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RIGIDITY THEOREMS OF SOME DUALLY FLAT FINSLER

METRICS AND ITS APPLICATIONS

Bin Shen and Yanfang Tian

Abstract. In this paper, we study a class of Finsler metric. First, we
find some rigidity results of the dually flat (α, β)-metric where the under-
line Riemannian metric α satisfies nonnegative curvature properties. We
give a new geometric approach of the Monge-Ampére type equation on
Rn by using those results. We also get the non-existence of the compact
globally dually flat Riemannian manifold.

1. Introduction

Dually flat metrics, which first appeared in information geometry, has been
introduced into the Finsler geometry by Z. Shen in 2006 [8]. After that, X.
Cheng, Z. Shen and Y. Zhou gave equivalent equations of the locally dually flat
Randers metric and the classification of locally dually flat Rander metrics with
isotropic S-curvature or weakly isotropic flag curvature [5]. Meanwhile, C. Yu
studied it from the navigation point of view. With some special deformations,
he pointed out that every dually flat Randers metric always arises from some
locally dually flat Riemannian metric and a 1-form that is dually related to
this Riemannian metric [11]. On the other hand, Qiaoling Xia has studied this
problem for (α, β)-metrics. She proved the following:

Theorem 1.1 ([10]). Let F = αφ(s), s = β
α
, be a non-Riemannian (α, β)-

metric on an n-dimensional manifold Mn(n ≥ 3), where α =
√

aij(x)yiyj and

β = bi(x)y
i 6= 0. If φ satisfies φ

′

(0) 6= 0, s(k2 − k3s
2)(φφ′ − sφ′2 − sφφ′′) −

(φ′2 + φφ′′) + k1φ(φ − sφ′) 6= 0, or φ′(0) = φ′′(0) = 0 or φ(s) is a polynomial
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of s with φ′(0) = 0. Then F is locally dually flat if and only if α and β satisfy

Gm
α =

1

3
[2θym + θmα2],(1)

r00 =
2

3
[θβ − θlb

lα2],(2)

si0 =
1

3
(βθi − θbi),(3)

where θ = θi(x)y
i is a 1-form on M and θm = almθl.

Note that such metric class excludes the Randers metric, but include some
other famous (α, β)-metrics. We need to remark here that there is another
theorem in [10] including the Randers case but we are not concerned with it in
this paper. Recently, the authors focused on generalized Kropina metrics which
can be considered as some special kinds of Finsler metrics with singularity [9],
which are not considered in [10].

Based on [10] and [9], we are going to investigate the PDEs in Theorem
1.1. These equations can be improved to get more information. Firstly, we
can rewrite those equations to discribe the Riemannian metric and the 1-form
respectively. Then we can easily get that the 1-form in Theorem 1.1 is closed
and it is indeed completely determined by the Riemannian metric α once it’s
given. See Lemma 3.4 in Section 3. Secondly, curvature conditions of α give
more informations about rigidity properties of (α, β)-metrics. Some rigidity
theorems have been discussed in [9] already, by using different conditions of β.
In this paper, we concern how the Riemannian metric α influence the dually
flat property. Such as:

Theorem 1.2. Let F = αφ(s) be a non-Riemannian (α, β)-metric on an n-
dimensional manifold M as described in Theorem 1.1. If the scalar curvature

of Riemannian metric α is nonnegative, then F is locally dually flat if and only

if α is an Euclidean metric and β is a constant 1-form.

More theorems and details will be given in Section 4.

At last, we apply dually flat (α, β)-metrics to solve the Monge-Ampére type
equation on R

n with the assumption of the solution being convex.

Theorem 1.3 (Bernstein type theorem). Any convex solution f ∈ C2(Rn) of

the Monge-Ampére equation det( ∂2f
∂xi∂xj ) = C on R

n with C being a non-zero

constant is given by

f(x) = xTAx+ 〈B, x〉 +D,(4)

where A is a constant positive definite matrix, B and D are two constant vectors

on R
n and 〈·, ·〉 is the standard Euclidean inner product.

The convexity assumption is natural in geometry and somehow accustomed
in the research of nonlinear partial differential equations. Such rigidity theorem
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is called Bernstein type theorem for the Monge-Ampére equation which was
first proved by Jorgens in 1954 in the case of dimension 2 and by Calabi in
1958 for dimension less than 6 [2]. Then Pogorelov solved it in full generality
in 1972 [7]. So this result is also called the J-C-P Theorem of Monge-Ampére
equation. It was then re-proved and generalized by some other people [1, 6].
Here we just consider the basic J-C-P Theorem case and give a new approach
to the Bernstein type problem. It is the first time that the Finsler geometry is
used to solve a nonlinear equation problem. Meanwhile we get a non-existence
theorem on compact globally dually flat manifolds.

Theorem 1.4. There is no compact globally dually flat Riemannian manifold.

This shows that such concept is strongly dependent on the topology of the
manifold.

2. Preliminaries

Let (M,F ) be an oriented Finsler manifold. F is actually defined on TM and
smooth on TM \ {0}, i.e., F = F (x, y). We call F a Riemannian metric if F =
√

aij(x)yiyj, where the fundamental tensor aij = 1

2

∂2F
∂yi∂yj is independent of

the tangent coordinates y. If F = F (y) is independent of the point coordinates
x, F is called a Minkowskian metric. Moreover, if aij is independent of both
the point x and y, we say F is an Euclidean metric.

The (α, β)-metric is important in Finsler geometry. It is not only com-
putable, but also has fascination relationships with the Riemannian metric and
the symmetry. The expression of such metric is

F = αφ(s), s :=
β

α
.

In local coordinates, α =
√

aij(x)yiyj is a positive definite Riemannian metric

and β = bi(x)y
i is a 1-form. φ(s) is a C∞ positive function on an open interval

(−b0, b0) satisfying the following inequality to make sure the positivity of the
metric.

φ(s) − sφ′(s) + (b2 − s2)φ′′(s) > 0, |s| ≤ b < b0,

where b := ‖β‖α. It is known that a Finsler metric F = αφ(s) is positive
definite if and only if ‖β‖α < b0 for any x ∈ M . However, the condition
excludes some important metrics with singularity such as the Kropina metric

F = α2

β
, and the generalized Kropina metric F = αm+1

βm . So in this paper the

(α, β)-metric also includes the non-positive definite generalized Kropina metric.
As pointed out in [8], a Finsler metric F = F (x, y) is dually flat if and only

if on an open subset U ⊂ R
m

(F 2)xlykyl − 2(F 2)xk = 0.(5)

Equation (5) is also considered as the definition of locally dually flat Finsler
metrics in local coordinates. Using it, one can deduce equivalent PDEs that
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characterize locally dually flat Randers metrics [5], Kropina metrics [9] and
even (α, β)-metrics [10]. This leads to Theorem 1.1.

Associated with any Finsler metric F , there is a refer field on TM ,

G = yi
∂

∂xi
− 2Gi ∂

∂yi
,

which is locally defined by

Gi(x, y) =
1

4
gij{[F 2]xkyjyk − [F 2]xj}.

G is called the spray of F . By the spray coefficients, one can define the geodesic
of F by

d2xi

dt2
+ 2Gi(x,

dx

dt
) = 0.

So Gi are also called geodesic coefficients of F sometimes. As well known, if F
is a Riemannian metric, i.e., F =

√

aij(x)yiyj, then Gi = 1

2
Γi
jk(x)y

jyk, where

Γi
jk are components of the second Christorff symbol of the Riemannian metric

aij .

Following symbols are usually used in the discussion of (α, β)-metrics.

rij =
1

2
(bi|j + bj|i), sij =

1

2
(bi|j − bj|i),

where “|” denotes the covariant derivative with respect to the Levi-Civita con-
nection of α. Denote

rij := aikrkj , rj := birij , r0 := rjy
j = rijb

iyj , r00 = rijy
iyj ,

sij := aikskj , sj := bisij , s0 := sjy
j = sijb

iyj ,

where (aij) := (a−1)ij are components of the inverse matrix, and bi := aijbj.
We call β is a closed 1-form if sij = 0 and a parallel 1-form if rij + sij = 0,

for all i, j ∈ {1, 2, . . . , n}.

3. Dually flat (α, β)-metrics

In this section, we will deduce some properties of locally dually flat (α, β)-
metrics.

In an adapted coordinate system, the fundamental tensor of a Locally dually

flat Riemannian metrics can be expressed in terms of a smooth function, i.e.,

gij =
∂2ϕ

∂xi∂xj
(x),

where the function ϕ = ϕ(x) is a smooth function on the manifold M [4]. A
Finsler metric F is locally dually flat if in an adopted coordinate system, the
spray coefficients are given by

Gi = −
1

2
gijHyi ,
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where H = H(x, y) is a C∞ function on the punched manifold TM\{0}, with
the homogeneity of degree three: H(x, λy) = λ3H(x, y). The Funk metric,
which is a special Randers metric, defined on the unit ball is the first non-
Riemannian dually flat metrics’ example

F =

√

(1− |x|2)|y|2 + 〈x, y〉2

1− |x|2
±

〈x, y〉

1− |x|2
.

There are many results and examples of Randers metrics, see [4, 11].
From Theorem 1.1 and [9], we can obtain that if an (α, β)-metric F = αφ(s)

satisfies

s(k2−k3s
2)(φφ′− sφ′2− sφφ′′)− (φ′2+φφ′′)+k1φ(φ− sφ′) 6= 0 and φ′(0) 6= 0,

or

φ′(0) = φ′′(0) = 0,

or

φ(s) is a polynomial of s with φ′(0) = 0,

then it must admit the equations (1), (2) and (3). Combining (2) and (3) we
can get

bi|j =
2

3
bjθi −

2

3
θmbmaij ,

where θi = θi(x) =
∂θ
∂yi and bi = aij(x)bj . It follows by taking the derivation

of (1) that

Γl
ij =

2

3
(θlaij + θiδ

l
j + θjδ

l
i).(6)

Rotating the indexes and adding them up, we obtain

∂aij
∂xl

=
4

3
(θlaij + θialj + θjali).

So it is obviously to get that:

Lemma 3.1. The results in Theorem 1.1 is equal to in a local adapt coordi-

nates, α and β satisfy

∂aij
∂xl

=
4

3
(θlaij + θialj + θjali),(7)

bi|j =
2

3
bjθi −

2

3
θmbmaij ,(8)

where θ = θi(x)y
i is a 1-form on M and bm = almbl.

Remark 3.2. The function φ given in Theorem 1.1 satisfied by a lot of well

known metrics. For example the Matsumoto metric F = α2

α−β
, the quadratic

metric (α+β)2

α
, the Kropina metric α2

β
, most polynomial metrics, the exponen-

tial metric and so on. But the Randers metric is excluded.
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It’s obviously that the equivalent equations of dually flat (α, β)-metrics are
independent of φ from (7) and (8). The fact means the dually flat property is
independent of φ once it satisfies the condition in Theorem 1.1. From (8), as
discussing in [9], we get the following:

Corollary 3.3. Let F = αφ(s) be a non-Riemannian (α, β)-metric as described

in Theorem 1.1. If β is a conformal 1-form, F is locally dually flat if and only

if α is an Euclidean metric and β is a constant 1-form.

By Lemma 3.1, one can get the following property by contracting (7) with
aij . θi comes from not only the derivation of 1-form θ with respect to yl but
also the determination of the metric matrix on manifold.

Lemma 3.4. θ in Theorem 1.1 or Theorem 3.1 is a globally closed 1-form.

More precisely, in an adapted coordinate system

θl =
3

2(n+ 2)

∂

∂xl
log

√

det(aij).(9)

The 1-form θ given in Theorem 1.1 or Theorem 3.1 is obviously locally
defined. One can easily verify that the expression in Lemma 3.4 is independent
of coordinate transformation. This gives us a way to define globally dually flat
metrics. Although θ is a global 1-form, we just express it as the logarithm
of the determination of aij in the adapted coordinates. This lemma indicates
that the factor θ is already determined once the (α, β)-metric is given. It only
depends on the Riemannian metric α. Since θ is a global form, we can define the
globally dually flat as a concept mentioned in the introduction. More precisely,

Definition 3.5. A Riemannian metric (M, g) is called globally dually flat if
there is a function f ∈ C2(M) such that at any point p ∈ M , the metric can
be expressed by

g = Hess(f).

We also get the following lemma from Theorem 3.1 and (6).

Lemma 3.6. In local coordinates, it follows from the direct computation that

∂bi
∂xj

=
2

3
(2bjθi + θjbi),(10)

∂bi

∂xj
= −

2

3
(θjb

i + 2(θmbm)δij)),(11)

∂θl
∂xj

= θl|j +
2

3
(θmθmalj + 2θlθj),(12)

∂θi

∂xi
= θi|i −

2

3
(n+ 2)θmθm.(13)
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4. Rigidity theorems on dually flat (α, β)-manifolds

In this section we deduce some rigidity theorems of (α, β)-metrics satisfying
the inequality in Theorem 1.1. Let us first consider the scalar curvature of the
underline Riemannian metric.

Theorem 4.1. Let F = αφ(s) be a non-Riemannian (α, β)-metric on an n-
dimensional manifold M as described in Theorem 1.1. If the scalar curvature

of Riemannian metric α is nonnegative, then F is locally dually flat if and only

if α is an Euclidean metric and β is a constant 1-form.

By (6) and the expression of the sectional curvature of a Riemannian metric,
we have

R i
j kl =

∂Γi
jl

∂xk
−

∂Γi
jk

∂xl
+ Γi

hkΓ
h
jl − Γi

hlΓ
h
jk

=
2

3
(
∂θi

∂xk
ajl + θi

∂ajl
∂xk

+
∂θj
∂xk

δil +
∂θl
∂xk

δij)

−
2

3
(
∂θi

∂xl
ajk + θi

∂ajk
∂xl

+
∂θj
∂xl

δik +
∂θk
∂xl

δij)

+
4

9
(θiahk + θhδ

i
k + θkδ

i
h)(θ

hajl + θjδ
h
l + θlδ

h
j )(14)

−
4

9
(θiahl + θhδ

i
l + θlδ

i
h)(θ

hajk + θjδ
h
k + θkδ

h
j )

=
2

3
[
∂θi

∂xk
ajl −

∂θi

∂xl
ajk + (

∂θj
∂xk

δil −
∂θj
∂xl

δik) + δij(
∂θl
∂xk

−
∂θk
∂xl

)]

+
4

9
[(θhθ

h)(ajlδ
i
k − ajkδ

i
l) + θj(θlδ

i
k − θkδ

i
l) + θi(θkajl − θlajk)].

With the definition of Ricci curvature we obtain

Rjl = R i
j il

=
2

3
[
∂θi

∂xi
ajl +

∂θl
∂xj

− n
∂θj
∂xl

−
∂θi

∂xl
aij ]

+
4

9
[n(θmθm)ajl + (n− 2)θjθl](15)

=
2

3
[
∂θi

∂xi
ajl +

∂θl
∂xj

− (n+ 1)
∂θj
∂xl

] +
4

9
[(n+ 2)(θmθm)ajl + (n+ 2)θjθl],

where we have already used (7) at the second equality.

Noticing Rjl = Rlj , we get ∂θl
∂xj =

∂θj
∂xl , which also can be obtained from

Lemma 3.4. Then (15) becomes

Rjl =
2

3
(
∂θi

∂xi
ajl − n

∂θl
∂xj

) +
4(n+ 2)

9
(θmθmajl + θjθl).(16)
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The scalar curvature of α is

(17)
R = Rj

j =
2

3
(n

∂θi

∂xi
− n

∂θl
∂xj

alj) +
4(n+ 2)(n+ 1)

9
θmθm

= −
4(n− 1)(n+ 2)

9
θmθm.

So, if R ≥ 0, then θmθm = 0, i.e., θ = 0. Plugging it back into (7) and (8),

one can obtain
∂aij

∂xl = 0 and bi|j = 0 for any i, j, l ∈ {1, 2, . . . , n}. The first
equality means aij are independent of x, hence α is an Euclidean metric. The
second one means that β is parallel with respect to α, hence it is a constant
1-form here. �

Theorem 4.1 means the scalar curvature condition can restrict the form of
(α, β)-metrics sharply. Now we turn to the space form. We need to constrain
the norm of the gradient of the function f = log det aij . Before presenting the
next theorem, we cite the following proposition [3], which is used in the next
theorem. In what follows, L1(M) stands for the space of Lebesgue integrable
functions on M .

Proposition 4.2 ([3]). Let X be a smooth vector field on the n dimensional

complete, noncompact, oriented Riemannian manifold Mm, such that divX
does not change sign on M . If |X | ∈ L1(M), then divX = 0 on M .

Theorem 4.3. Let F = αφ(s) be a non-Riemannian (α, β)-metric on an n-
dimensional manifold M as described in Theorem 1.1. Suppose the Riemannian

metric α has constant curvature and the gradient of f = log det(aij) satisfies

|∇f | ∈ L1(M), then F is locally dually flat if and only if α is an Euclidean

metric and β is a constant 1-form.

Proof. Suppose that the Riemannian metric has constant curvature K, i.e.,
R i

j kl = K(ajlδ
i
k − ajkδ

i
l ), where K is a constant. Then

Rjl = K(n− 1)ajl;(18)

R = n(n− 1)K.(19)

By (17) and (19), it follows that

θmθm = −
9n

4(n+ 2)
K,(20)

By (16), (18) and (20), we have
(

2

3

∂θi

∂xi
− (2n− 1)K

)

ajl −
2

3
n
∂θl
∂xj

+
4(n+ 2)

9
θjθl = 0.

Using Lemma 3.6 and (20) again, one can get

(21)

(

2

3
θi|i −

2− n

2 + n
K

)

ajl −
2

3
nθl|j −

4(n− 2)

9
θjθl = 0.
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Contracting it with θl, one can obtain
[

2

3
θi|i +

(n− 1)(n− 2)

n+ 2
K

]

θj = 0,

which can be contracted again by θj to get

(22) −
9n

4(n+ 2)
K

[

2

3
θi|i +

(n− 1)(n− 2)

n+ 2
K

]

= 0.

This implies that K = 0 or 2

3
θi|i +

(n−1)(n−2)

n+2
K = 0. Without loss of

generality, one may assume that K < 0 if K 6= 0. The latter equation

shows that △ log det(aij) = − 3(n−1)(n−2)

n+2
K > 0 on M , which implies that

f is subharmonic. By Proposition 4.2 and f ∈ L1(M), f is harmonic. Then
3(n−1)(n−2)

n+2
K = 0 implies K = 0 for n ≥ 3. From (20), the result holds. �

From equation (22), one can get the following corollary with integral of both
side on the manifold.

Corollary 4.4. Let F = αφ(s) be a non-Riemannian (α, β)-metric on an n-
dimensional orientable compact manifold M as described in Theorem 1.1. If

the Riemannian metric α has constant curvature, then F is locally dually flat

if and only if α is an Euclidean metric and β is a constant 1-form.

Example 4.5. The flat torus is a compact manifold with vanishing curvature
which satisfies the conditions in Theorem 4.3. It’s curvature is a constant and
f = log det(aij) is Lebesgue integrable, since the manifold is compact. The
theorem or corollary implies the dually flat (α, β)-metrics on it must with β is
a constant 1-form.

The following theorem are more useful in applications.

Theorem 4.6. Let F = αφ(s) be a non-Riemannian (α, β)-metric on an n-
dimensional orientable compact manifold M as described in Theorem 1.1. If

θmbm = 0 holds on the whole manifold M , then F is locally dually flat if and

only if α is an Euclidean metric and β is a constant 1-form.

Proof. By (8), we have

bj|k|l =
2

3
(bk|lθj + bkθj|l − bmθm|lajk − θmbm|lajk).

By (8) and Lemma 3.6, one can deduce

(23)
bj|k|l − bj|l|k =

2

3

[

2θj(blθk − bkθl) +
2

3
(θmθm)(bkajl − blajk)

+ (
∂θj
∂xl

bk −
∂θj
∂xk

bl) + bm(
∂θm

∂xk
ajl −

θm

∂xl
ajk)

]

.
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On the other hand, one can get the following equation from (14),

(24)

biR
i
j kl =

2

3

[

bi(
∂θi

∂xk
ajl −

∂θi

∂xl
ajk) + (bl

∂θj
∂xk

− bk
∂θj
∂xl

)

+
2

3
(θmθm)(bkajl − blajk) +

2

3
θj(θlbk − θkbl)

+ (bmθm)(θkajl − θlajk)
]

.

By the Ricci identity bj|k|l − bj|l|k = biR
i
j kl, the following equation holds,

(25) 2(
∂θj
∂xl

bk −
∂θj
∂xk

bl) +
8

3
θj(blθk − bkθl)− (bmθm)(θkajl − θlajk) = 0.

With the assumption bmθm = 0, the equation becomes

(26) 3(
∂θj
∂xl

bk −
∂θj
∂xk

bl) + 4θj(blθk − bkθl) = 0.

Taking the trace of j, l, we get

(27) 3(bk
∂θj
∂xl

ajl − bj
∂θj
∂xk

) = 4bkθmθm.

By the assumption and Lemma 3.6, it follows that

bj
∂θj
∂xk

=
∂(bjθj)

∂xk
− θj

∂bj

∂xk
= 2(θmbm)θk = 0.

Then (27) implies

(28) 3bk
∂θj
∂xl

ajl = 4bkθmθm.

Again, by using Lemma 3.6, it follows that

(29) 3θi|i = −2nθmθm ≤ 0.

Integrating on the whole compact manifold M , we get θm = 0 for any
m ∈ {1, 2, . . . , n}. By (7) and (8), α must be an Euclidean metric and β is a
constant 1-form on (M,α). �

One of the key conditions in Theorem 4.6 is θmbm = 0. One can construct
some manifolds with this property.

Example 4.7. Let M = M1 × M2 be a product manifold. M1 is a m1-dim
flat manifold Rm1 with the standard Euclidean metric and M2 is an arbitrary
Riemannian manifold in dimension m2. β is a 1-form limited on M1, i.e.,
β = (β1, 0). From Lemma 3.4, θ = (0, θ2) with θ2 is a 1-form depend on the
metric of M2. It obviously obtains that θmbm = 0.

Then if we need a compact manifold, we can take M1 in Example 1 to be
S1 and M2 to be compact. Hence we have:

Example 4.8. For any compact manifold M , the product manifold M × S1

with 1-form β on S1 is a compact manifold with θmbm = 0.
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5. Monge-Ampére type equation

We now deal with the Monge-Ampére equation in R
n. Such kind of non-

linear equation is important and famous in both mathematics and physics. By
using dually flat metrics, we can solve the following Monge-Ampére type equa-
tion under the convexity assumption and prove the non-existence of compact
globally dually flat manifold. We first give the proof respectively. Moreover,
we can give both proofs simultaneously.

Proof of Theorem 1.3. Suppose f is such a solution, then f defines a locally

dually flat Riemannian metric α by α2 = aijy
iyj with aij = ∂2f

∂xi∂xj since f is

convex. Let (Rn, αφ(β
α
)) be an (α, β)-manifold with α defined as above and

β being a parallel 1-form. Moreover, φ is a function satisfies the condition in
Theorem 1.1. It can be chosen to make the Finsler metric to be a Matsumoto
metric for example. By (7) and (8), (Rn, αφ(β

α
)) is a locally dually flat manifold

and θi = 0. Then plugging it into (7), we obtain ∂2f
∂xi∂xj = const.. So we get

Theorem 1.3. �

Proof of Theorem 1.4. If such manifold exists, we can set M = M1 ×M2 with
M1 = (Rn, φ(s)) is a dually flat (α, β)-manifold and M2 = (M,ω) is a m2-
dim compact globally dually flat Riemannian manifold. By the definition, ω is
defined from a smooth function l on M2, i.e., ωµν = lµ|ν . Here we use xµ, xν

to denote coordinates on M2. The determinant is only determined by ω for
f is the solution of the Monge-Ampére equation. Hence θ is only depend on
the coordinates on M2. It’s easy to see θiβ

i = 0. By the above Theorem 4.6,
such metric is rigidity. Therefore, lµ|ν is a constant. By taking the integral of
ωµν lµν on compact manifold M2, we get

0 =

∫

M2

△l =

∫

M2

m2 = m2VolM2,

which is a contradiction. �

Now we present the simultaneous proof of Theorem 1.3 and Theorem 1.4 by
using the product manifold. This proof may give us the inspiration to prove
the Monge-Ampére equation on R

n with boundary conditions in the further
research.

Proof of Theorems 1.3 and 1.4 simultaneously. Let f be the solution of the

Monge-Ampére equation on R
n. Denote aij = ∂2f

∂xi∂xj . Since f is convex,
aij can be considered as a metric matrix on R

n.
Let M be a product manifold, i.e., M = M1 × M2, with M1 = R

n and
M2 compact. Moreover, let (M,αφ(s)) be a dually flat (α, β)-manifold with

α =
√

aijyiyj defined from f , i.e., aij =
∂2f

∂xi∂xj , and β is a 1-form. We assume
M2 is a globally dually flat Riemannian manifold with metric defined from a
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function l, i.e., ωµν = lµ|ν . It’s easy to see that ˜f = f + l defines a globally
dually flat metric on M = M1 ×M2.

The metric αφ(s) satisfying the conditions in Theorem 1.1 must admit equa-
tions (1), (2) and (3). Combining (2) and (3) we can get

bi|j =
2

3
bjθi −

2

3
θmbmaij ,

as described in Theorem 1.1. Especially, one can just choose a Matsumoto
metric for example. The underline Riemannian manifold (M,α) is a product
manifold Mm1

1 × Mm2

2 , with M1 = R
n and m1 = n. We use the indexes i, j

for the first m1 coordinates in M1 and µ, ν for the last m2 coordinates on M2.
Then

(gAB) = (f̃A|B) =

(

aij 0
0 ωµν

)

,

where aij are components of the metric ofM1, ωµν are components of the metric
of M2 and A,B are from 1 to m1 + m2. The dually flat property of (α, β)-
metrics implies the Riemannian metric α must be dually flat from (7). Hence

aij =
∂2f

∂xi∂xj in the adapted coordinate system. f is just the solution of Monge-
Ampére function. The determinant of gAB is det(gAB) = det(aij) det(ωµν).
Suppose det(aij) = C, where C is a constant, then det(gAB) is only depend on
det(ωµν). Therefore, θ is defined on M2 by Lemma 3.4. Since the 1-form β is
defined on M1, we have θmbm = 0 in this case.

In such case, we don’t need to ask the whole manifold M to be compact.
Instead of the condition in Theorem 4.6, we just need M2 to be compact now.
Since the connection of the product metric is also block diagonal, the condition
of the product metric implies θi = 0 on M1 and hence θi|i = 0 automatically

on M1 by (29). Since M1 is an Euclidean space, the metric is also Euclidean if
M2 is compact, i.e.,

∂2f

∂xi∂xj
= aij = constant,

f̃µ|ν = lµ|ν = ωµν = constant.

On M1, the solution is just in the form of (4). We get Theorem 1.3.

On M2, we know from the definition that ∆ ˜f = ωµν f̃µ|ν = m2 6= 0. One
can integrate the equation on the compact manifold M2 if the globally dually
flat metric exists to get

m2VolM2 =

∫

∆ ˜f = 0,

which leads to a contradiction. �

By the same method, one can obtain the following:

Corollary 5.1. There is no convex function f ∈ C2(N) on compact differen-

tiable manifold N such that in any local coordinates, det( ∂2f
∂xi∂xj ) = C, where

C is a non-zero constant.
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