathfrak{X}(M)$.

Specially in E = TM over a closed Riemannian manifold (M, g), we easily find from (1.3) and (2.2) that $D \in \mathfrak{C}_E$ is a Yang-Mills connection if and only if

(2.4)

$$(\delta_D R^D)(X)Y = -\sum_{i=1}^n (D_{e_i}^* R^D)(e_i, X)Y$$

$$= -\sum_{i=1}^n \{ (D_{e_i}^* R^D)(e_i, X)Y - R^D(\nabla_{e_i} e_i, X)Y - R^D(e_i, X)D_{e_i}^*Y \}$$

$$= 0,$$

where $X \in \mathfrak{X}(M)$ and $Y \in \Gamma(TM)$. Moreover, $R^D \in \Gamma(\bigwedge^2 TM^* \otimes \operatorname{End}(TM))$.

2.2. In this subsection, we introduce some well known facts on a Weyl structure (D, g, ω) on a closed (compact and connected) Riemannian manifold (M, g).

Let (D, g, ω) be a Weyl structure in the tangent bundle TM over a closed Riemannian manifold (M.g), i.e.,

(2.5) $Dg = \omega \otimes g$, and $T^D = 0$ (torsion free),

for some 1-form on M. Then, we have for $X, Y \in \mathfrak{X}(M)$ and $Z \in \Gamma(TM)$

(2.6)

$$\begin{cases}
D_X^* Z = D_X Z + \omega(X) Z, \\
R^D(X, Y) - R^{\nabla}(X, Y) = [\nabla_X, \alpha_Y] + [\alpha_X, \nabla_Y] + [\alpha_X, \alpha_Y] - \alpha_{[X, Y]}
\end{cases}$$

where $\alpha := D - \nabla \in \Gamma(TM^* \otimes \text{End}(TM))$. From (2.4) and (2.6), we have for $Y \in \mathfrak{X}(M)$ and $Z \in \Gamma(TM)$

(2.7)
$$(\delta_D R^D)(Y)Z = -\sum_{i=1}^n (D_{X_i}^* R^D)(X_i, Y)Z$$
$$= -\sum_{i=1}^n \{D_{X_i}(R^D(X_i, Y)Z) - R^D(\nabla_{X_i} X_i, Y)Z - R^D(X_i, Y)D_{X_i}Z\},$$

where $\{X_i\}_{i=1}^n$ is an (locally defined) orthonormal frame on (M, g). For an (locally defined) orthonormal frame $\{X_i\}_{i=1}^n$, let $\{\theta_j\}_{j=1}^n$ be the local orthonormal coframe on (M, g). For the frames $\{X_i\}_{i=1}^n$ and $\{\theta_j\}_{j=1}^n$, we introduce $\Gamma_{ij}{}^l := \theta^l(\nabla_{X_i}X_j)$. Then, we have

(2.8)
$$D_{X_i}X_j = \sum_{l=1}^n \Gamma_{ij}{}^l X_l, \text{ and } D_{X_i}\theta^j = -\sum_{i=1}^n \Gamma_{il}{}^j\theta^l.$$

By virtue of the fact $Dg = \omega \otimes g$, we have

(2.9)
$$\Gamma_{ij}{}^{j} = -\frac{1}{2}\omega(X_i)$$
 for each j , $\Gamma_{ij}{}^{k} = -\Gamma_{ik}{}^{j}$ $(j \neq k)$.

Moreover we have for $X, Y \in \mathfrak{X}(M)$

(2.10)
$$\alpha_X Y := D_X Y - \nabla_X Y = \alpha_Y X,$$

since the connections are torision free. Using (2.10) and fundamental properties of a connection, we get (cf. [15])

(2.11)
$$\alpha_X Y = \frac{1}{2} \{ g(X, Y) \omega^{\#} - \omega(X) Y - \omega(Y) X \},$$

where $\omega^{\#} := \sum_{l=1}^{n} \omega(X_i) X_i$.

§3. Yang-Mills Levi-Civita connection on (G/H,g)

3.1. Let G be an n-dimensional compact connected semisimple Lie group and H a closed subgroup of G. Let \mathfrak{g} be the Lie algebra (the set of all left invariant vector filelds on G) of the group G, \mathfrak{h} the Lie algebra of H, and B the Killing form of \mathfrak{g} .

We denote $-B =: \langle , \rangle$. Then, the inner product \langle , \rangle is an Ad(G)-invariant inner product on \mathfrak{g} , and there exists the subspace \mathfrak{m} of \mathfrak{g} such that $\mathfrak{m} \oplus \mathfrak{h} = \mathfrak{g}$ and $\langle \mathfrak{m}, \mathfrak{h} \rangle = 0$, where Ad(G) denotes the adjoint representation of G in \mathfrak{g} . We denote by p_o the point represented by the coset H in the homogeneous space G/H. Then, the subspace \mathfrak{m} of \mathfrak{g} is identified with the tangent space $T_{p_o}G/H$ at p_o . Let g be the invarient Riemannian metric on the homogeneous Riemannian manifold (G/H, g) is a normal homogeneous manifold (cf. [1, p. 3]).

Let $\{X_i\}_{i=1}^n$ be an orthonormal base on $(\mathfrak{g}, <, >)$ such that the first m elements span \mathfrak{m} and the last n-m elements span \mathfrak{h} . For the calculus, we define X^* , $X \in \mathfrak{m} = T_{P_o}(G/H)$, on a some proper neighborhood $U = \pi(\exp V)$, $(0 \in V \subset \mathfrak{m} \subset \mathfrak{g})$, of p_o in G/H by

$$X^*_{xH} := (\tau_x)_* X \in T_{xH}(G/H), \quad x \in \exp V \subset G \text{ (cf. [9, p. 42])}.$$

Here, τ_x denotes the transformation of G/H which is induced by $x \in G$. Then, $\{X_i^*\}_{i=1}^n$ is an orthonormal frame on the neighbourhood U of p_o in G/H. Let $\{\theta^{j*}\}_{j=1}^m$ be a system of 1-forms on U which is dual to $\{X_i^*\}_{i=1}^n$. The Levi-Civita connection ∇ for the metric g is given by (cf. [9, p. 52])

(3.1)
$$\nabla_X Y^* = \frac{1}{2} [X, Y]_{\mathfrak{m}}, \quad (X, Y \in \mathfrak{m}), \text{ at } p_o = \{H\} \in G/H,$$

where $X_{\mathfrak{m}}$ denotes the \mathfrak{m} -component of the element $X \in \mathfrak{g} = \mathfrak{m} \oplus \mathfrak{h}$. Moreover by virtue of (3.1) the curvature tensor field R^{∇} at p_o is given by (cf. [9, p. 47])

$$R^{\nabla}(X,Y)Z := ([\nabla_{X^*}, \nabla_{Y^*}]Z^*)_{p_o} - \nabla_{[X,Y]}Z^*$$

$$(3.2) \qquad \qquad = \frac{1}{4} \{ [X, [Y, Z]_{\mathfrak{m}}]_{\mathfrak{m}} - [Y, [X, Z]_{\mathfrak{m}}]_{\mathfrak{m}} \}$$

$$- \frac{1}{2}[[X, Y]_{\mathfrak{m}}, Z]_{\mathfrak{m}} - [[X, Y]_{\mathfrak{h}}, Z], \quad (X, Y, Z \in \mathfrak{m}).$$

From now on in this paper, the indices i, j, k, l, s, t, \cdots run over the range $\{1, 2, 3, \cdots, m\}$, and the indices a, b, c, \cdots run over the range $\{m+1, m+2, \cdots, n\}$, $(m = \dim \mathfrak{m}, n = \dim \mathfrak{g})$, without further specification. We denote

(3.3)
$$[X_i, X_j] = \sum_k C_{ij}{}^k X_k + \sum_a C_{ij}{}^a X_a$$

By virture of (3.1) and (3.3), we have

(3.4) $\left(\nabla_{X_i^*} X_j^*\right)_{p_o} = \frac{1}{2} \sum_k C_{ij}{}^k X_k.$

563

We get from (3.2) and (3.3)

(3.5)

$$R^{\nabla}(X_{i}, X_{j})X_{k} = \sum_{l,t} \frac{1}{4} (C_{jk}{}^{t}C_{it}{}^{l} - C_{ik}{}^{t}C_{jt}{}^{l} - 2C_{ij}{}^{t}C_{tk}{}^{l})X_{l}$$

$$-\sum_{l} \sum_{a} C_{ij}{}^{a}C_{ak}{}^{l}X_{l}.$$

By the help of (3.3), $\langle [X_i, X_j], X_k \rangle = - \langle X_j, [X_i, X_k] \rangle$, and $\langle [X_i, X_j], X_a \rangle = -B([X_i, X_j], X_a) = B(X_j, [X_i, X_a]) = - \langle X_j, [X_i, X_a] \rangle$, we have

(3.6)
$$C_{ij}{}^a = -C_{ia}{}^j = -C_{ji}{}^a$$
, $C_{ij}{}^k = -C_{ik}{}^j = -C_{ji}{}^k$.
From (3.6), $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$, $[\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h}$, and the facts

$$\langle X_i, X_j \rangle = -B(X_i, X_j) = -\operatorname{Tr}(adX_i adX_j) = \delta_{i,j},$$

$$\langle X_i, X_a \rangle = -B(X_i, X_a) = -\operatorname{Tr}(adX_i adX_a) = 0,$$

we obtain

(3.7)
$$\sum_{l,t} C_{lt}{}^{i}C_{lt}{}^{j} + 2\sum_{l}\sum_{a} C_{la}{}^{i}C_{la}{}^{j} = \delta_{ij}, \quad \sum_{l,t} C_{tl}{}^{a}C_{tl}{}^{i} = 0.$$

The Ricci tensor Ric^{∇} for the Levi-Civita connection ∇ is defined by

(3.8)
$$Ric^{\nabla}(Y,Z) = \text{Tr}\{X \longmapsto R^{\nabla}(X,Y)Z\}.$$

We obtain from (3.5), (3.6), (3.7) and (3.8)

(3.9)
$$Ric^{\nabla}(X_j, X_k) = \frac{1}{4}(\delta^{jk} + 2\sum_i \sum_a C_{ia}^j C_{ia}^k).$$

By virtue of (3.9), the scalar curvature S(g) on the normal homogeneous space (G/H, g) is given as follows;

(3.10)
$$S(g) = \frac{1}{4}(m + 2\sum_{it}\sum_{a}C_{ia}{}^{t}C_{ia}{}^{t}).$$

3.2. In this subsection, we retain the notation as in 3.1. We obtain

Proposition 3.1. A necessary and sufficient condition for the Levi -Civita connection ∇ on the normal homogeneous Riemannian manifold (G/H, g) to be a Yang-Mills connection is

$$(3.11) \quad \begin{aligned} & 2\sum_{i,t}\sum_{a}(C_{ij}{}^{t}C_{tk}{}^{a}C_{is}{}^{a}+C_{ij}{}^{a}C_{ak}{}^{t}C_{is}{}^{t}-C_{ij}{}^{a}C_{ai}{}^{t}C_{ks}{}^{t}) \\ & =\sum_{i,t}\sum_{a}(C_{is}{}^{a}C_{ai}{}^{t}C_{kj}{}^{t}+C_{ik}{}^{a}C_{ai}{}^{t}C_{sj}{}^{t}), \end{aligned}$$

that is,

$$2\sum_{i} (<[[X_{i}, X_{j}]_{\mathfrak{m}}, X_{k}]_{\mathfrak{h}} + [[X_{i}, X_{j}]_{\mathfrak{h}}, X_{k}]_{\mathfrak{m}}, [X_{i}, X_{s}] > - <[[X_{i}, X_{j}]_{\mathfrak{h}}, X_{i}], [X_{k}, X_{s}] >) = \sum_{i} (<[[X_{i}, X_{s}]_{\mathfrak{h}}, X_{i}], [X_{k}, X_{j}] > + <[[X_{i}, X_{k}]_{\mathfrak{h}}, X_{i}], [X_{s}, X_{j}] >).$$

In order to prove this proposition, let's calculus $(\delta_{\nabla} R^{\nabla})(X_j)X_k$. From (2.4) and (3.1), we have

$$(\delta_{\nabla} R^{\nabla})(X_j)X_k$$

$$= -\sum_i (\nabla_{X_i} R^{\nabla})(X_i, X_j)X_k$$

$$(3.12)$$

$$= -\sum_i \{\nabla_{X_i} (R^{\nabla}(X_i^*, X_j^*)X_k^*) - R^{\nabla}(X_i, \nabla_{X_i} X_j^*)X_k$$

$$- R^{\nabla}(X_i, X_j)\nabla_{X_i} X_k^*\}.$$

In order to analyze (3.12), we obtain from (3.5), (3.6) and (3.7)

Lemma 3.2. The terms appeared in (3.12) are changed as follows ;

$$(a) \sum_{i} \nabla_{X_{i}} (R^{\nabla}(X_{i}^{*}, X_{j}^{*}) X_{k}^{*}) = \frac{1}{8} \sum_{s} \{-C_{jk}{}^{s} - 3 \sum_{i,l,t} C_{ik}{}^{t}C_{jt}{}^{l}C_{il}{}^{s} + 2 \sum_{i,l} \sum_{a} (C_{jk}{}^{l}C_{ia}{}^{l}C_{ia}{}^{s} - 2C_{ij}{}^{a}C_{ak}{}^{l}C_{il}{}^{s})\} X_{s}, (b) \sum_{i} R^{\nabla}(X_{i}, \nabla_{X_{i}}X_{j}^{*}) X_{k} = \frac{1}{4} \sum_{s} (C_{jk}{}^{s} + \sum_{i,t,l} C_{ik}{}^{t}C_{jt}{}^{l}C_{il}{}^{s} - 2 \sum_{i,t} \sum_{a} C_{ia}{}^{j}C_{ia}{}^{t}C_{tk}{}^{s}) X_{s}, (c) \sum_{i} R^{\nabla}(X_{i}, X_{j}) \nabla_{X_{i}}X_{k}^{*} = \frac{1}{8} \sum_{s} \{C_{jk}{}^{s} + 3 \sum_{i,l,t} C_{ik}{}^{t}C_{jt}{}^{l}C_{il}{}^{s} - 2 \sum_{i,l} \sum_{a} (C_{ia}{}^{k}C_{ia}{}^{l}C_{jl}{}^{s} + 2C_{ik}{}^{l}C_{ij}{}^{a}C_{al}{}^{s})\} X_{s}.$$

By virtue of (3.12) and Lemma 3.2, we obtain

$$(3.13) \begin{pmatrix} (\delta_{\nabla} R^{\nabla})(X_j)X_k \\ = \frac{1}{4} \sum_{s} \{2C_{jk}{}^s + 4 \sum_{i,l,t} C_{ik}{}^t C_{jt}{}^l C_{il}{}^s \\ + \sum_{i,l} \sum_{a} (2C_{ij}{}^a C_{ak}{}^l C_{il}{}^s - 2C_{ik}{}^l C_{ij}{}^a C_{al}{}^s \\ - 2C_{ia}{}^j C_{ia}{}^l C_{lk}{}^s - C_{ia}{}^l C_{ia}{}^s C_{jk}{}^l - C_{ia}{}^k C_{ia}{}^l C_{jl}{}^s)\}X_s.$$

In order to analyze (3.13), we get

Lemma 3.3

$$2\sum_{i,l,t} C_{ik}{}^{t}C_{jt}{}^{l}C_{il}{}^{s} = -C_{jk}{}^{s} + \sum_{i,l} \sum_{a} (C_{ij}{}^{l}C_{lk}{}^{a}C_{ai}{}^{s} + C_{jk}{}^{l}C_{ia}{}^{l}C_{ia}{}^{s} + 2C_{ij}{}^{a}C_{ak}{}^{l}C_{li}{}^{s} - C_{ki}{}^{l}C_{lj}{}^{a}C_{as}{}^{i}).$$

Proof. By virtue of (3.3), (3.6), (3.7) and $[\mathfrak{h}, \mathfrak{m}] \subset \mathfrak{m}$, we get

$$\begin{split} &\sum_{i,l,t} C_{ik}{}^{t}C_{jt}{}^{l}C_{il}{}^{s} \\ &= \sum_{i} < [X_{i}, [X_{j}, [X_{i}, X_{k}]]], X_{s} > -\sum_{i,l} \sum_{a} (C_{ik}{}^{a}C_{ja}{}^{l}C_{il}{}^{s} + C_{ik}{}^{l}C_{jl}{}^{a}C_{ia}{}^{s}) \\ &= -\sum_{i} < [X_{j}, [X_{i}, X_{k}]], [X_{i}, X_{s}] > -\sum_{i,l} \sum_{a} (C_{ik}{}^{a}C_{ja}{}^{l}C_{il}{}^{s} + C_{ik}{}^{l}C_{jl}{}^{a}C_{ia}{}^{s}) \\ &= \sum_{i} < [X_{i}, [X_{k}, X_{j}]] + [X_{k}, [X_{j}, X_{i}]], [X_{i}, X_{s}] > \\ &- \sum_{i,l} \sum_{a} (C_{ik}{}^{a}C_{ja}{}^{l}C_{il}{}^{s} + C_{ik}{}^{l}C_{jl}{}^{a}C_{ia}{}^{s}) \\ &= -\sum_{i,l,t} C_{ik}{}^{t}C_{jt}{}^{l}C_{il}{}^{s} - C_{jk}{}^{s} \\ &+ \sum_{i,l} \sum_{a} (C_{ij}{}^{l}C_{lk}{}^{a}C_{ai}{}^{s} + C_{jk}{}^{l}C_{ia}{}^{l}C_{ia}{}^{s} + 2C_{ij}{}^{a}C_{ak}{}^{l}C_{li}{}^{s} - C_{ki}{}^{l}C_{lj}{}^{a}C_{as}{}^{i}). \end{split}$$

Hence, the proof of this Lemma is completed.

By the help of (3.13) and Lemma 3.3, we obtain

(3.14)
$$(\delta_{\nabla}R^{\nabla})(X_{j})X_{k} = \frac{1}{4}\sum_{i,l,s}\sum_{a}(2C_{ij}{}^{a}C_{ak}{}^{l}C_{is}{}^{l} - 2C_{ia}{}^{j}C_{ia}{}^{l}C_{lk}{}^{s} + 2C_{ij}{}^{l}C_{lk}{}^{a}C_{ai}{}^{s} + C_{jk}{}^{l}C_{ia}{}^{l}C_{ia}{}^{s} - C_{ia}{}^{k}C_{ia}{}^{l}C_{jl}{}^{s})X_{s}.$$

By virtue of (3.6) and (3.14), we obtain Proposition 3.1.

3.3. In this subsection, we retain the notations as in 3.1 and 3.2. We obtain

Theorem 3.4. Assume the normal homogeneous Riemannian manifold (G/H, g) is Einstein. Then, a necessary and sufficient condition for the Levi-Civita connection ∇ on (G/H, g) to be a Yang-Mills connection is

(3.15)
$$\sum_{i,l} \sum_{a} C_{ia}{}^{l}C_{kj}{}^{s} = m \sum_{i,l} \sum_{a} (C_{ji}{}^{a}C_{ak}{}^{l}C_{is}{}^{l} + C_{ji}{}^{l}C_{lk}{}^{a}C_{is}{}^{a}),$$

that is,

$$\sum_{i} \sum_{a} < [X_{i}, X_{a}], [X_{i}, X_{a}] > < [X_{k}, X_{j}], X_{s} >$$

= $m \sum_{i} < [[X_{j}, X_{i}]_{\mathfrak{h}}, X_{k}] + [[X_{j}, X_{i}]_{\mathfrak{m}}, X_{k}]_{\mathfrak{h}}, [X_{i}, X_{s}] >,$

where $m = \dim G/H$.

Proof. By the assumption $Ric^{\nabla} = cg$, so $c = \frac{S(g)}{m}$. By the help of this fact and (3.10), we have

(3.16) $c = \frac{1}{4m}(m + 2\sum_{i,l}\sum_{a}C_{ia}{}^{l}C_{ia}{}^{l}).$

By virtue of the fact $Ric^{\nabla} = cg$, (3.9) and (3.16), we get

(3.17) $\sum_{i} \sum_{a} C_{ia}{}^{j}C_{ia}{}^{k} = \frac{1}{m} \sum_{i,l} \sum_{a} C_{ia}{}^{l}C_{ia}{}^{l}\delta_{jk}.$ From (3.14) and (3.17), we have

(3.18)
$$(\delta_{\nabla} R^{\nabla})(X_j) X_k = \frac{1}{2} \sum_{i,l,s} \sum_a (C_{ij}{}^a C_{ak}{}^l C_{is}{}^l + C_{ij}{}^l C_{lk}{}^a C_{ai}{}^s - \frac{1}{m} C_{ia}{}^l C_{ia}{}^l C_{jk}{}^s) X_s.$$

By virtue of (3.6) and (3.18), the proof of this theorem is completed.

§4. Invariant Yang-Mills connections in normal homogeneous spaces

In this section, we retain the notations as in $\S3$.

4.1. In this subsection, we show that the 1-form ω in the Weyl structure (D, g, ω) related to an invariant affine connection D on the space (G/H, g) is invariant on G/H.

The following Lemma is well known (cf. [9, Theorem 8.1])

Lemma 4.1. In the normal homoreneous space (G/H, g), there exists a one-to-one correspondence between the set of all invariant affine connections on (G/H) and the set of all bilinear functions β on $\mathfrak{m} \times \mathfrak{m}$ with values in \mathfrak{m} which are invariant by Ad(H), that is, $Ad(h) \ \beta(X,Y) =$ $\beta(Ad(h)X, Ad(h)Y)$ for $X, Y \in \mathfrak{m}$ and $h \in H$. The correspondence is given by

(4.1) $\beta(X,Y) = (D_{X^*}Y^*)_{p_o}.$

For the sake of simplicity, we call such a bilinear function β on $\mathfrak{m} \times \mathfrak{m}$ a connection function on $\mathfrak{m} \times \mathfrak{m}$. Each invariant affine connection D on G/H naturally induces an invariant connection, in terms of the connection function β , in various product vector bundles generated by the tangent bundle and the cotangent bundle over G/H. By virtue of (2.10), (2.11) and Lemma 4.1, we have

Lemma 4.2. Let D be an invariant affine connection on the normal homogeneous space (G/H, g) which admits a Weyl structure (D, g, ω) , i.e., $Dg = \omega \otimes g$ and $T^D = 0$ where ω is a 1-form on the space G/H. Then, ω is invariant, that is, $\tau_x^* \omega = \omega$ $(x \in G)$.

4.2. In this subsection, we prove the following main result in this paper.

Theorem 4.3. Let D be an invariant affine connection with Weyl structure (D, g, ω) in the tangent bundle over the normal homogeneous space (G/H, g), dim $G/H = m \ge 3$. Assume the connection D is projectively flat. Then, a necessary and sufficient condition for the connection D to be a Yang-Mills connection is $\omega = 0$.

In order to prove the above main theorem, assume $d\omega = 0$. This condition $d\omega = 0$ is a necessary condition for the connection D to be a Yang-Mills connection (cf. Theorem 1.2). Then, we have

$$(4.2) \qquad \sum_{k=1}^{m} \omega_k C_{ij}{}^k = 0$$

where each $\omega_k := \omega(X_k^*)$ for the orthonormal frame $\{X_i^*\}_{i=1}^m$ on the neighborhod $U := \pi(\exp V)$ of p_o . In fact, from (3.3) we have $(d\omega(X_i^*, X_j^*))_{p_o} = (X_i^*\omega(X_j^*) - X_j^*\omega(X_i^*) - d\omega([X_i^*, X_j^*]))_{p_o} = -\sum_k C_{ij}^k \omega_k$ = 0, since $\omega(X_i^*)$ is constant on U by the help of Lemma 4.2. Using

 $Dg = \omega \otimes g, \ T^D = 0 \text{ and fundamental properties of a connection, we get}$ $(4.3) \quad (\alpha_{X_i} * X_k^*)_{p_o} = (D_{X_i} * X_k^* - \nabla_{X_i} * X_k^*)_{p_o} = \frac{1}{2} (\delta_{ik} \omega^{\sharp} - \omega_i X_k - \omega_k X_i).$

By virtue of (2.8), (3.1), and Lemma 4.1, we have at the point p_o

(4.4)
$$(\delta_D R^D)(X_j)X_k = -\sum_{i=1} \{\beta(X_i, R^D(X_i, X_j)X_k) - \frac{1}{2}\sum_{l=1}^m C_{ij}{}^l R^D(X_i, X_l)X_k - R^D(X_i, X_j)\beta(X_i, X_k)\}.$$

From (3.1), (3.3), (3.6) and (4.3), we obtain (4.5) $\Gamma_{ik}{}^{l} = \frac{1}{2}(C_{ik}{}^{l} + \delta_{ik}\omega_{l} - \omega_{i}\delta_{k}{}^{l} - \omega_{k}\delta_{i}{}^{l}), \quad \sum_{i=1}^{m}\beta(X_{i}, X_{j}) = \frac{1}{2}(m-2)\omega^{\sharp},$

where $\theta^{l*}(D_{X_i^*}X_k^*) =: \Gamma_{ik}{}^l = \theta^l(\beta(X_i, X_j))$ on the neighbourhood $U = \pi(\exp V)$ of $p_o, (0 \in V \subset \mathfrak{m})$. Moreover, we obtain the following expression for the value at p_o of the curvature tensor field for the invariant connection D (cf. [9, 16]) (4.6) $R^D(X_i, X_j)X_k = \sum_l \{\sum_t (\Gamma_{jk}{}^t\Gamma_{it}{}^l - \Gamma_{ik}{}^t\Gamma_{jt}{}^l - C_{ij}{}^t\Gamma_{tk}{}^l) - \sum_a C_{ij}{}^aC_{ak}{}^l\}X_l$.

Using (4.2), (4.5) and (4.6), we get the following

Lemma 4.4. Let D be an invariant affine connection with Weyl structure (D, g, ω) in the tangent bundle over the normal homogeneous space (G/H, g). Assume $d\omega = 0$. Then we have $R^D(X_i, X_j)X_k$

(4.7)
$$= \frac{1}{4} \sum_{l} \{ \sum_{t} (C_{jk}{}^{t}C_{it}{}^{l} - C_{ik}{}^{t}C_{jt}{}^{l} - 2C_{ij}{}^{t}C_{tk}{}^{l}) - 4 \sum_{a} C_{ij}{}^{a}C_{ak}{}^{l} \} X_{l} + \frac{1}{4} \{ (\omega_{j}\omega_{k} - \delta_{jk}||\omega||_{g}^{2}) X_{i} + (\delta_{ik}||\omega||_{g}^{2} - \omega_{i}\omega_{k}) X_{j} + (\delta_{jk}\omega_{i} - \delta_{ik}\omega_{j})\omega^{\sharp} \}$$

The Ricci tenser Ric^D for the connection D is defined by

(4.8) $Ric^{D}(Y,Z) = trace\{X \mapsto R^{D}(X,Y)Z\}.$

By virtue of (3.7),(4.2) and (4.7), we get $Ric^{D}(X_{j}, X_{k}) = Ric^{D}(X_{k}, X_{j})$ (4.9) $= \frac{1}{4} \{ \delta_{jk} + (m-2)(\omega_{j}\omega_{k} - \delta_{jk}||\omega||_{g}^{2}) + 2(\sum_{i}\sum_{a}C_{ia}{}^{j}C_{ia}{}^{k}\}.$

569

Since the connection D is projectively flat by the assumption of the main theorem,

(4.10)
$$R^D(X,Y)Z = \frac{1}{(m-1)} \{ Ric^D(Y,Z)X - Ric^D(X,Z)Y \}.$$

From (4.9) and (4.10), we obtain

(4.11)

$$R^{D}(X_{i}, X_{j})X_{k} = \frac{1}{4(m-1)} [\delta_{jk} \{1 + (2-m)||\omega||_{g}^{2}\} + (m-2)\omega_{j}\omega_{k} + 2\sum_{t}\sum_{a}C_{ta}{}^{j}C_{ta}{}^{k}]X_{i} - \frac{1}{4(m-1)} [\delta_{ik} \{1 + (2-m)||\omega||_{g}^{2}\} + (m-2)\omega_{i}\omega_{k} + 2\sum_{t}\sum_{a}C_{ta}{}^{i}C_{ta}{}^{k}]X_{j}.$$

Since dim $(G/H) = m \ge 3$ by the assumption, comparing coefficients of vector X_i in (4.7) and (4.11) for indices i, j, k $(i \ne j, j \ne k, i \ne k)$, we obtain from (3.6) and (3.7)

Lemma 4.5. Under the same situation as in Lemma 4.4, if the connection D is projectively flat and $d\omega = 0$, then for indices $j, k, (j \neq k)$

(4.12)
$$2\sum_{l}\sum_{a}C_{la}{}^{j}C_{la}{}^{k} = -\sum_{l,t}C_{lt}{}^{j}C_{lt}{}^{k} = (2-m)\omega_{j}\omega_{k}.$$

Using (3.6), (4.4), (4.5) and (4.10), we have

(4.13)

$$(\delta_D R^D)(X_j)X_k = \frac{(2-m)}{2(m-1)}Ric^D(X_j, X_k)\omega^{\sharp} + \frac{1}{(m-1)}\sum_{i,l} \{Ric^D(X_i, X_k)(\Gamma_{ij}{}^l - C_{ij}{}^l) + Ric^D(X_j, X_i)\Gamma_{lk}{}^i\}X_l - \frac{1}{(m-1)}\sum_{i,t}Ric^D(X_i, X_t)\Gamma_{ik}{}^tX_j.$$

From (3.6), we have

(4.14) $\sum_{s} \sum_{a} C_{sa}{}^{i} C_{sa}{}^{t} C_{it}{}^{k} = 0.$

In order to analyze (4.13), we obtain from (3.6), (4.2), (4.5), (4.9) and (4.14)

Lemma 4.6. Under the same situation and assumption as in Lemma 4.4,

$$\begin{aligned} (a) \ 4 \ Ric^{D}(X_{j}, X_{k})\omega^{\sharp} &= \{\delta_{jk} + (m-2)(\omega_{j}\omega_{k} - \delta_{jk}||\omega||_{g}^{2}) \\ &+ 2\sum_{i}\sum_{a}(C_{ia}{}^{j}C_{ia}{}^{k}\}\omega^{\sharp}, \\ (b) \ 8 \ \sum_{i,l} Ric^{D}(X_{i}, X_{k})(\Gamma_{ij}{}^{l} - C_{ij}{}^{l})X_{l} \\ &= \sum_{l}[\{1 + (2 - m)||\omega||_{g}^{2}\}C_{jk}{}^{l} - 2\sum_{i,t}\sum_{a}(C_{ta}{}^{i}C_{ta}{}^{k}C_{ij}{}^{l} + \omega_{j}C_{ta}{}^{k}C_{ta}{}^{l})]X_{l} \\ &+ [\{1 + (2 - m)||\omega||_{g}^{2}\}\delta_{jk} + 2\sum_{i}\sum_{a}C_{ta}{}^{j}C_{ta}{}^{k}]\omega^{\sharp} \\ &- \{\omega^{k} + 2\sum_{s,t}\sum_{a}\omega_{t}C_{sa}{}^{t}C_{sa}{}^{k}\}X_{j} - \{\omega_{j} + (2 - m)\omega^{j}||\omega||_{g}^{2}\}X_{k}, \\ (c) \ 8 \ \sum_{i,l}Ric^{D}(X_{j}, X_{i})\Gamma_{lk}{}^{i}X_{l} \\ &= \sum_{l}[\{1 + (2 - m)||\omega||_{g}^{2}\}C_{lk}{}^{j} - 2\sum_{t}\sum_{a}(\omega_{k}C_{ta}{}^{j}C_{ta}{}^{l}) \\ &+ \sum_{i}C_{ta}{}^{j}C_{ta}{}^{i}C_{ta}{}^{l})]X_{l} \\ &- [\{1 + (2 - m)||\omega||_{g}^{2}\}\delta_{kj} + 2(m - 2)\omega_{j}\omega_{k} + 2\sum_{t}\sum_{a}C_{ta}{}^{j}C_{ta}{}^{k}]\omega^{\sharp} \\ &+ \{(m - 2)||\omega||_{g}^{2} - 1\}\omega_{k}X_{j} + (\omega_{j} + 2\sum_{i,t}\sum_{a}\omega_{i}C_{ta}{}^{j}C_{ta}{}^{i})X_{k}, \\ (d) \ 8 \ \sum_{i,t}Ric^{D}(X_{i}, X_{t})\Gamma_{ik}{}^{t}X_{j} \\ &= \{(m - 1)(m - 2)\omega_{k}||\omega||_{g}^{2} - m\omega_{k} - 2\sum_{s,t}\sum_{a}\omega_{k}C_{sa}{}^{t}C_{sa}{}^{t}\}X_{j}. \end{aligned}$$

By virtue of (4.13) and Lemma 4.6, we get

Lemma 4.7. Under the same situation and assumption as in Lemma 4.4

$$8(m-1)(\delta_D R^D)(X_j)X_k = \sum_{l} [(2-m)\delta_{jk}\omega_l + m(2-m)\omega_j\omega_k\omega_l + (2-m)^2\delta_{jk}\omega_l ||\omega||_g^g$$

$$(4.15) + 2\sum_{i} \sum_{a} \{(2-m)\omega_l C_{ia}{}^j C_{ia}{}^k - \omega_j C_{ia}{}^k C_{ia}{}^l - \omega_k C_{ia}{}^j C_{ia}{}^l\}$$

$$- 2\sum_{i,t} \sum_{a} (C_{ta}{}^j C_{ta}{}^i C_{ik}{}^l + C_{ta}{}^k C_{ta}{}^i C_{ij}{}^l)]X_l$$

Affine Yang-Mills connections on normal homogeneous spaces

$$+ \{(m-2)\omega_{k} - (m-2)^{2}\omega_{k}||\omega||_{g}^{2} + 2\sum_{i,t}\sum_{a}(\omega_{k}C_{ia}{}^{t}C_{ia}{}^{t}$$
$$- \omega_{i}C_{ta}{}^{i}C_{ta}{}^{k})\}X_{j}$$
$$+ \{(m-2)\omega_{j}||\omega||_{g}^{2} + 2\sum_{i,t}\sum_{a}\omega_{i}C_{ta}{}^{j}C_{ta}{}^{i}\}X_{k}.$$

By virtue of Lemma 4.5, the coefficient of vector X_k appeared in (4.15) can be changed as follows; (4.16) $(m-2)\omega_j ||\omega||_g^2 + 2\sum_{i,t} \sum_a \omega_i C_{ta}{}^j C_{ta}{}^i = (m-2)\omega_j^3 + 2\sum_t \sum_a \omega_j C_{ta}{}^j C_{ta}{}^j.$

Now, we assume $\delta_D R^D = 0$. Then, the coefficient of vector X_l appeared in (4.15) is 0, since dim $G/H = m \ge 3$. And then, the coefficients of vectors X_j and X_k appeared in (4.15) are 0. So, using (4.15), (4.16) and $\delta_D R^D = 0$, we have

(4.17)
$$(m-2)\omega_j^2 + 2\sum_t \sum_a C_{ta}{}^j C_{ta}{}^j = 0$$
 for each *j*.

Summing over j at (4.17), we get

(4.18) $(m-2)||\omega||_g^2 + 2\sum_{j,t}\sum_a C_{ta}{}^j C_{ta}{}^j = 0.$

From (4.18) and the fact $m \geq 3$, we obtain $\omega = 0$. Hence we have

Proposition 4.8. Let (D, g, ω) be the Weyl structure related to an invariant affine connection D on the normal homogeneous space (G/H, g). If the connection D is a projective flat Yang-Mills connection, then $\omega = 0$.

Conversely, assume $\omega = 0$. Then, the connection D is a metric connection. Hence D coincides with the Levi-Civita connection ∇ on (G/H, g), since D is torsion free and metric. On the other hand, the following facts are well known, in general:

(i) the Levi-Civita connection on a Riemannian manifold is projectively flat if and only if the the Riemannian manifold is a space of constant curvature.

(ii) if a Riemannian manifold is a space of constant curvature, then the Levi-Civita connection is a Yang-Mills connection.

By the help of the above facts, we obtain

Proposition 4.9. Let (D, g, ω) be the Weyl structure related to an invariant affine connection D on the normal homogeneous space (G/H, g). Assume D is projectively flat. Then if $\omega = 0$, D is a Yang-Mills connection.

Thus, by virtue of Theorem 1.2, Propositions 4.8 and 4.9, we obtain Theorem 4.3.

Finally, we get from Theorem 4.3

Corollary 4.10. Let D be an invariant affine connection with Weyl structure (D, g, ω) in the tangent bundle over the mormal homogeneous space (G/H, g), $\dim G/H = m \ge 3$. Assume the connection D is projectively flat. Then, D is a Yang-Mills connection if and only if D is the Levi-Civita connection on the space (G/H, g).

References

- J.E. D'Atri and W.Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Memoirs of Amer. Math. Soc. 18 (1979), no. 215, 1-72.
- [2] S. Dragomir, T. Ichiyama and H. Urakawa, Yang-Mills theory and conjugate connections, Differential Geom. Appl. 18 (2003), no.2, 229-238.
- [3] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
- [4] M. Itoh, Compact Einstein-Weyl manifolds and the associated constant, Osaka J. Math. 35 (1998), no.3, 567-578.
- [5] S. Kobayashi and K. Nomizu, Foundation of Differential Geometry, Vol.I, Wiley-Interscience, New York, 1963.
- [6] Y. Matsushima, Differentiable Manifolds, Marcel Dekker, Inc., 1972.
- [7] J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 (1976), 293-329.
- [8] I. Mogi and M. Itoh, Differential Geometry and Gauge Theory (in Japanese), Kyoritsu Publ., 1986.
- [9] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
- [10] K. Nomizu and T. Sasaki, Affine Differential Geometry-Geometry of Affine Immersions, Cambridge Univ. Press, Cambridge, 1994.
- [11] J.-S. Park, The conjugate connection of a Yang-Mills connection, Kyushu J. of Math. 62 (2008), no.1, 217-220.
- [12] J.-S. Park, Yang-Mills connections with Weyl structure, Proc. Japan Acad., 84(A) (2008), no.7, 129-132.
- [13] J.-S. Park, Projectively flat Yang-Mills connections, Kyushu J. of Math. 64 (1) (2010), 49-58.
- [14] J.-S. Park, Invariant Yang-Mills connections with Weyl structure, J. of Geometry and Physics 60 (2010), 1950-1957.
- [15] H. Pedersen, Y. S. Poon, A. Swann, Einstein-Weyl deformations and submanifolds, Internat. J. Math. 7 (1996), no.5, 705-719.
- [16] Walter A. Poor, Differential Geometric Structures, McGraw-Hill, Inc., 1981.
- [17] Y. Sakane and M. Takeuchi, Geometry on Yang-Mills fields, Prof. Bourguignon' Lecture Note (1979), Osaka university, Sugaku 44-63, in Japanese.
- [18] N. R. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973.

Joon-Sik Park Department of Mathematics, Pusan University of Foreign Studies, Pusan 608-738, Korea. E-mail: iohpark@pufs.ac.kr