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GRADIENT RICCI SOLITONS WITH HALF HARMONIC

WEYL CURVATURE AND TWO RICCI EIGENVALUES

Yutae Kang and Jongsu Kim

Abstract. In this article we classify four dimensional gradient Ricci soli-

tons (M, g, f) with half harmonic Weyl curvature and at most two distinct
Ricci-eigenvalues at each point. Indeed, we showed that, in a neighbor-

hood V of each point in some open dense subset of M , (V, g) is isometric
to one of the following:

(i) an Einstein manifold.

(ii) a domain in the Riemannian product (R2, g0) × (N, g̃), where g0
is the flat metric on R2 and (N, g̃) is a two dimensional Riemannian

manifold of constant curvature λ 6= 0.

(iii) a domain in R×W with the warped product metric ds2 +h(s)2g̃,
where g̃ is a constant curved metric on a three dimensional manifold W .

1. Introduction

In this paper, we study four dimensional gradient Ricci solitons with half
harmonic Weyl curvature. A Riemannian manifold (M, g) is called a gradient
Ricci soliton if there exist a smooth function f on M and a real constant λ
such that

Ric+∇df = λg,(1)

where Ric denotes the Ricci tensor. The gradient Ricci solitons are impor-
tant in Hamilton’s Ricci flow theory as singularity models of the flow, so their
classification is important in the study of the Ricci flow.

In four dimension, complete locally conformally flat shrinking gradient Ricci
solitons are classified in [2] and Bach-flat shrinking ones in [3]. Gradient Ricci
solitons with harmonic Weyl curvature are classified in [7].

A special feature of dimensionality four is that the Hodge ∗-operator splits
the Weyl curvature tensor W = W+ + W−. Gradient Ricci solitons with
W+ = 0 or W− = 0 are studied in [4]. We say that a Riemannian manifold
has half harmonic Weyl curvature if δW+ = 0 or δW− = 0, where δ is the
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divergence operator. In [8], Wu, Wu and Wylie proved that a four dimensional
shrinking gradient Ricci soliton with half harmonic Weyl curvature is either
Einstein, or a finite quotient of S3 × R, S2 × R2 or R4.

Based on the works of [7] and [8], in this paper we characterize four dimen-
sional gradient Ricci solitons with half harmonic Weyl curvature and at most
two distinct Ricci-eigenvalues at each point.

Theorem 1. Let (M, g, f) be a four dimensional (not necessarily complete)
gradient Ricci soliton with half harmonic Weyl curvature and at most two dis-
tinct Ricci eigenvalues at each point.

Then for each point in some open dense subset of M , there exists a neigh-
borhood V such that (V, g) is isometric to one of the following:

(i) an Einstein manifold.
(ii) a domain in the Riemannian product (R2, g0) × (N, g̃), where g0 is the

flat metric on R2 and (N, g̃) is a two dimensional Riemannian manifold of
constant curvature λ 6= 0.

(iii) a domain in R×W 3 with the warped product metric ds2 +h(s)2g̃, where
g̃ is a constant curved metric on a three dimensional manifold W 3.

To prove Theorem 1 we depend on two crucial tools. First, ∇f is a Ricci-
eigen vector field as proved in [8]. The second is the local dependence of all
Ricci eigenvalues only on f . Even with these tools, there arises considerable
technical difficulty in extending the arguments in [7] to this article. The main
problem is that the tensor Ric− R

6 g is no longer a Codazzi tensor in our case
of δW+ = 0; note that Codazzi tensor property is well exploited in [7]. So we
obtain some equations related to the tensor Ric− R

6 g in Lemma 4. Using these
equations we analyze two essential cases depending on the distinctiveness of
Ricci-eigenvalues.

This paper is organized as follows. In Section 2, we develop some formulas
about gradient Ricci solitons and the equation δW+ = 0. In Section 3, we
divide the whole proof of Theorem 1 into two cases and resolve the first case.
In Section 4, we do the second case and finish the proof of Theorem 1.

2. Gradient Ricci solitons with half harmonic Weyl curvature

On an oriented Riemannian 4-manifold (M, g), the Hodge ∗-operator splits
any two form into the self-dual part and the anti-self dual part [1, Chap. 13].
This induces the Weyl tensor W to split into W = W+ + W− where W±

are the self-dual and anti-self-dual part of W , respectively. Indeed, given an
oriented orthonormal basis e1, e2, e3, e4 of TpM , for any pair (ij), 1 ≤ i 6=
j ≤ 4, we denote (i′j′) to be the another pair defined by (iji′j′) = σ(1234)
for some even permutation σ on {1, 2, 3, 4}. Then the Weyl tensor is well
known to satisfy Wijkl = Wi′j′k′l′ . Then W±ijkl = 1

4 (Wijkl ±Wijk′l′ ±Wi′j′kl +

Wi′j′k′l′) = 1
2 (Wijkl ± Wijk′l′). As the change of orientation on a manifold



GRADIENT RICCI SOLITONS 587

simply interchanges W+ and W−, we may treat δW+ = 0 condition below,
instead of the condition of half harmonic Weyl curvature.

Denoting by R and Rij the scalar curvature and some Ricci tensor compo-
nents, respectively, we recall the following formulas.

Lemma 1. For a gradient Ricci soliton (M, g, f) the following holds.

(i) ∇kRjl −∇lRjk = ∇iRijkl = Rijkl∇if .
(ii) ∇iR = 2∇jRij = 2Rij∇jf .
(iii) ∇kRjl −∇lRjk +∇k′Rjl′ −∇l′Rjk′ = Rijkl∇if +Rijk′ l′∇if

= 4∇iW+
ijkl + 1

6 (∇kRgjl −∇lRgjk) + 1
6 (∇k′Rgjl′ −∇l′Rgjk′ ).

In the above, (i) and (ii) are well known [5] and (iii) is from the equation
(3) in [8]. Next lemma stems from [3].

Lemma 2. Let (M, g, f) be a gradient Ricci soliton with δW+ = 0. Let c be a
regular value of f and Σc = f−1(c). Then the following holds.

(i) E1 = ∇f
|∇f | is an eigenvector of Ric, whenever ∇f 6= 0.

(ii) |∇f |, R and Ric(E1, E1) is constant on a connected component of Σc.

(iii) There is a locally defined function s such that ds = df
|∇f | and ∇s =

∇f
|∇f | = E1.

(iv) Near a point in Σc, the metric g can be written as

g = ds2 +
∑
i,j>1

gij(s, x2, x3, x4)dxi ⊗ dxj ,

where x2, x3, x4 is a local coordinates system on Σc.
(v) ∇E1

E1 = 0.

Proof. (i) is from Lemma 2.4 in [8]. The proofs of (ii)∼(v) come from that of
Lemma 2.3 of [7]. �

A gradient Ricci soliton (M, g, f) is well known to be real analytic. Recall
from [6] that letting Er(x) be the number of distinct eigenvalues of Ricx for x ∈
M , the set Mr = {x ∈ M | Er is constant in a neighborhoodof x} is an open
dense subset of M and in each connected component of Mr, the eigenvalues
are well-defined and differentiable functions.

We will consider a point p ∈ Σc, for a regular value c of f , and local orthonor-
mal Ricci-eigenvector fields Ei, i = 1, 2, 3, 4 in a neighborhood of p such that
E1 = ∇f

|∇f | and E2, E3, E4 are tangent to Σc. We let λi be the Ricci-eigenvalues

corresponding to Ei. The frame field {Ei} will be called adapted.

Lemma 3. For a gradient Ricci soliton (M, g, f) with δW+ = 0 and for a local
adapted frame field {Ei}, setting ζi = −〈∇Ei

Ei, E1〉, for i > 1, we have;

∇EiE1 = ζiEi =
1

|∇f |
(λ− λi)Ei.(2)
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Proof. From the gradient Ricci soliton equation, for i > 1,

∇Ei
E1 = ∇Ei

(
∇f
|∇f |

)
=
∇Ei
∇f

|∇f |
=
∇2f(Ei)

|∇f |

=
(−Ric+ λg)(Ei)

|∇f |
=

1

|∇f |
(λ− λi)Ei.

Then

ζi = −〈∇Ei
Ei, E1〉 = 〈Ei,∇Ei

E1〉 =
1

|∇f |
(λ− λi). �

Lemma 4. For a Riemannian metric g of dimension four with δW+ = 0, con-
sider orthonormal vector fields Ei, i = 1, . . . , 4 such that Ric(Ei, ·) = λig(Ei, ·).
Let A = Ric− R

2(n−1) . Setting Γkij := 〈∇EiEj , Ek〉, the following holds;

(λj − λk)Γkij +∇Ei
〈Ek, AEj〉 − (λi − λk)Γkji −∇Ej

〈Ek, AEi〉

+ (λj′ − λk)Γk
i′ j′

+∇E
i
′ 〈Ek, AEj′ 〉 − (λi′ − λk)Γk

j′ i′
(3)

−∇E
j
′ 〈Ek, AEi′ 〉 = 0

for any i, j, k = 1, . . . , n with i 6= j.

Proof. We have 0 = −2(δW+)kij = 2∇lW+
lkij = ∇l(Wlkij + Wlki′ j′ ). Since

−δW = 1
2d
∇A [1, 16.3], we obtain

0 = (d∇A)ijk + (d∇A)i′j′k = ∇iAjk −∇jAik +∇i′Aj′k −∇j′Ai′k.
We have got

(4)
〈(∇Ei

A)Ej , Ek〉 − 〈(∇Ej
A)Ei, Ek〉+ 〈(∇E

i
′A)Ej′ , Ek〉

− 〈(∇E
j
′A)Ei′ , Ek〉 = 0.

The tensor A = Ric− R
6 with eigenfunctions λi − R

6 satisfies

〈∇Ei
A)Ej , Ek〉 = − 〈∇Ei

Ej , AEk〉 − 〈∇Ei
Ek, AEj〉+∇Ei

〈Ek, AEj〉

= − (λk −
R

6
)〈∇Ei

Ej , Ek〉 − (λj −
R

6
)〈∇Ei

Ek, Ej〉

+∇Ei
〈Ek, AEj〉

= (λj − λk)〈∇Ei
Ej , Ek〉+∇Ei

〈Ek, AEj〉.

Putting this into (4), we can get (3). �

Putting i = 2, j = 3, i
′

= 1, j
′

= 4 and k = 4 into (3), we get (5) below.
Similarly, we can obtain (6)∼(13).

(λ3 − λ4)Γ4
23 − (λ2 − λ4)Γ4

32 + (λ4 −
R

6
)
′
− (λ1 − λ4)ζ4 = 0.(5)

(λ4 − λ2)Γ2
34 − (λ3 − λ2)Γ2

43 + (λ2 −
R

6
)
′
− (λ1 − λ2)ζ2 = 0.(6)

(λ2 − λ3)Γ3
42 − (λ4 − λ3)Γ3

24 + (λ3 −
R

6
)
′
− (λ1 − λ3)ζ3 = 0.(7)
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(λ2 − λ3)Γ3
12 + (λ3 − λ4)Γ4

33 = E4(λ3).(8)

(λ2 − λ3)Γ2
13 + (λ2 − λ4)Γ4

22 = E4(λ2).(9)

(λ4 − λ2)Γ4
12 + (λ4 − λ3)Γ3

44 = E3(λ4).(10)

(λ4 − λ2)Γ2
14 + (λ2 − λ3)Γ3

22 = E3(λ2).(11)

(λ3 − λ4)Γ4
13 + (λ4 − λ2)Γ2

44 = E2(λ4).(12)

(λ3 − λ4)Γ3
14 + (λ3 − λ2)Γ2

33 = E2(λ3).(13)

3. Analysis of the space when λ1 = λ2 6= λ3 = λ4

Let (M, g, f) be a gradient Ricci soliton with δW+ = 0 and exactly two
distinct Ricci eigenvalues at each point. There exists an adapted frame field
Ej , j = 1, 2, 3, 4, with the corresponding eigenvalues λj in a neighborhood of a
point p of M with ∇f(p) 6= 0. After re-ordering of E2, E3, E4 if necessary, we
may only have to consider two cases;

(i) λ1 = λ2 6= λ3 = λ4,
(ii) λ1 6= λ2 = λ3 = λ4.

The case (i) shall be considered in this section and (ii) in Section 4.
We assume in this section that λ1 = λ2 6= λ3 = λ4. From Lemma 2(ii), the

Ricci eigenvalues λ1 = λ2 and λ3 = λ4 are constant on a connected component
of a regular level hypersurface Σc of f and so depend only on the local variable
s in Lemma 2(iii). Also, ζ2 and ζ3 = ζ4, in Lemma 3 depend on s only. Hence
Ei(λj) = Ei(ζk) = 0 for i > 1.

Lemma 5. Let (M, g, f) be a four dimensional gradient Ricci soliton with
δW+ = 0. Suppose that λ1 = λ2 6= λ3 = λ4 for an adapted frame fields {Ei}
on an open subset of {∇f 6= 0}. Then the following holds on the open subset;
∇E1

E1 = 0.
∇EiE1 = ζi(s)Ei for i = 2, 3, 4, with ζi(s) = 1

|∇f | (λ− λi).
∇E1

E2 = 0.
∇E2E2 = −ζ2(s)E1.
∇E3E3 = −ζ3E1 + β3E4.
∇E4

E4 = −ζ4E1 + β4E3.
∇E3

E2 = xE4, ∇E4
E2 = −xE3 and ∇E2

E3 = Γ4
23E4.

∇E3
E4 = −xE2 − β3E3, ∇E4

E3 = xE2 − β4E4 and ∇E2
E4 = Γ3

24E4.
[E1, E2] = −ζ2E2 and [E3, E4] = −2xE2 − β3E3 + β4E4.

Proof. Lemma 2(v) already gives ∇E1
E1 = 0. The second formula is from (2).

From Ei(λj) = 0 for i > 1 and from (8)∼(11), we can get Γ3
12 = Γ4

12 =
Γ4
22 = Γ3

22 = 0, so that ∇E1E2 = 0 and ∇E2E2 = −ζ2E1. From (12) and
(13), Γ2

33 = Γ2
44 = 0 so that ∇E4

E4 = −ζ4E1 + β4E3, where β4 = Γ3
44 and

∇E3
E3 = −ζ3E1 + β3E4, where β3 = Γ4

33. Moreover, ∇E3
E2 = xE4, where

x = Γ4
32 and ∇E2

E3 = Γ4
23E4.



590 Y. KANG AND J. KIM

By comparing (5) and (7), Γ3
42 = −Γ4

32 = −x, so ∇E4
E2 = −xE3. Since

Γ2
34 = −Γ4

32 = −x and Γ3
34 = −Γ4

33 = −β3, ∇E3
E4 = −xE2 − β3E3. Similarly,

∇E4
E3 = xE2 − β4E4,

[E1, E2] = ∇E1
E2 −∇E2

E1 = −ζ2E2 and

[E3, E4] = ∇E3E4 −∇E4E3 = −2xE2 − β3E3 + β4E4.

We have proved all the formulas and note that this lemma actually do not
need λ1 = λ2 in the hypothesis. �

One can directly compute the curvature components from Lemma 5 and
obtain the following Ricci tensor components Rii = λi.
R11 = −ζ ′

2 − ζ22 − 2ζ
′

3 − 2ζ23 .

R22 = −ζ ′

2 − ζ22 + 2x2 − 2ζ2ζ3.

R33 = R44 = −ζ ′

3 − 2ζ23 − ζ2ζ3 − 2xΓ4
23 + E3(β4) + E4(β3)− β2

3 − β2
4 .

By evaluating the equation (1) on (Ei, Ei), we can get

f
′′

= λ−R11 = λ+ ζ
′

2 + ζ22 + 2ζ
′

3 + 2ζ23 ,(14)

ζ2f
′

= λ−R22 = λ+ ζ
′

2 + ζ22 − 2x2 + 2ζ2ζ3,(15)

ζ3f
′

= λ−R33 = λ+ ζ
′

3 + 2ζ23 + ζ2ζ3 −A,(16)

where A = −2xΓ4
23 +E3(β4)+E4(β3)−β2

3−β2
4 . Using (14)∼(16), the equation

(5) becomes

0 = −(λ2 − λ4)Γ4
32 + (λ4 −

R

6
)
′
− (λ1 − λ4)ζ4

= (ζ2 − ζ3)f
′
x+ (λ− ζ3f

′
)
′
− R

′

6
+ (f

′′
− ζ3f

′
)ζ3.

We put R
′

= 2R11f
′

= 2(−ζ ′

2 − ζ22 − 2ζ
′

3 − 2ζ23 )f
′

into the above and, after

removing f
′
, we have

3x+
ζ

′

2 − ζ
′

3

ζ2 − ζ3
+ ζ2 + ζ3 = 0.(17)

As λ1 = λ2, from Ricci tensor formulas we get

−x2 + ζ2ζ3 = ζ
′

3 + ζ23 .(18)

As λ1 = λ− f ′′
= λ2 = λ− ζ2f

′
, we also get

ζ2 =
f

′′

f ′ .(19)

We put R = 4λ− f ′′ − f ′
(ζ2 + 2ζ3) into R

′
= 2R11f

′
and get

−{f
′′

+ f
′
(ζ2 + 2ζ3)}

′
= −2(ζ

′

2 + ζ22 + 2ζ
′

3 + 2ζ23 )f
′
,

which gives f
′′′

f ′ + f
′′

f ′ (ζ2 + 2ζ3) = ζ
′

2 + 2ζ22 + 2ζ
′

3 + 4ζ23 .
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Put (19) into the last equation to get ζ
′

2 + ζ22 + ζ2(ζ2 + 2ζ3) = ζ
′

2 + 2ζ22 +

2ζ
′

3 + 4ζ23 , so we obtain

ζ2ζ3 = ζ
′

3 + 2ζ23 .(20)

We put (20) into (18) and get x2 = ζ23 .
Now we suppose that ζ3 6= 0 and shall derive a contradiction.

We have ζ2 =
ζ
′
3

ζ3
+ 2ζ3 from (20). Put this into (15) and obtain

(21)

ζ2f
′

= λ+
ζ

′′

3

ζ3
− (ζ

′

3)2

(ζ3)2
+ 2ζ

′

3 +
(ζ

′

3)2

(ζ3)2
+ 4(ζ3)2 + 4ζ

′

3 + 2ζ
′

3 + 2ζ23

= λ+
ζ

′′

3

ζ3
+ 8ζ

′

3 + 6ζ23 .

As x2 = ζ23 , we have two possibilities; x = ζ3 and x = −ζ3.

If x = ζ3, (17) and (20) give
ζ
′
2−ζ

′
3

ζ2−ζ3 +
ζ
′
3

ζ3
+ 6ζ3 = 0, so that (ζ3(ζ2 − ζ3))

′
+

6ζ3(ζ2 − ζ3)ζ3 = 0. By (20) again, the last equation becomes

(22) ζ
′′

3 + 8ζ3ζ
′

3 + 6ζ33 = 0.

Using (22), the above (21) yields ζ2f
′

= λ. With (19), we have f
′′

= λ. From

(19), we get ζ
′

2 + ζ22 = 0. (14) gives ζ
′

3 + ζ23 = 0. Then (20) gives ζ2ζ3 = ζ23 , a
contradiction since ζ2 6= ζ3 and ζ3 6= 0.

If x = −ζ3, (17) gives
ζ
′
2−ζ

′
3

ζ2−ζ3 +
ζ
′
3

ζ3
= 0. Integration yields (ζ2 − ζ3)ζ3 = c

for a constant c. Put this to (20) and get ζ
′

3 + ζ23 = c. Using this, (21)

yields ζ2f
′

= λ + 6c. By (19), f
′′

= λ + 6c. We use (19) again to have

ζ
′

2 + ζ22 = (λ+6c
f ′ )

′
+ (λ+6c

f ′ )2 = 0. Then (14) gives c = 0 so that ζ
′

3 + ζ23 = 0.

Then (20) gives ζ2ζ3 = ζ23 , a contradiction. We have shown that any of the two
possibilities x = ζ3 and x = −ζ3 leads to a contradiction. So, ζ3 6= 0 leads to a
contradiction.

Now, ζ3 = 0. Then x = 0 and ζ
′

2 + ζ22 = 0 from (17), so ζ2 = 1
s+c1

for a

constant c1. (15) gives f
′

= λ(s+ c1) and R11 = R22 = 0. (16) gives R33 = λ.
From the connection formulas of Lemma 5, we see 〈∇Ei

Ej , Ek〉 = 0 when
either i, j ∈ {1, 2} and k ∈ {3, 4}, or k ∈ {1, 2} and i, j ∈ {3, 4}. This means
that the distribution D1 spanned by E1, E2 and D2 spanned by E3, E4 both are
not only integrable, but also totally geodesic. By the local de Rham theorem,
a neighborhood of p ∈ M with ∇f(p) 6= 0 is isometric to a domain in the
Riemannian product R2 × (N, g̃), where (N, g̃) is a Riemannian manifold of
constant curvature λ 6= 0. We have proved:

Proposition 1. Let (M, g, f) be a four dimensional gradient Ricci soliton with
δW+ = 0. Suppose that λ1 = λ2 6= λ3 = λ4 for an adapted frame field {Ei} on
an open subset U of {∇f 6= 0}.

Then for each point p in U , there exists a neighborhood V of p in U such
that (V, g) is isometric to a domain in the Riemannian product (R2, g0)×(N, g̃),
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where g0 is the flat metric on R2 and (N, g̃) is a two dimensional Riemannian
manifold of constant curvature λ 6= 0.

4. Analysis of λ1 6= λ2 = λ3 = λ4 and the proof of Theorem 1

In this section we consider the case (ii) mentioned at the beginning of Section
3, i.e., λ1 6= λ2 = λ3 = λ4.

Proposition 2. Let (M, g, f) be a four dimensional gradient Ricci soliton with
δW+ = 0. Suppose that λ1 6= λ2 = λ3 = λ4 for an adapted frame field {Ei} on
an open subset U of {∇f 6= 0}.

Then for each point p in U , there exists a neighborhood V of p in U where
g is a warped product;

g = ds2 + h(s)2g̃

for a positive function h, where the Riemannian metric g̃ has constant curva-
ture.

Proof. Near p ∈ U , choose a local coordinate system (x1 := s, x2, x4, x4) from

Lemma 2(iv) in which g=ds2+
∑4
i,j≥2 gijdxi⊗dxj with gij :=gij(x1, x2, x3, x4).

For any u tangent to hypersurfaces Σc = f−1(c), if we put u = u2E2 + u3E3 +
u4E4, then from (2) we have 〈∇uu,E1〉 = −u22ζ2 − u23ζ3 − u24ζ4. Since λ2 =
λ3 = λ4, we have ζ2 = ζ3 = ζ4 and the second fundamental form HE1(u, u) =
−〈∇uu,E1〉 = ζ2g(u, u). Note that λi and ζi all depend only on s in Lemma
2(iii) because R and λ1 depend only on s by Lemma 2(ii).

For i, j ∈ {2, 3, 4}, setting ∂i = ∂
∂i

and gij = g(∂i, ∂j),

ζ2gij = HE1(∂i, ∂j) = −〈∇∂i∂j ,
∂

∂s
〉 = −〈

∑
k

Γkij∂k,
∂

∂s
〉

= −
∑
k

〈1
2
gkl(∂iglj + ∂jgli − ∂lgij)∂k,

∂

∂s
〉 =

1

2

∂

∂s
gij .

So, 1
2
∂
∂sgij = ζ2gij . Integrating it, we get gij = eCijh(s)2 for a positive function

h := h(s), where ζ2 = h′(s)
h(s) and each Cij depends only on x2, x3, x4.

Therefore g can be written as g = ds2 + h(s)2g̃ , where g̃ can be viewed as
a Riemannian metric on a domain of (x2, x3, x4)-space. The rest of argument
in this proof originates from [6].

For i, j ∈ {2, 3, 4}, we have connection formulas and Ricci tensor components
as follows;

Γ1
ij = −hh′g̃ij , Γi1j =

h′

h
δij ,

R1i = 0, R11 = −3
h′′

h
, Rij = −g̃ij(hh′′ + 2h′

2
) +Rg̃ij ,

where Rg̃ij is the Ricci tensor components of g̃.
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From Lemma 1(iii), we have ∇1Rij − ∇jRi1 = ∂1R
6 gij for i, j ∈ {2, 3, 4}.

Hence

∂1R

6
h2g̃ij =

∂1R

6
gij = ∇1Rij −∇iR1j

= ∂1Rij −R(∇∂1∂j , ∂i) +R(∇∂i∂j , ∂1)

= ∂1Rij −
h′

h
R(∂j , ∂i)− hh′R(∂1, ∂1)g̃(∂i, ∂j)

= −g̃ij∂1(hh′′ + 2h′
2
)− h′

h
{−g̃ij(hh′′ + 2h′

2
) +Rg̃ij} − hh

′R11g̃ij .

Since R and ∂1R depends only on s, we get Rg̃ij = H(s)g̃ij for a function

H(s) of s only. So g̃ is a 3-dimensional Einstein metric. �

Proof of Theorem 1. The space (M, g, f) has half harmonic Weyl curvature, so
by a change of orientation if necessary, we may assume δW+ = 0. By treating
each connected component of M , we may assume that M is connected. The
space (M, g, f) is real analytic. So, if ∇f = 0 on an open set, then ∇f = 0 on
M and g is Einstein. If ∇f 6= 0 at a point, then Mr ∩ {∇f 6= 0} is an open
dense subset of M .

If there is exactly one distinct Ricci eigenvalue in a neighborhood V of a
point p in Mr ∩ {∇f 6= 0}, then g is Einstein on V .

If there are exactly two distinct Ricci eigenvalues in a neighborhood V of a
point p in Mr ∩ {∇f 6= 0}, we have already reduced the proof to the two cases
(i) and (ii) in the first paragraph of Section 3. Proposition 1 and Proposition
2 resolve the two cases. This finishes the proof of Theorem 1. �
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