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ABSTRACT. In this paper, the object is to study a semi-symmetric non-metric connection
on an LP-Sasakian manifold whose concircular curvature tensor satisfies certain curvature
conditions.

1. Introduction

In 1924, Friedmann and Schouten [4] introduced the idea of semi-symmetric
connection on a differentiable manifold. A linear connection V on a differentiable
manifold M is said to be a semi-symmetric connection if the torsion tensor 7' of the
connection V satisfies T(X,Y) = u(Y)X — u(X)Y, where u is a 1-form and & is a
vector field defined by u(X) = ¢g(X, &), for all vector fields X € x (M), x(M) is the
set of all differentiable vector fields on M.

In 1932, Hayden [9] introduced the idea of semi-symmetric metric connections
on a differential manifold (M, g). A semi-symmetric connection V is said to be a
semi-symmetric metric connection if %g =0.

After a long gap the study of a semi-symmetric connection V satisfying

(1.1) Vg # 0.

was initiated by Prvanovié¢ [14] with the name pseudo-metric semi-symmetric con-
nection and was just followed by Andonie [16].

A semi-symmetric connection V is said to be a semi-symmetric non-metric
connection if it satisfies the condition (1.1).

In 1992, Agashe and Chafle [15] studied a semi-symmetric non-metric connection
V, whose torsion tensor T satisfies T(X,Y) = u(Y)X —u(X)Y and (Vxg)(Y,Z) =
—u(Y)g(X,Z)—u(Z2)g(X,Y) # 0. They proved that the projective curvature tensor
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of the manifold with respect to these two connections are equal to each other. In
1992, Barua and Mukhopadhyay [5] studied a type of semi-symmetric connection V
which satisfies (Vxg)(Y,2) = 2u(X)g(Y,Z) —u(Y)g9(X,Z) —u(Z)g(X,Y). Since
Vg # 0, this is another type of semi-symmetric non-metric connection. However,
the authors preferred the name semi-symmetric semimetric connection.

In 1994, Liang [24] studied another type of semi-symmetric non-metric con-
nection V for which we have (Vxg)(Y,Z) = 2u(X)g(Y, Z), where u is a non-zero
1-form and he called this a semi-symmetric recurrent metric connection.

The semi-symmetric non-metric connections was further developed by several
authors such as De and Biswas [21], De and Kamilya [22], Liang [24], Singh et al.
([17, 18, 19]), Smaranda [7], Smaranda and Andonie [8], Barman ([1, 2, 3]) and
many others.

A transformation of an n-dimensional differential manifold M, which transforms
every geodesic circle of M into a geodesic circle, is called a concircular transforma-
tion ([12, 23]). A concircular transformation is always a conformal transformation
[23]. Here geodesic circle means a curve in M whose first curvature is constant and
whose second curvature is identically zero. Thus the geometry of concircular trans-
formations, i.e., the concircular geometry, is a generalization of inversive geometry
in the sense that the change of metric is more general than that induced by a circle
preserving diffeomorphism (see also [6]). An interesing invariant of a concircular
transformation is the concircular curvature tensor W with respect to the Levi-Civita
connection. It is defined by ([12, 13])

W[Q(Ya )X —g(X, 2)Y],

(1.2) WX, Y)Z =R(X,Y)Z —
where X, Y, Z, U € x(M), R and r are the curvature tensor and the scalar curvature
with respect to the Levi-Civita connection.

The concircular curvature tensor W with respect to the semi-symmetric non-
metric connection is defined by

r

(13) W(X,Y)Z=R(X,Y)Z - oD

[9(Y, 2)X — g(X, 2)Y],

where R and 7 are the curvature tensor and the scalar curvature with respect to
the semi-symmetric non-metric connection. Riemannian manifolds with vanishing
concircular curvature tensor are of constant curvature. Thus the concircular curva-
ture tensor is a measure of the failure of a Riemannian manifold to be of constant
curvature.

In this paper we study a type of semi-symmetric non-metric connection due
to Agashe and Chafle [15] on LP-Sasakian manifolds. The paper is organized as
follows: After introduction in section 2, we give a brief account of LP-Sasakian
manifolds. Section 3 deals with the semi-symmetric non-metric connection. The
relation between the curvature tensor of an LP-Sasakian manifold with respect to
the semi-symmetric non-metric connection and Levi-Civita connection have been
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studied in section 4. Section 5 is devoted to obtain &-concircularly flat LP-Sasakian
manifold with respect to the semi-symmetric non-metric connection. Next Section,
we deals with the LP-Sasakian manifolds admitting semi-symmetric non-metric con-
nection V satisfying W - S = 0, where S denotes the Ricci tensor with respect to
the semi-symmetric non-metric connection. Finally, we construct an example of
a 5-dimensional LP-Sasakian manifold admitting the semi-symmetric non-metric
connection to support the results obtained in Section 5.

2. LP-Sasakian Manifolds

An n-dimensional differentiable manifold M with structure (¢, &, 7, g) is said to
be a Lorentzian almost Paracontact manifold (briefly, LAP-manifold) ([10, 11]), if
it admits a (1,1)- tensor field ¢, a contravariant vector field £, a 1-form 7 and a
Lorentzian metric g which satisfy

(2.1) 9(X, &) =n(X);n(§) = —1;6(§) = 0;1(¢) = 0,
(2.2) $*X = X +n(X)E,

(2.3) 9(0X,9Y) = g(X,Y) + n(X)n(Y),

(2.4) Vx&=9¢X,

(2.5) (Vxd)(Y) = g(X,Y)§ +n(Y)X + 2n(X)n(Y)E,
(2.6) rank(¢) =n —1,

(2.7) (X,Y) = &Y, X) = g(¢X,Y),

where V denotes the covariant differentiation with respect to Lorentzian metric g
and for any vector field X and Y € x(M), x(M) is the set of all differentiable vector
fields on M and the tensor field ®(X,Y) is a symmetric (0, 2)-tensor field [10].

An LAP-manifold with structure (¢, &, 7, g) satisfying the relation [10]

(VZz)(X,Y) = g(Y, Z)n(X) + g(X, Z)n(Y) + 2n(X)n(Y)n(Z)

is called a normal Lorentzian paracontact manifold or Lorentzian para-Sasakian
manifold (briefly LP-Sasakian manifold). Also, since the vector field 7 is closed in
an LP-Sasakian manifold, we have ([10, 11])

(2.8) (Vxn)(Y) = (X, Y) = g(¢X,Y), ®(X,§) = 0.
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Also in an LP-Sasakian manifold, the following relations holds [10] :

(2.9)  g(R(X,Y)Z,§) =n(R(X,Y)Z) = g(Y, Z)n(X) — g(X, Z)n(Y),

(2.10) R(X,Y)§ =n(Y)X — n(X)Y,

(2.11) R, X)Y = g(X, V) —n(Y)X,
(2.12) R(§,Y)E = X +n(X)¢,

(2.13) S(X,€) = (n = n(X),

(2.14) S(@X,9Y) = S(X,Y) + (n = Dn(X)n(Y),

for any vector field X, Y, Z € x(M), S denotes the Ricci tensor of M with respect
to the Levi-Civita connection.

3. Semi-symmetric Non-metric Connection

Let M be an n-dimensional differential manifold with Lorentzian metric g. If V
is the semi-symmetric non-metric connection on a differential manifold M, a linear
connection V is given by [15]

(3.1) VxY =VxY +n(Y)X.
Then R and R are related by [15]

(3.2) R(X,Y)Z = R(X,Y)Z + B(X, 2)Y — B(Y, Z)X,

for all vector fields X, Y, Z € x(M), x(M) is the set of all differentiable vector fields
on M, where § is a (0,2) tensor field denoted by

(3-3) B(X, Z) = (Vxn)(Z) = n(X)n(Z).
From (3.1) yields

(3-4) (Vwg)(X,Y) = —n(X)g(Y, W) — n(Y)g(X, W) # 0.
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4. Curvature Tensor of an LP-Sasakian Manifold with respect to the
Semi-symmetric Non-metric Connection

In this section we obtain the expressions of the curvature tensor, Ricci tensor and
scalar curvature of M with respect to the semi-symmetric non-metric connection
defined by (3.1).

Analogous to the definitions of the curvature tensor R of M with respect to the
Levi-Civita connection V, we define the curvature tensor R of M with respect to
the semi-symmetric non-metric connection V given by

R(X,Y)Z = ?x?yz — ?Yﬁxz - ?[X,Y]Z’

where XY, Z € x(M), the set of all differentiable vector fields on M.
Combining (2.8) and (3.3), we get

(4.1) B(X, 2) = g(¢X, Z) = n(X)n(Z).
Using (4.1) in (3.2) [20], we have

R(X,Y)Z = R(X,Y)Z + g(¢X, Z2)Y —n(X)n(Z)Y
(4.2) —9(8Y, Z2)X +n(Y)n(2)X.

From (4.2), implies that

(4.3) R(X,Y)Z = —R(Y,X)Z.
Putting X = £ in (4.2) and using (2.1) and (2.11) [20], we obtain

(4.4) R(§,Y)Z = g(Y, Z)¢ = g(¢Y. Z)¢ + (Y )n(Z)€.

Again putting Z = £ in (4.2) and using (2.1) and (2.10) [20], we get

(4.5) R(X,Y)E =0.

Combining (2.9) and (4.2), we have

9(R(X,Y)Z,§) = n(R(X,Y)Z) = g(Y, Z)n(X) — g(X, Z)n(Y)
(4.6) +9(0X, Z)n(Y) = 9(8Y, Z)n(X).
Taking a frame field from (4.2) [20], we obtain

(4.7) S(Y,2) =5, 2) = (n—=1)g(éY, Z) + (n = 1)n(Y)n(2),

where S denotes the Ricci tensor with respect to the semi-symmetric non-metric
connection.
From (4.7), implies that

(4.8) S(Y,2) = 8(2,Y).
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Putting Z = £ in (4.8) and using (2.13) [20], we get
(4.9) S(v,€) = 0.

Combining (2.8) and (3.1), we have

(4.10) (Vxn)(Y) = g(¢X,Y) — n(X)n(Y).
Again taking a frame field from (4.7) [20], we obtain
(4.11) F=r—(n—-1)(a+1),

where a = trace of ¢ and 7 denotes the scalar curvature with respect to the semi-
symmetric non-metric connection.
From [20] and the above discussions we can state the following:

Proposition 4.1. For an LP-Sasakian manifold M with respect to the semi-
symmetric non-metric connection V,

(1) the curvature tensor R is given by R(X,Y)Z = R(X,Y)Z + g(¢X,Z)Y —
n(X)n(2)Y = g(oY, 2)X +n(Y)n(2)X,

(2) the Ricci tensor S is given by S(Y,Z) = S(Y,Z) — (n — 1)g(¢Y, Z) + (n —
Dn(Y)n(2),

(3) the scalar curvature 7 is given by 7 =r — (n — 1)(a+ 1),

(4) R(X,Y)Z = —R(Y,X)Z,

(5) the Ricci tensor S is symmetric.

5. &-concircularly flat LP-Sasakian manifolds with respect to the semi-
symmetric non-metric connection

Definition 5.1. A LP-Sasakian manifold M with respect to the semi-symmetric
non-metric connection is said to be &-concircularly flat if

W(X, V)¢ =0,

for all vector fields X, Y € x(M), x(M) is the set of all differentiable vector fields
on M.

Theorem 5.1. An n-dimensional LP-Sasakian manifold with respect to the semi-
symmetric non-metric connection is £-concircularly flat if and only if the manifold
with respect to the Levi-Civita connection is also &-concircularly flat provided trace
of p =a=n—1.

Proof. Combining (1.2), (1.3), (4.2) and (4.11), we get

W(X,Y)Z = W(X,Y)Z + QTH[Q(K )X — g(X, 2)Y] + g(6X, 2)Y

(5.1) —n(X)N(2)Y — g(oY, Z2)X +n(Y)n(Z)X.
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Putting Z = ¢ in (5.1) and using (2.1), we have

WX, V)€ = WX, V)E+ S =2 (v) X — n(X)v].

Hence the proof of theorem is completed. ]

Theorem 5.2. If a LP-Sasakian manifold (n > 1) is &-concircularly flat with
respect to the semi-symmetric non-metric connection if and only if the scalar cur-
vature with respect to the semi-symmetric non-metric connection vanishes.

Proof. Putting Z = ¢ in (1.2) and using (2.1) and (4.5), we have

— P

(5.2) W(X,Y)¢ = —W[U(Y)X —n(X)Y].

Thus the theorem is proved. O

6. LP-Sasakian Manifold admitting Semi-symmetric Non-metric Con-
nection V satisfying W.S =0

Theorem 6.1. If an LP-Sasakian manifold with respect to the semi-symmetric
non-metric connection satisfies W - S = 0, then the scalar curvature with respect to
the Levi-Civita connection is (n — 1)(a + 1), where a = g(¢e;, €;).

Proof. We suppose that the manifold under consideration is the semi-symmetric
non-metric connection M", that is,

(W(X’ Y) ’ S)(U’V) =0,

where X, Y, U,V € x(M), x(M) is the set of all differentiable vector fields on M.
Then we have

(6.1) S(W(X,Y)U,V)+ S(UW(X,Y)V) = 0.
Putting U = ¢ in (6.1) and using (4.9), it follows that

(6.2) S(W(X,Y)&, V) =0.

In view of (1.2), (4.5) and (6.2), we get

(6.3) n(Y)S(X,V) —n(X)S(Y,V) =0.

Again putting X = ¢ in (6.3) and using (4.9) and (4.7), we have
(6.4) S, V) =(n-1)g(¢Y,V) = (n = L)n(Y)n(V).
Taking a frame field from (6.4), we obtain

r=(n-1la+1),
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where a = g(¢e;, e;).
This completes the proof of the theorem. O

7. Example

In this section we construct an example on LP-Sasakian manifold with respect
to the semi-symmetric non-metric connection V which verify the result of section
5.

We consider the 5-dimensional manifold M = {(z,y,z,u,v) € R°}, where
(7,9, 2,u,v) are the standard coordinate in R°.

We choose the vector fields

0 0 7] 0 0 0 0
el——2%+2y$, eg—a—y, €= 5 64——2—u—|—21)— =

which are linearly independent at each point of M.
Let g be the Lorentzian metric defined by

g(ei7ej):0a Z#Ja i7j:172a37475

and
glei,e1) = g(ez, e2) = g(es, eq) = g(es,e5) = 1,g(es,e3) = —1.

Let n be the 1-form defined by
(%) = g(Z, e3),

for any Z € x(M).
Let ¢ be the (1, 1)-tensor field defined by

per = ez, gea = €1, ez =0, geq = e5, des = eq.
Using the linearity of ¢ and g, we have
77(63) =-1,

$*(2) = Z +n(Z)es

and
9(¢Z,U) = g(Z,U) +n(Z)n(U),

for any U,Z € x(M). Hence e3 = & and M(¢,&,7n,9) is a Lorentzian almost
paracontact manifold.
Then we have

[61762] = _2637 [61763} = [61764] = [61;65] = [62763] = 07

lea, e5] = —2e3, [e2,e4] = [e2, €5] = [e3, €4] = [e3,e5] = 0.
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The Riemannian connection V of the metric tensor g is given by Koszul’s formula

which is given by

29(VxY, 2) = Xg(Y, 2) + Yg(X, Z) = Zg(X,Y) — g(X, [V, Z])
(7.1) +9(Y, [X, Z])) + 9(Z, [X, Y]).

Taking e3 = £ and using Koszul’s formula we get the following

Velel = 0, Veleg = —€3, Veleg = €2, v6164 = 0, Veleg, = O7
Ve,e1 =¢€3, Ve,ea =0, Ve,e3 =e1, Veeq =0, Ve,e5 =0,
Ve3€1 = €2, Veseg = €1, v6383 = O7 v5364 = €5, v63€5 = €4,
Ve461 = 0, ve4€2 = O, ve463 = €5, Ve4€4 = 0, Ve465 = —€3,
Vese1 =0, Vese2 =0, Veses =€4, Veea=e3, Vee;=0.

From the above calculations, the manifold under consideration satisfies n(§) = —1

and Vx& = ¢X. Therefore, the manifold is an LP-Sasakian manifold.

Using (3.1) in above equations, we obtain

velel =0, veleg = —esg, vele;; =e9 — €1, 66164 =0,
vegel = ées3, v6262 =0, v6263 = €1 — €y, ?6264 =0,
Veer =€z, Veea=e1, Ve =—es, Vese4 = €5
66461 = 0, ?6462 = 0, ?6463 = €5 — €4, 66464 = O7
Vese1 =0,  Vegea =0, Veses = eq—es5,  Veeq = es,

vel €5 = 07
v6265 = 07

;. Veges =eq,
68465 —€s3,
ve565 =0

By using the above results, we can easily obtain the components of the curvature

tensors as follows:

R(e1,ez)es = 2e5, R(er,ez)es =2eq, R(eq,es)er = 2eq,
R(e1,ez)es = 3e1, R(er,ez)es = —eq1, R(ea,er)er = —3ea,
R(es,e1)e; =e3,  R(es,ez)es = —e3, R(es,eq)eq = e3,
R(eq,e3)es = —eq, R(eq,e5)es = 3eq, R(es,es)es = —es,
R(e1,eq4)en = es, R(e1,eq)es = —ea, R(er,es)es = ey,
R(eq,eq)er = —e5, R(ea,eq)es = —e1, R(ea,es)e; = —ey,

R(€4, €5)€2 = 2613
R(ez, e3)ez = —ea,
R —

= _3657

I
N
|

)
)
€3,€5)e5 = —e3,
)
61,65)64 = €2,
)

(

(
R(es, eq

(

(

€2,€5)€4 = €1
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and
R(e1, ez)eq = 2es, R(e1, ez)es = 2ey, R(ez, e3)e; = e3,
R(e3,eq)es = e3, R(eq,e5)e; = 2e, R(eq, e5)es = 2eq,
R(e1,e2)es = 3e; —ea, R(ea,e1)er = —3ea +e1, R(es,er)e; = ez,
R(es,e2)es = —es, R(es,eq)eq = e3, R(es,es)es = —es,
R(eq,es)es = 3eq —es, R(es,eq)es = —3es +eq, R(er,e3)ea = —eq + e,
R(e1,eq)ex = e5 — ey, R(e1,eq)es = —ex + e, R(e1,e5)ex = eq — es,
R(e1,es)eq = ex — ey, R(eg,eq4)e1 = —es + ey, R(eg,eq4)es = —e1 + e,
R(es,es)er = —es+es  Rlez,es)eq = e1 — eg, R(es,e5)es = —e3

and other curvature tensor R(e;, e;)er = R(e;, ej)er = 0;Vi, 5,k =1,2,3,4,5. From
these curvature tensors, we can be calculated the Ricci tensors as follows:

S(e1,e1) = S(es,e3) = S(eq,eq) = —4, S(ea,e2) = S(es,e5) =4
and - - - - -
S(e1,e1) = S(es,eq) = —4, S(es, e3) = 0 S(ez,e2) = S(es, e5) = 4.

Therefore, the scalar curvature tensors r = —4 and 7 = 0 with respect to the
Levi-Civita connection and the semi-symmetric non-metric connection respectively.
Let X and Y are any two vector fields given by

X = aje1 + ases + azez + ageq + ases
and
Y = b161 + b262 + 6363 + b4€4 + b5€5.

Using the above relations of curvature tensors and scalar curvature tensor with
respect to the semi-symmetric non-metric connection respectively, we get

W(X,Y)¢ =0.

Hence the manifold under consideration satisfies the Theorem 5.2 of Section 5. O
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