DOI QR코드

DOI QR Code

p-BIHARMONIC HYPERSURFACES IN EINSTEIN SPACE AND CONFORMALLY FLAT SPACE

  • Received : 2022.05.20
  • Accepted : 2022.09.20
  • Published : 2023.05.31

Abstract

In this paper, we present some new properties for p-biharmonic hypersurfaces in a Riemannian manifold. We also characterize the p-biharmonic submanifolds in an Einstein space. We construct a new example of proper p-biharmonic hypersurfaces. We present some open problems.

Keywords

Acknowledgement

The authors would like to thank the editor and the reviewers for their useful remarks and suggestions. Partially supported by National Agency Scientific Research of Algeria.

References

  1. P. Baird and S. Gudmundsson, p-harmonic maps and minimal submanifolds, Math. Ann. 294 (1992), no. 4, 611-624. https://doi.org/10.1007/BF01934344
  2. P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press, Oxford University Press, Oxford, 2003. https://doi.org/10.1093/acprof:oso/9780198503620.001.0001
  3. B. Bojarski and T. Iwaniec, p-harmonic equation and quasiregular mappings, in Partial differential equations (Warsaw, 1984), 25-38, Banach Center Publ., 19, PWN, Warsaw, 1987.
  4. J. Eells, Jr., and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. https://doi.org/10.2307/2373037
  5. A. Fardoun, On equivariant p-harmonic maps, Ann. Inst. H. Poincare C Anal. Non Lineaire 15 (1998), no. 1, 25-72. https://doi.org/10.1016/S0294-1449(99)80020-1
  6. G. Y. Jiang, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 (1986), no. 4, 389-402.
  7. A. Mohammed Cherif, On the p-harmonic and p-biharmonic maps, J. Geom. 109 (2018), no. 3, Paper No. 41, 11 pp. https://doi.org/10.1007/s00022-018-0446-y
  8. B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983.
  9. Y.-L. Ou, Biharmonic hypersurfaces in Riemannian manifolds, Pacific J. Math. 248 (2010), no. 1, 217-232. https://doi.org/10.2140/pjm.2010.248.217
  10. Y. Xin, Geometry of harmonic maps, Progress in Nonlinear Differential Equations and their Applications, 23, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4084-6