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AFFINE YANG-MILLS CONNECTIONS ON NORMAL
HOMOGENEOUS SPACES

JOON-SIK PARK

Abstract. Let G be a compact and connected semisimple Lie group,
H a closed subgroup, g (resp. h) the Lie algebra of G (resp. H),
B the Killing form of g, g the normal metric on the homogeneous
space G/H which is induced by -B. Let D be an invarint con-
nection with Weyl structure (D, g,w) in the tangent bundle over
the normal homogeneous Riemannian manifold (G/H, g) which is
projectively flat. Then, the affine connection D on (G/H,g) is a
Yang-Mills connection if and only if D is the Levi-Civita connection
on (G/H, )

§1. Introduction

The problem of finding metrics and connections which are critical
points of some functional plays an important role in global analysis and
Riemannian geometry. A Yang-Mills connection is a critical point of the
Yang-Mills functional

(1.1)  YM(D) =3 [3; IRP|? v

on the space € of all connections in a smooth vector bundle E over a
closed (compact and connected) Riemannian manifold (M, g), where RP
is the curvature of D € €g. Equivalently, D is a Yang-Mills connection
if it satisfies the Yang-Mills equation (cf. [2,8,13,14.17])

(1.2) SpRP =0,

(the Euler-Lagrange equations of the variational principle associated
with (1.1)).
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If D is a connection in a vector bundle £ with bundle metric h over
a Riemannian manifold (M, g), then the connection D* given by
(1.3) h(D%s, t)=X(h(s, t)) —h(s, Dxt), (X €X(M))and s,t € I'(F))

is referred to as conjugate (cf. [1, 10]) to D.
Recently, using the concept of conjugate connection, the present au-
thor obtained the following

Theorem 1.1 [11]. A connection D in a vector bundle E over a
closed Riemannian manifold (M,gq) is a Yang-Mills connection if and
only if the conjugate connection D* is a Yang-Mills connection.

If a tortion free affine connection D in the tangent bundle over a
Riemannian manifold (M, g) satisfies Dg = w ® g for a 1-form w on
M, then (D, g,w) is called a Weyl structure (cf. [4,15]). By virtue of
Theorm 1.1, the present author got the following

Theorem 1.2 [12]. Let D be a Yang-Mills connection with Wely
structure (D, g,w) in the tangent bundle TM over a closed Riemannian
manifold (M, g). Then dw = 0.

Let G be a compact Lie group, H a closed subgroup of G, g (resp.
h) the Lie algebra of G (resp. H), and m a subspace of g such that
g = m@bh. A homogeneous Riemannian metric g on G/H is said to
be normal homogeneous if there exists Ad(G) invariant inner product
<, >on gsuch that <m,h >=0and <, >n=g(my}-

Through this paper, let G be a compact connected semisimple Lie
group, H a closed subgroup of the group G, g (resp. h) the Lie algebra
of G (resp. H), and B the Killing form of g, < , >:= —B, m the
subspace of g such that < m, h >= 0 and g = m & b, and g the
normal homogeneous Riemannian metric on the space G/H such that
<, >m= g{H}7

By the help of the second Bianchi identity pR” = 0, the following
is well known:

A mecessary and sufficient condition for a connection D on a closed
Riemannian manifold (M, g) to be a Yang-Mills connection is that the
curvature tensor field for D is harmonic.

In general, the curvature tensor RY for the Levi-Clvita conection V
in T'M over a closed Riemannian manifold (M, ¢) is not harmonic, and
hence V is not a Yang-Mills connection.

In this paper, we get a necessary and sufficient condition for the Levi-
Civita connection V on the normal homogeneous Riemannian manifold
(G/H,g) to be a Yang-Mills connection (cf. Proposition 3.1, Theorem
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3.4). And, using these results, Theorem 1.2 and the fact that the 1-form
w in the Weyl structure (D, g,w) related to an invariant affine connec-
tion D on the normal homogeneous Riemannian manifold (G/H,g) is
invariant on G/H (cf. Lemma 4.2), we get the following

Theorem 4.3. Let D be an invariant connection with Weyl struc-
ture (D, g,w) in the tangent bundle over the normal homogeneous space
(G/H,g), dim G/H =m > 3. Assume the connection D is projectively
flat. Then, a necessary and sufficient condition for the connection D to
be a Yang-Mills connection is w = 0.

Corollary 4.10. Under the same situation and assumption as in
Theorem 4.3, the connection D is a Yang-Mills connection if and only
if D coincides with the Levi-Civita connection V on the normal homo-
geneous space (G/H, g).

§2. Yang-Mills connections in a vector bundle and Weyl struc-
tures in a tangent bundle

2.1. In this subsection, we treat the Yang-Mills equation in vector
bundles over a closed Riemannian manifold (M, g), using the concept of
conjugate connection.

Let E be a vector bundle, with bundle metric h, over an n-dimensional
closed Riemannian manifold (M, g). Let D € € and V the Levi-Civita
connection on (M, g). The pair (D, V) induces a connection in product
bundles A? TM*® E, denoted by D, as well. Set AP(E) :=T(APTM*®
E). We consider the differential operator

dp : AP(E) — APTY(E),

(dD(p)(XhX% T 7XP+1) = (_I)H—l(DXiSO)(Xla to a)?ia T 7Xp+1)?

p €AP(E), X; € X(M) (i = 1,12,--- ,p+1),
which are defined by
dp(w®¢§) 1 =dw® &+ (—1)’w A DE,
Dx(w®§):=(Vxw) ®§+w® DxE,

forw e (NP TM*), (£ €T(E) and X € X(M).
Let dp be the formal adjoint of dp with respect to the L2-inner
product

(p,v) =/M <, > vy
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for ¢, € AP(E). Here <, > is the bundle metric in AP TM* @ E
induced by the pair (g, h) and vy is the canonical volume form on (M, g).
The following identity is elementary, yet crucial (cf. [2,3])

(21)  dpp= (=L dpe - #) () = (=1)"PF(x - dpe - %)()

for any p € APTY(E). Here, x : AY(E) — A" 9(E), (0 < q < n), is the
Hodge operator with respect to g. Let {e;}_; be a local orthonormal
frame on (M, g) and {Oj};«‘zl the dual coframe. Let {d,}_; be a local
orthonormal frame on (E, h) and {o,}},_; the dual coframe, where r is
the rank of E. Note that (2.1) may also be written as (cf. [2])

(2.2)  (dpp)(Xi, -+, Xp) = =20 (DL e) (e, X1, -+, Xp).

The connections D, D* € € naturally induce connections, denoted by
the same symbols, in End(F) (:= E ® E*). Then, a straightforward
argument shows that D, D* € CEnd( ) are conjugate connections. The

following curvature property is immediate (cf. [2])
(2.3) h(RP(X,Y)s,t) = —h(s, RP" (X, Y)t), for s,t € ['(E) and X,Y € X(M).

Specially in E = TM over a closed Riemannian manifold (M, g), we
easily find from (1.3) and (2.2) that D € €g is a Yang-Mills connection
if and only if

n

(6pRP)(X)Y = =) (D5 RP)(ei, X)Y

=1
(2.4) =— Z{(D;RD)(% X)Y — RP(V..e;, X)Y
=1
— RP(e;,Ve,X)Y — RP(e;, X)D: Y}
=0,

where X € X(M) and Y € T(TM). Moreover, R € T(\*TM* ®
End(TM)).

2.2. In this subsection, we introduce some well known facts on a Weyl
structure (D, g,w) on a closed (compact and connected) Riemannian
manifold (M, g).

Let (D, g,w) be a Weyl structure in the tangent bundle TM over a
closed Riemannian manifold (M.g), i.e.,

(2.5) Dg=w®y, and TP =0 (torsion free),
for some 1-form on M. Then, we have for X, Y € X(M) and Z € T'(T'M)
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(2.6)
D%Z = DxZ+ w(X)Z,

RP(X,Y) - RY(X,Y) = [Vx,ay] + [ax, Vy] + [ax, ay] — ajxy]

where o := D —V € I'(TM* @ End(T'M)). From (2.4) and (2.6), we
have for Y € X(M) and Z € I'(TM)

(GpRP)Y)Z = —i(DﬁgRD)(Xi,Y)Z
=1

27 DX (RP(X,Y)2) - ROV, X, V)2

i=1
— RP(X;,Vx,Y)Z — RP(X;,Y)Dx,Z},
where {X;}?" ; is an (locally defined) orthonormal frame on (M, g). For
an (locally defined) orthonormal frame {X;}7 ,, let {6;}"_; be the local
orthonormal coframe on (M, g). For the frames {X;};"; and {0;}]_;,

we introduce Fijl = HI(VXin). Then, we have

n n
(2.8) Dx,X;=> Ti'X;, and Dx6’ =-> T;/0"
=1 i=1

By virtue of the fact Dg = w ® g, we have

; 1 . y
(2.9) Ii7 = —§w(X7;) for each j, T"=-Tu! (G#k).
Moreover we have for X,Y € X(M)
(210) OéXy = DXY—VXY:ayX,
since the connections are torision free. Using (2.10) and fundamental
properties of a connection, we get (cf. [15])

(2.11) axY = %{g(X, V) —w(X)Y — w(Y)X},

where w? 1= S, w(X;)X;.
§3. Yang-Mills Levi-Civita connection on (G/H,g)

3.1. Let G be an n-dimensional compact connected semisimple Lie
group and H a closed subgroup of G. Let g be the Lie algebra (the set

of all left invariant vector filelds on G) of the group G, b the Lie algebra
of H, and B the Killing form of g.
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We denote —B =:< , >. Then, the inner product < , > is an
Ad(G)-invariant inner product on g, and there exists the subspace m
of g such that m@ h = g and < m,h >= 0, where Ad(G) denotes the
adjoint representation of G in g. We denote by p, the point represented
by the coset H in the homogeneous space G/H. Then, the subspace
m of g is identified with the tangent space T,,,G/H at p,. Let g be
the invarient Riemannian metric on the homogeneous manifold G/H
which is induced from <, > |mxm. Then, the homogeneous Riemannian
manifold (G/H, g) is a normal homogeneous manifold (cf. [1, p. 3]).

Let {X;}"; be an orthonormal base on (g, <, >) such that the first
m elements span m and the last n —m elements span fj. For the calculus,
we define X*, X e m =Tp (G/H), on a some proper neighborhood
U=mn(expV), (0€V CmCg),ofp,in G/H by

X*2m = (1)« X € Tpy(G/H), x €expV C G (cf. ]9, p. 42]).

Here, 7, denotes the transformation of G/H which is induced by = € G.
Then, {X;}]", is an orthonormal frame on the neighbourhood U of p,
in G/H. Let {67}, be a system of 1-forms on U which is dual to

{X7}?,. The Levi-Civita connection V for the metric g is given by (cf.

[9, p. 52])
(31)  VxY*=31[X.Y]n, (X,Yem), atp,={H}€G/H,

where X, denotes the m-component of the element X € g = m @ §.
Moreover by virtue of (3.1) the curvature tensor field RV at p, is given
by (cf. [9, p. 47])

RY(X,Y)Z = ([Vx+ ,Vy:|Z")p, = Vix v Z*

1
(32) = XY Zhaly — VX, Zal)
1
— 5[[X, Yim, Zlm — [ X, Y]y, Z], (X,Y,Z €m).
From now on in this paper, the indices i, j, k,[, s,t,--- run over the
range {1,2,3,--- ,m}, and the indices a, b, ¢, - - - run over the range {m+
1,m=+2,--- n}, (m=dimm, n = dim g), without further specification.

We denote

(3:3)  [Xi X)) =3, 0y Xy + 30, Cij* Xa
By virture of (3.1) and (3.3), we have

(3.4) (VX:Xf)pD =13, Cii" X
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We get from (3.2) and (3.3)
1

RY (X3, X)X =) 1(Cip'Ct' = Cat'Ce — 2035 C) X,

It
=3 > Cy*Car' X1
l a

By the help of (3.3), < [X;, X;], Xx >= — < X;, [X;, X3] >, and
< [XivXj]vXa >= *B<[Xian]7Xa) = B(Xja [XiaXaD =-< Xj> [XivXa] >,

(3.5)

we have
(3.6) Ci% = —Cit = —Cy*, Oyt = —Cyd = —Cyi~.
From (3.6), [h, m] C m, [h, b] C b, and the facts
< X, Xj > =-B(X;,X;) = —Tr(adX;adX;) = 6; j,
< Xi, Xq >=—-B(X;,X,) = —Tr(adX;adX,) =0,
we obtain
B7) YOO +233, Cl'Cl? = by, >, CuCu’ = 0.
The Ricci tensor RicV for the Levi-Civita connection V is defined by
(3.8)  RicV(Y,Z) =Tr{X — RV(X,Y)Z}.
We obtain from (3.5), (3.6), (3.7) and (3.8)
(3.9)  RicV(X;, Xi) = 2(07F + 23,3, Cia? Cid®).

By virtue of (3.9), the scalar curvature S(g) on the normal homogeneous
space (G/H,g) is given as follows;

(310)  S(g)=Hm+23, Y, Cu'Cia').

3.2. In this subsection, we retain the notation as in 3.1. We obtain

Proposition 3.1. A necessary and sufficient condition for the Levi
-Civita connection V on the normal homogeneous Riemannian manifold
(G/H,g) to be a Yang-Mills connection is

2 Z Z(Cijtctkacisa + G Cak' Cis' — Ci;*Coi" Crsh)
Wt a

= Z Z(Cisacaitckjt + CikaCaitCSjt)v

Wt a

(3.11)



564 Joon-Sik Park

that s,

22 XlaX man]b + [[XZaX ]han]m’ [XZ’X ]

= < [[Xi, Xy, Xi, [Xp, X >) = Z( [[Xi, Xy, Xil, [ X, X;] >

< [[Xi’Xk’]h?Xi]v [XSvXj] >)-

In order to prove this proposition, let’s calculus (§y RV )(X;)Xj. From
(2.4) and (3.1), we have

(6vRY) (X)) Xk
_ _Z Vx,RY)(Xi, X)X},
(3.12)
= —Z{VX (RY(X], X))X}) — RV (X, Vx, X)X
- Rv(Xi,Xj)VXiXk}.
In order to analyze (3.12), we obtain from (3.5), (3.6) and (3.7)

Lemma 3.2. The terms appeared in (3.12) are changed as follows ;

a)zvxi(Rv(XE‘,X}f)XZ)

*Z{ Cir® =3 Ci'Ci'Cy®

0t
+2) ) (Cii'Cia' Cia® — 203 Car' Cit*) } X,
W oa

b)Y RY(X;, Vx,X})X;

72 Jk + ZCZk O]t Cu® — 2ZZCm Cza Otk X,

4,8,
C) ZRV(XZ‘, Xj)inXk

Q Z{C]k +3 Z Cik Cjtlczl

0t

-2 Z Z(kaC’ialeﬁ + QCik Cija als)}XS'

W a



Affine Yang-Mills connections on normal homogeneous spaces 565

By virtue of (3.12) and Lemma 3.2, we obtain

(6w RY)(X;) Xk

72{20 B4 Ci'CilCy
(3.13) e
+ Z Z (2C;;°Cot'Cyt® — 203 C1;°C®

W a

- 2C'iajctialc'llcs - Cialciascjkl - Ciakcialcjls)}Xs‘

In order to analyze (3.13), we get

Lemma 3.3

2) " Ci'Ci'Cy® = —Ciy® + ) 0> (Cif! O Ci® + Cji! Cia Cia®

3,0t i a

+ 201] C ak Clz - Ck:z Clj Cas )

Proof. By virtue of (3.3), (3.6), (3,7) and [h, m] C m, we get

Zciktcjtlcils

B0,
= Z < 7a XuXk:]H X > — ZZ zkacjalczl +Czk: leacza )
iwloa
= Z < J’ X“X’f]] [XzaX ZZ zkaC]alCzl + Czk: C]lacza )
i a

_Z< s Xk) ]]"'[ka[Xj?Xi]]’[XivXS] >

= D (CaCia'Cat® + Cir' C"Cia®)
i a
== Cu'Ci'C® = Cii’®
it
+ Z Z(Cijlolkacais + Cjklcialcias + QCija aklclis - Ckilcljaoasi)-

i a

Hence, the proof of this Lemma is completed.
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By the help of (3.13) and Lemma 3.3, we obtain

1 )
(5VRV)(XJ)XI€ = Z Z 2(201‘]‘& aleisl - 2Ciajcialclks
il,s a
(314) l a s l l s
+ 205 Cp"Coi® + C Cia Cig

- Ciakcialcjls)Xs-
By virtue of (3.6) and (3.14), we obtain Proposition 3.1.

3.3. In this subsection, we retain the notations as in 3.1 and 3.2. We
obtain

Theorem 3.4. Assume the normal homogeneous Riemannian mani-
fold (G/H, g) is Finstein. Then, a necessary and sufficient condition for
the Levi-Civita connection V on (G/H, g) to be a Yang-Mills connection
18

(3:15) 321120 Cia Cia g™ = m 32, 32, (Ci Car' Cis' + Cji! Oy Cis®),

that is,
SN <X Xl [Xi, Xa] >< [Xi, X, X >

= mz < [[Xj’Xi]h’Xk] + [[Xj’Xi]man]hv [XiaXs} >,

where m =dim G/H.

Proof. By the assumption Ric¥Y = cg, so c¢= =+ By the help
of this fact and (3.10), we have

(3.16) c=g=(m+23,>, Cid'Cid).
By virtue of the fact RicY = cg, (3.9) and (3.16), we get

(3:17) 35,3, Cia Cia" = 1530, 20, Cia' Cia' .
From (3.14) and (3.17), we have

1 a a S
(OvRY)(X;) Xy, = 3 E E (Cij"Cu' Cist + Ci' Cii" Coy
(3.18) ils
1
- 7Cialcialcjks)Xs-
m

By virtue of (3.6) and (3.18), the proof of this theorem is completed.
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84. Invariant Yang-Mills connections in normal homogeneous
spaces

In this section, we retain the notations as in §3.

4.1. In this subsection, we show that the 1-form w in the Weyl
structure (D, g,w) related to an invariant affine connection D on the
space (G/H,g) is invariant on G/H.

The following Lemma is well known (cf. [9, Theorem 8.1])

Lemma 4.1. In the normal homoreneous space (G/H, g), there exists
a one-to-one correspondence between the set of all invariant affine con-
nections on (G/H) and the set of all bilinear functions 5 on m x m with
values in m which are invariant by Ad(H), that is, Ad(h) B(X,Y) =
B(Ad(h)X,Ad(h)Y) for XY € m and h € H. The correspondence is
given by

(4.1)  B(X,Y) = (Dx=Y")p,.

For the sake of simplicity, we call such a bilinear function 8 on m x
m a connection function on m x m. Each invariant affine connection
D on G/H naturally induces an invariant connection, in terms of the
connection function §, in various product vector bundles generated by
the tangent bundle and the cotangent bundle over G/H. By virtue of
(2.10), (2.11) and Lemma 4.1, we have

Lemma 4.2. Let D be an invariant affine connection on the normal
homogeneous space (G/H,g) which admits a Weyl structure (D, g,w),
i.e., Dg=w®g and TP =0 where w is a 1-form on the space G/H.
Then, w is invariant, that is, Tjw = w (x € G).

4.2. In this subsection, we prove the following main result in this paper.

Theorem 4.3. Let D be an invariant affine connection with Weyl
structure (D, g,w) in the tangent bundle over the normal homogeneous
space (G/H,g), dim G/H =m > 3. Assume the connection D is projec-
tively flat. Then, a necessary and sufficient condition for the connection
D to be a Yang-Mills connection is w = 0.

In order to prove the above main theorem, assume dw = 0. This

condition dw = 0 is a necessary condition for the connection D to be a
Yang-Mills connection (cf. Theorem 1.2). Then, we have

(4.2) Zzlzl wkCZ-jk = 0,

where each wy = w(Xy*) for the orthonormal frame {X;*}", on
the neighborhod U := m(expV) of p,. In fact, from (3.3) we have
(deo( X, X;))p, = (X" w(X;") =X w(X;") =dw([X;", X" ))p, = — 3 Cijwn
=0, since w(X;*) is constant on U by the help of Lemma 4.2. Using
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Dg =w®g, TP = 0 and fundamental properties of a connection, we
get
(43) (axi*Xk*)po = (DXI*Xk* — in*Xk*)p = %(&kwﬁ — wiXk - kai).

o

By virtue of (2.8), (3.1), and Lemma 4.1, we have at the point p,

(6pRP)(X;) X = = > {B(Xi, RP (X, X;) X))

(4.4) =1

1 m
=5 2 Cy' RP (X3, X)Xy, — RP (X, X;)B(X;, X))}
=1

From (3 1), (3.3), (3.6) and (4.3), we obtain
(4.5)0y,! = %(Czk + i — widy —widi), ST B(XG, X)) = 3(m — 2)wt,

where 0" (DyX}*) =: Tyl = 6/(8(X;,X;)) on the neighbourhood
U = 7(expV) of p,, (0 € V C m). Moreover, we obtain the following ex-
pression for the value at p, of the curvature tensor field for the invariant
connection D (cf. [9, 16])

(4.6)RP (Xi, X;) Xp, = S {3, (D' Tit! = Tt Ty — €' Ti’) = 32, Cij*Car' Y X

Using (4.2), (4.5) and (4.6), we get the following

Lemma 4.4. Let D be an invariant affine connection with Weyl
structure (D, g,w) in the tangent bundle over the normal homogeneous
space (G/H,g). Assume dw = 0. Then we have

RP (X, X;) Xy
1 a
(47 = 72 D (C'Cit! = Ca!Cii’ —2Cy"Cl) =4y Cij"Car'} X
l t a
1
+wswn — Sl |wl2) X5 + (Sinl|wl]]? — wiwr) X + (80w — dipw;)w}.

The Ricci tenser RicP for the connection D is defined by

(4.8) RicP(Y, Z) = trace{X — RP(X,Y)Z}.

By virtue of (3.7),(4.2) and (4.7), we get
Ric? (X, Xy) = Ric® (Xy, X;)

1 .
= 7105 + (m = 2)(wjwr — djillwllg) + 20> > CiCid*}.

% a

(4.9)
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Since the connection D is projectively flat by the assumption of the
main theorem,

(4.10) RP(X,Y)Z = ﬁ{RicD(Y, Z)X — Ric? (X, 2)Y}.

From (4.9)and (4.10), we obtain

RP (X0, X)X = s ol + 2= m) 2}

+(m = Qwjwr +2) Y Cra Cua"1X;
(4.11) . b
*m[(sik{l +(2 - m)”ng}

+(m = 2Qwiwk +2> > Cra' Cia®]X;.
t a

Since dim(G/H) = m > 3 by the assumption, comparing coefficients of
vector X; in (4.7) and (4.11) for indices ¢,7,k (i # j,j # k,i # k), we
obtain from (3.6) and (3.7)

Lemma 4.5. Under the same situation as in Lemma 4.4, if the
connection D is projectively flat and dw = 0, then for indices j, k, (j # k)

(4.12)  23,3°,C CL" = =3, il Cu* = (2 — m)wjwg.

Using (3.6), (4.4), (4.5) and (4.10), we have

(2-m)

2(m—1)
+ o Z{RicD(Xi, Xk)(rijl -G 'l)

(4.13) (m=1) 4

+ RicP (X, X))’} X,

(6pRPY (X)) Xy = RicP (X, X}, )w*

1 .
— m Z RlCD(XZ‘, Xt)rlktX]
it

From (3.6), we have
(4'14) Es Za Csaicsatcitk =0.

In order to analyze (4.13), we obtain from (3.6), (4.2), (4.5), (4.9) and
(4.14)
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Lemma 4.6. Under the same situation and assumption as in Lemma
4.4,

(a) 4 Ric” (X, Xp)w* = {05 + (m — 2)(wjwi — 65| |w]]})
+ 2 Z Z(Ciajciak}wua
(b) 8 > Ric”(X;, X))y — Ci;") X,
il

=> {1+ @2-m)[wlZ}Cir' =2 (Cra’Cia"Cii' + w;Cra*Cia" ) X,
l

it a

+ {1+ 2= m)llwl[3o +2) ) Cra? Cra !
t a

{12 Y w0’ Cod™} X — {wj + (2 = m)w? w3} X,

s,t a

(¢) 8 > Ric”(X;, Xi)Tuk' X,
i,
= Z[{l + (2 — m)\|w|\3}ClkJ — 22 Z(wkaijl
l t a
+ thajctaictal)]Xl
: {1+ (2 - m)Hsz}(;kj +2(m — 2)wjwy + 2 Z Z Ctajctak]wﬁ
t a

+{(m = 2)||wl2 = DX, + (w; + 23 > wiCa Cra') X,

it a

(d) 8 Y Ric” (X, X))Tix' X

it

= {(m — 1)(m — Qwil w2 — mwr =2 Y wiCea'Cua' }X;.

s,t a

By virtue of (4.13) and Lemma 4.6, we get
Lemma 4.7. Under the same situation and assumption as in Lemma 4.4
8(m —1)(6pR")(X;) X

= Z[(2 —m)dpw; + m(2 — m)wwiw; + (2 — m)25jkwl||w||§
1
(4.15) +2 Z Z{(Q — m)wCia? Cio* — w;Cia" Cia' — wiCia? Cia'}

-2 Z Z(Ctajctaioikl + Ctakctaicijl)}Xl

it a
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+ {(m = 2)wi — (m — 2)%wil|w]|2 + 2> > (wiCia' Cia'
it a

- WiCtaiCtak)}Xj
+{(m = 2)w;llw]2+2) ) wiCha? Cra'} X

n,t  a

By virtue of Lemma 4.5, the coefficient of vector X}, appeared in (4.15)
can be changed as follows; o o
(4.16)(m — 2)w;|lw]|2 + 232, , 3 wiCra? Cra' = (m = 2)wd +237, 37, w;Cra’ Cra”-

Now, we assume dpR” = 0. Then, the coefficient of vector X; ap-
peared in (4.15) is 0, since dim G/H = m > 3. And then, the coefficients
of vectors X; and X}, appeared in (4.15) are 0. So, using (4.15), (4.16)
and dpRP = 0, we have

(417) (m—=2)wi+23,3, Cia? Cio? =0 for each j.

Summing over j at (4.17), we get

(4.18)  (m—=2)[|wl7 +2>;, >, Ci! Cia’ = 0.

From (4.18) and the fact m > 3, we obtain w = 0. Hence we have

Proposition 4.8. Let (D, g,w) be the Weyl structure related to an in-
variant affine connection D on the normal homogeneous space (G/H, g).
If the conmection D is a projective flat Yang-Mills connection , then
w=0.

Conversely, assume w = 0. Then, the connection D is a metric
connection. Hence D coincides with the Levi-Civita connection V on
(G/H,g), since D is torsion free and metric. On the other hand, the
following facts are well known, in general:

(i) the Lewvi-Civita connection on a Riemannian manifold is projec-
tively flat if and only if the the Riemannian manifold is a space of con-
stant curvature.

(ii) if @ Riemannian manifold is a space of constant curvature, then
the Levi-Civita connection is a Yang-Mills connection.

By the help of the above facts, we obtain

Proposition 4.9. Let (D, g,w) be the Weyl structure related to an in-
variant affine connection D on the normal homogeneous space (G/H, g).
Assume D is projectively flat. Then if w = 0, D is a Yang-Mills con-
nection.

Thus, by virtue of Theorem 1.2, Propositions 4.8 and 4.9, we obtain
Theorem 4.3.
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Finally, we get from Theorem 4.3
Corollary 4.10. Let D be an invariant affine connection with Weyl

structure (D, g,w) in the tangent bundle over the mormal homogeneous
space (G/H,g), dimG/H =m > 3. Assume the connection D is projec-
tively flat. Then, D is a Yang-Mills connection if and only if D is the
Levi-Civita connection on the space (G/H, g).
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