Browse > Article
http://dx.doi.org/10.4134/JKMS.j170252

ON PSEUDO SEMI-PROJECTIVE SYMMETRIC MANIFOLDS  

De, Uday Chand (Department of Pure Mathematics University of Calcutta)
Majhi, Pradip (Department of Pure Mathematics University of Calcutta)
Publication Information
Journal of the Korean Mathematical Society / v.55, no.2, 2018 , pp. 391-413 More about this Journal
Abstract
In this paper we introduce a new tensor named semi-projective curvature tensor which generalizes the projective curvature tensor. First we deduce some basic geometric properties of semi-projective curvature tensor. Then we study pseudo semi-projective symmetric manifolds $(PSPS)_n$ which recover some known results of Chaki [5]. We provide several interesting results. Among others we prove that in a $(PSPS)_n$ if the associated vector field ${\rho}$ is a unit parallel vector field, then either the manifold reduces to a pseudosymmetric manifold or pseudo projective symmetric manifold. Moreover we deal with semi-projectively flat perfect fluid and dust fluid spacetimes respectively. As a consequence we obtain some important theorems. Next we consider the decomposability of $(PSPS)_n$. Finally, we construct a non-trivial Lorentzian metric of $(PSPS)_4$.
Keywords
semi-projective curvature tensor; $(PSPS)_n$; decomposable of $(PSPS)_n$; dust fluid; energy-momentum tensor; perfect fluid; Einstein's field equation; pseudo semi-projective symmetric manifolds;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Geroch, Space-time structure from a global viewpoint, in General relativity and cosmology (Proc. Internat. School of Physics "Enrico Fermi", Italian Phys. Soc., Varenna, 1969), 71-103, Academic Press, New York, 1971.
2 A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata 7 (1978), no. 3, 259-280.   DOI
3 S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, London, 1973.
4 P. S. Joshi, Global Aspects in Gravitation and Cosmology, International Series of Monographs on Physics, 87, The Clarendon Press, Oxford University Press, New York, 1993.
5 S. Mallick and U. C. De, Spacetimes admitting W2-curvature tensor, Int. J. Geom. Methods Mod. Phys. 11 (2014), no. 4, 1450030, 8 pp.   DOI
6 C. A. Mantica and L. G. Molinari, Weakly Z-symmetric manifolds, Acta Math. Hungar. 135 (2012), no. 1-2, 80-96.   DOI
7 C. A. Mantica and L. G. Molinari, Generalized Robertson-Walker spacetimes - a survey, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 3, 1730001, 27 pp.   DOI
8 C. A. Mantica, L. G. Molinari, and U. C. De, A condition for a perfect-fluid spacetime to be a generalized Robertson-Walker space-time, J. Math. Phys. 57 (2016), no. 2, 022508, 6 pp.   DOI
9 C. A. Mantica and Y. J. Suh, Pseudo-Z symmetric space-times, J. Math. Phys. 55 (2014), no. 4, 042502, 12 pp.   DOI
10 C. A. Mantica and Y. J. Suh, Pseudo Z symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 1, 1250004, 21 pp.   DOI
11 C. A. Mantica and Y. J. Suh, Recurrent Z forms on Riemannian and Kaehler manifolds, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 7, 1250059, 26 pp.   DOI
12 C. A. Mantica and Y. J. Suh, Pseudo-Q-symmetric Riemannian manifolds, Int. J. Geom. Methods Mod. Phys. 10 (2013), no. 5, 1350013, 25 pp.   DOI
13 C. A. Mantica, Y. J. Suh, and U. C. De, A note on generalized Robertson-Walker spacetimes, Int. J. Geom. Methods Mod. Phys. 13 (2016), no. 6, 1650079, 9 pp.   DOI
14 J. V. Narlikar, Lectures on general relativity and cosmology, Macmillan Co. of India, Ltd., New Delhi, 1979.
15 B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
16 S. Ray, Certain investigations in relativity ans cosmology by differential geometric method, University of Kalyani, April,1999, 29 pp.
17 S. K. Srivastava, General Relativity and Cosmology, Prentice-Hall of India Private Limited, New Delhi, 2008.
18 H. Stephani, General Relativity, translated from the German by Martin Pollock and John Stewart, Cambridge University Press, Cambridge, 1982.
19 F. Zengin, M-projectively flat spacetimes, Math. Rep. (Bucur.) 14(64) (2012), no. 4, 363-370.
20 A. Barnes, On shear free normal ows of a perfect fluid, General Relativity and Gravitation 4 (1973), no. 2, 105-129.   DOI
21 J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Monographs and Textbooks in Pure and Applied Math., 67, Marcel Dekker, Inc., New York, 1981.
22 R. R. Caldwell, M. Kaminonkowski, and N. N. Weinberg, Phantom energy and cosmic doomsday, arxiv:astro-ph/0302506v1.
23 E. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926), 214-264.
24 M. C. Chaki, On pseudosymmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 33 (1987), no. 1, 53-58.
25 M. C. Chaki and S. Ray, Space-times with covariant-constant energy-momentum tensor, Internat. J. Theoret. Phys. 35 (1996), no. 5, 1027-1032.   DOI
26 M. C. Chaki and S. K. Saha, On pseudo-projective Ricci symmetric manifolds, Bulgar. J. Phys. 21 (1994), no. 1-2, 1-7.
27 C. J. S. Clarke, Singularities: global and local aspects, in Topological properties and global structure of space-time (Erice, 1985), 61-71, NATO Adv. Sci. Inst. Ser. B Phys., 138, Plenum, New York, 1986.
28 U. C. De and L. Velimirovic, Spacetimes with semisymmetric energy-momentum tensor, Internat. J. Theoret. Phys. 54 (2015), no. 6, 1779-1783.   DOI
29 F. A. Ficken, The Riemannian and affine differential geometry of product-spaces, Ann. of Math. (2) 40 (1939), 892-913.   DOI