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CONFORMALLY INVARIANT TENSORS
ON HERMITIAN MANIFOLDS

Ko MaTsuo

In [3] and [4], Kitahara, Pak and the author obtained the conformally
invariant tensor By, which is an algebraic Hermitian analogue of the
Weyl conformal curvature tensor W in the Riemannian geometry, by the
decomposition of the curvature tensor H of the Hermitian connection
and the notion of semi-curvature-like tensors of Tanno (see [7]). In [5],
the author defined a conformally invariant tensor By on a Hermitian
manifold as a modification of By. Moreover he introduced the notion of
local conformal Hermitian-flatness of Hermitian manifolds and proved
that the vanishing of this tensor B, together with some condition for the
scalar curvatures is a necessary and sufficient condition for a Hermitian
manifold to be locally conformally Hermitian-flat.

Recently, the author in [6] introduced the new conformally invari-
ant tensor ‘B which is naturally obtained from the local conformal
Hermitian-flatness of a Hermitian manifold and proved that, without
any conditions for the scalar curvatures, the vanishing of this tensor
‘B is equivalent to local conformal Hermitian-flatness of the Hermitian
manifold. We understand that the tensor B is a geometric Hermitian
analogue of the Weyl conformal curvature tensor W.

In this note, we shall discuss the relations among the conformally
invariant tensors B, By, and B which is derived from the curvature
decomposition of the Hermitian connection. We would like to claim
the usefulness of B for local conformal Hermitian-flatness of Hermitian
manifolds.

Throughout this note, we always assume the differentiability of class
C'* and assume manifolds to be connected and without boundary. The
complex dimensions of almost Hermitian manifolds are assumed to be
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no less than 2, and given a manifold M, (M) denotes the Lie algebra
of all vector fields on M.

1. Preliminaries

Let (M, J,g) be a Hermitian manifold of complex dimension m. The
Hermitian connection D of (M, J, g) is defined by

(1.1)  4¢(DxY.2) = 2Xq(Y,Z) — 2T X g(JY, 2

where XY, Z € ¥(M) and V(X.Y) = [JX,JY]+ X, Y] - J[X,JY ]+
J{JX,Y] (cf. [6]). Then D has the following properties: Dg =0, DJ =
0andT(JX,Y)=T(X,JY) for all X,Y € X(M), where T denotes the
torsion tensor of D, i.e., T(X,Y)=DxY — Dy X -- [X,Y]. The curva-
ture tensor H of D is defined by H(X,Y)Z = DxDyZ — DyDxZ —
Dix v)Z for all X.Y,Z € X(M).

LEMMA 1.1. H satisfies the following equations: For any X, Y, Z, W
€ X(M),
HXY ZW)=-HY X.ZW)=-H(X,Y.W 2),
HUJX, JY, ZW)y=H(X,Y,JZ,JW)=H(X,Y,Z W),
Sxvz{H(X.Y)Z} = 6x,y AT(T(X,Y),Z)+ (DxT)(Y. Z)},
Sxyz{{(DxH)Y,Z)+ HT(X,Y),Z)} =0,

where H(X,Y,Z, W) = g(H(Z,W)Y, X ) and & x y z denotes the cyclic
sum with respect to X,Y, and Z.

We define three tensors R, S, and ) which are analogous to the Ricci
tensor in the Riemannian geometry: For any X,Y € X(M),

R(X.Y)= ) H(ea, Jea, X,JY).

a=1

S(X,Y)= > H(X,JY ca.Jea),

a=1
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1 m
QX,Y) = 5 Z{H(eQ,X, car Y)+ H(Je, X, Je,,Y)
a=1
+ H(eaYiea, X) + H(Jea, Y, Jea, X)),
where {e1,...,em,Je1, ..., Jen} is a local adapted orthonormal frame

field of (M, J,g). Then, by Lemma 1.1, these tensors are symmetric
and compatible with J. Thus, we can associate 2-forms pp, ps., and
pq with the Ricci-type tensors R.S. and @ respectively in the usual
manner:

pr(X,Y) = R(X,JY),
ps(X,Y) = S(X, JY).
pQ(X, Y)=Q(X,JY).

In particular, pg is called the Rices form of the Hermitian connection
D and it is closed.

Moreover, we define two scalar curvatures s and § which are analo-
gous to the scalar curvature in the Riemannian geometry:

m

s=2 Z Rleg, €q) =2 Z S(eareq), §=2 il Qlea, o).
a=1 =

a=]

2. Conformally Invariant Tensors

Let (M, J,g) be a Hermitian manifold of complex dimension m.
Then, consider a conformal change ¢' = ¢~7g of metric ¢ where o €
C*>(M). Denoting by D' . H' and pp the Hermitian connection, the
curvature tensor and the Riccl form with respect to g’ respectively, we
have

1 1
(2.1) DXY = DxY — 5do(X)Y — Zdo(X)JY,

(2.2) H' =e¢77(H - Q®ddo), pr =t pp ~ mddo,
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where {2 denotes the fundamental form of (M, J g), ie., UX,Y) =
g(X,JY) for any X,Y € X(M) and d° is a differential operator (see [1]

for the definition). From (2.2), we have H' — %Q' ®pr =¢ 7(H —

1
—Q ® pr). Thus we naturally obtain a tensor field B defined by
m

(2.3) B-H-L06pn
m

Then we have
THEOREM 2.1. ([6]) The tensor *B is conformally invariant.

Next we recall the definition of the tensor By in [5] which is an
algebraic Hermitian analogue of the Weyl conformal curvature tensor
W in the Riemannian geometry. The complex structure J induces the
splitting of the complexified tangent bundle TcM ~ TM @gr C into
two complementary subbundles, conjugate to each other:

(2.4) TcM ~TYOM g T M,

where, at each point x of M, the fiber T}'°M (resp. TO'M) is the
eigenspace of J, relative to eigenvalue v/—1 (resp. —v/—1). The ele-
ments of T1°M (resp. T°'' M) are the (complex) vectors of type (1.0)
(resp. of type (0,1)).

The above splitting (2.4) of the complexified tangent bundle TcM
extends a splitting into types of the whole tensor bundle. In particular,
we have

ANeM =Y A#T M) 0 A\ (T M)

ptg=r

where A\ LM is the bundle of the C-valued r-forms and A?(7'0M)*
(resp. A 9(T°'M)*) denotes the bundle of the C-linear p-forms (resp.
g-forms) on T1°M (resp. T®!'M). Sections of the bundle AR'M =
AP(TYOM)* @ N9(T*'M)* are complex forms of type (p,q). In par-
ticular, if p = ¢, we denote by A ??M the bundle of real forms of type
(P, ).
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By means of the fundamental form Q, we define the linear operator
L as Ly = Q A ¢ for any form ¢ and denote by A its formal adjoint
operator. A form ¢ is said to be primitive if Ay = 0. Then, for any
2-form ¢ of type (1,1), we have the following Lefschetz decomposition:

(2.5) e ==+ pq,
m
where ¢ is the primitive part of .
In section 1, we saw that the curvature tensor H of the Hermit-
ian connection satisfies the following relations: H(X,Y)oJ = Jo
H(X,)Y), H(JX,JY) = H(X,Y) for any X,Y ¢ X(M). From these

relations, we may understand the curvature tensor H as follows:
(A) H is a section of the vector bundle A"'M @ AV M.
(B) H is an endmorphism of the vector bundle A YA

From the viewpoint of (A), H is decomposed as follows (cf. [5]):
3 1 ) 1
(2.6) H=-—Q0Q+—Q&pro+ —pso 2N+ B,
2m? m m

where pro (resp. pso) is the primitive part of pg (resp. ps), ie.,
PRO = PR — ;)iQ (resp. pso = ps — iQ) Let /\]dlAM be the
2m 2m
vector bundle of real primitive 2-forms of type (1,1). Then /\ldllw is a
subbundle of /\I’IJW and the tensor B above is a section of the bundle
/\ldlM ® /\1[’)11’%. By the Lefschetz decomposition (2.5), the bundle
A"'M decomposes as AV M = /\16]M @ R -, where R - Q denotes
the trivial (real) line subbundle of /\]'1]\/[ generated by (2. Considered
as an endomorphism of /\l’lM, we have B(R - Q) = 0. Therefore
the trace of B as an endomorphism of /\1’1.M it equal to one as an

endomorphism of /\16]AI. Considered as an endomorphism of /\161]%,
the tensor B decomposes as follows:

tr B ; —
(2.7) B=———Id iy +B, trB="2""7

m2 —1

2m
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where By is the trace-free part of B. Then the components of the
tensor B are expressed in terms of a complex local coordinate system

1 ™ as follows:

2t 2

1 ms+ m* — 2)s
By ski=Hijui+ — (9:;;Ru + Sz‘j.‘]kl) - 9i;9ki

m 2m?2(m? — 1)
4 ms — §
2m(m? — 1) Gitdk;-

Then we have
THEOREM 2.2. ([5]) The tensor By is conformally invariant.

In a Riemannian manifold (M, g), Tanno in [7] called a tensor K
of type (0,4) a semi-curvature-like tensor if it satisfies the following
conditions:

(1) K(X,Y, 2, W)= -K(Y,X,Z, W)= -K(X.Y,W,Z2),
(2) K(X.,Y,Z,W)+ K(X,Z,W,Y) + K(X,W,Y,Z) = 0.

Moreover, if a tensor K is expressed as a sum of tensor each of which
contains just one of the curvature tensor of Levi-Civita connection,
the Ricci tensor and the scalar curvature, then he called that A 1is
of curvature degree 1. By means of the notion of semi-curvature-like
tensors of curvature degree 1, he obtained algebraic characterizations
of the Weyl’s conformal curvature tensor in the Riemannian case and
the Bochner curvature tensor in the Kahlerian case.

Now we consider a tensor K of type (0,4) defined on any Hermitian
manifold (M, J, g) which satisfies the following conditions:

1) K(X,Y,ZW)=-K(Y, X, ZW)=-K(X,Y,¥ Z2),

(ii) if (M, J,g) is Kéhlerian, then K(X,Y,Z, W) + K(X,Z W,Y) +
K(X,W,Y.Z) = 0.

The curvature tensor H of the Hermitian conuection satisfies (1)
and (ii). We shall call such a tensor K a Hermitian. semi-curvature-like
tensor. For simplicity, put

R(X,Y)=R(X.Y), RyX.Y)=S(X,Y), Ry(X.Y)=Q(X.Y),
51 = 8§, Sp — .;

Then we have
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LEMMA 2.1. In a Hermitian manifold (M, J.g). every Hermitian
semi-curvature-like tensor K of curvature degree ! which is constructed

by (H,R, S,Q,s.38,¢9,J) is of the form:

3
K = pH+Z(qagARa+raQApa+anCDpa + Vg pa ®N)

a=1

2
+Zsb{wb(QAQ+4Q®Q)+a:bgA51}

b=1

3 3 3
with E U, = E I— 25 Ta, Where p,qq, 7., uq,ve, wy, 1y € R,
a=1 a=—1

= a=1
pa(X,Y) = R,(X.JY) and AA B denotes the product of two tensors
A, B of type (0,2) as follows:

(AAB)X.Y,Z,W) = A(X,Z)B(Y.W) — A(X,W)B(Y. Z)
+B(X,Z)A(Y.W) — B(X,W)A(Y. Z).

If a tensor By as in Lemma 2.1 has the components such that By(Z;,
Z;,Zx, Zy) = By ;j51 and if it is conformally invariant, then we obtain

1 1 1
= 11 T = =TT
P e 4m(m — 1) 2= 4m —1)°
1 1
Uy = —-—, Up=——, Up=1uz =10 =1v3=0,
m m
m?—2 UK
w Wy = ————,
! 8m2(m? - 1)’ w2 8m2(m? —1)
m? —2m — 2 2m +1
:L‘ = b
! 8m%(m? — 1) 2 8m(r1? — 1)

Therefore we obtain

1
BQ:H+%(QAP—QA[)P—'ZSZ@OR—ZpS@Q)
mé + (m? — 2)s
QaAQ Y
(2.8) + 8m2(m2—1)( Al +4Qeq)

m(2m + 1) + (m? — 2m — 2)«
8m?(m? —1)

9489,
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1 1
where P = m (m@Q — R)+ 3 S and pp denotes the 2-form asso-

ciated to P. Then we have
THEOREM 2.3. ([5]) The tensor By above is conformally invariant.

Now we shall recall the definitions of Hermitian-flatness and local
conformal Hermitian-flatness of Hermitian manifolds. Let (M, J, g) be
a Hermitian manifold of complex dimension m.

DEFINITION 2.1. ([5]) We call a Hermitian manifold (M, J, g) or the
Hermitian metric g to be Hermitian-flat if the curvature tensor of the
Hermitian connection with respect to g vanishes everywhere.

DEFINITION 2.2. ([5]) A Hermitian manifold (M. J. g) is locally con-
formally Hermitian-flat if every point of M has an open neighborhood
U with a differentiable function ¢ : U — R such that ¢' = ¢7%¢g | is a
Hermitian-flat metric on U

Assume that the tensor B vanishes everywhere on M. Since the
Ricci form pp is a closed 2-form of type (1,1), on a neighborhood U
of every point of M, we obtain a differentiable function ¢ such that
pr = mdd®o (cf. [1]). Then, with respect to ¢’ = ¢~ 7g);;, we have
H' =0 on U. Now we have

THEOREM 2.4. ([6]) A Hermitian manifold (M, J,g) is locally con-
formally Hermitian-flat if and only if the tensor ‘B vanishes everywhere
on M.

On the other hand, about the vanishing of By, we have

THEOREM 2.5. ([5]) Under the assumption that m > 3, a Hermitian
manifold (M, J, g) is locally conformally Hermitian-flat if and only if
both the tensor By and the function m8 — s vanish everywhere on M.

From these theorems, the vanishing of 8 means one of By. Con-
versely the vanishing of By does not mean one of 8. In fact, in the
Kahlerian case, B = 0 is equivalent to flatness (cf. [6]) and By = 0 is
equivalent to be of constant holomorphic sectional curvature provided
with m > 3 (cf. [5]). We notice that the Weyl conformal curvature
tensor W = 0 is equivalent to flatness in the Kahlerian case.
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The tensor B in the curvature decomposition (2.6) is also confor-
mally invariant. We can easily check it by the equation (2.2) and the
conformal relations for the Ricci-type tensor S and the scalar curva-
ture s (cf. [1], [3]). From comparing with this tensor B, we shall give a
characterization of the tensor 8. We see that the tensor B consists of
two conformally invariant parts:

1 1
(2.9) B:{H—-Q@PR}+{—“’(pS“—i—Q)@Q}.
m m 2m

Then we obtain

PROPOSITION 2.1. The tensor *B is one of two conformally invariant
parts of the tensor B.
The vanishing of B induces one of B because B = 0 implies pg =
s

2m
no example of Hermitian manifolds such that B = 0 and 8 # 0.

2. The converse does not hold in general. Unfortunately we know
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