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p-BIHARMONIC HYPERSURFACES IN EINSTEIN SPACE
AND CONFORMALLY FLAT SPACE

AHMED MOHAMMED CHERIF AND KHADIDJA MOUFFOKI

ABSTRACT. In this paper, we present some new properties for p-biharmon-
ic hypersurfaces in a Riemannian manifold. We also characterize the
p-biharmonic submanifolds in an Einstein space. We construct a new
example of proper p-biharmonic hypersurfaces. We present some open
problems.

1. Introduction

Let ¢ : (M™,g) — (N™, h) be a smooth map between Riemannian mani-
folds. The p-energy functional of ¢ is defined by

1
(1) Ep(so;D):*/ |dep|Pvg,
pPJp

where D is a compact domain in M, |dp| the Hilbert-Schmidt norm of the
differential dip, v, the volume element on (M™,g), and p > 2.

A smooth map is called p-harmonic if it is a critical point of the p-energy
functional (1). We have

d
GEAei D) == [ nr(e)op,
where {¢;}ie(—e,e) is @ smooth variation of ¢ supported in D, v = aaﬁ‘ o the

variation vector field of ¢, and 7,(¢) = div" (|de[P~2dyp) the p-tension field of

®.
Let VM be the Levi-Civita connection of (M™, g), and V¥ be the pull-back

connection on ¢ !T'N. Then the map ¢ is p-harmonic if and only if (see [1,3,5])

|dlP27() + (p — 2)|de|P*dp(grad™ |de|) = 0,
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where 7(p) = trace, Vdy is the tension field of ¢ (see [2,4]). The p-bienergy
functional of ¢ is defined by

@) BayliD) = 3 [ 1ne)P

We say that ¢ is a p-biharmonic map if it is a critical point of the p-bienergy
functional (2), the Euler-Lagrange equation of the p-bienergy functional is given
by (see [7])

Top(p) = — |dep|P—2 trace, RN(TP(SU)a dp)dp — traceg vgp|d§0|p_2vgp7—p(90)
— (p — 2) tracey V(V?7, (), dp)|dip|"~dep = 0,
where RY is the curvature tensor of (N", h) defined by
RY(X,Y)Z = VYVYZ - V¥VYZ - VX yZ, VX,Y,ZeT(TN),

and V¥ the Levi-Civita connection of (N™, h). The p-energy functional (resp. p-
bienergy functional) includes as a special case (p = 2) the energy functional
(resp. bienergy functional), whose critical points are the usual harmonic maps
(resp. biharmonic maps [6]).

A submanifold in a Riemannian manifold is called a p-harmonic submani-
fold (resp. p-biharmonic submanifold) if the isometric immersion defining the
submanifold is a p-harmonic map (resp. p-biharmonic map). Will call proper p-
biharmonic submanifolds a p-biharmonic submanifols which is non p-harmonic.

2. Main results

Let (M™, g) be a hypersurface of (N™+1 (}), and i: (M™, g)— (N™+L, (,))
the canonical inclusion. We denote by VM (resp. V) the Levi-Civita connec-
tion of (M™, g) (resp. of (N™+1 (,))), grad™ (resp. grad”™) the gradient oper-
ator in (M™, g) (resp. in (N™*1 ())), B the second fundamental form of the
hypersurface (M™,g), A the shape operator with respect to the unit normal
vector field n, H the mean curvature of (M™, g), V* the normal connection of
(M™,g), and by A (resp. A1) the Laplacian on (M™, g) (resp. on the normal
bundle of (M™, g) in (N™*1 ()}) (see [2,8,10]). Under the notation above we
have the following results.

Theorem 2.1. The hypersurface (M™, g) with the mean curvature vector H =
fn is p-bihamronic if and only if

- AM(f) + f|A|2 - fRiCN(n777) + m<p _ 2)f3 —0;
2A(grad™ f) — 2f(Ricci™ n) T + (p— 2+ %) grad™ 12 — 0,

where RicY (resp. Ricci™) is the Ricci curvature (resp. Ricci tensor) of (N™t1,

()



p-BIHARMONIC HYPERSURFACES IN EINSTEIN SPACE 707

Proof. Choose a normal orthonormal frame {e;};=1,.. m on (M™,g) at z, so
that {e;,n}i=1,. m is an orthonormal frame on the ambient space (N1, (,)).
Note that, di(X) = X, VLY = VXY and the p-tension field of i is given by
7,(1) = m? fn. We compute the p-bitension field of i

o) = — |di[P~? trace, RN (1,(i), di)di
— (p — 2) trace, V(V'7,(i), di)|di[P~*di
(4) — trace, V|di[P~2V'7,(i).
The first term of (4) is given by

—|di|P~2 trace, RN (,(1), di)di = —|di|"~ 2ZRN (p(1), di(e;))di(e;)
=1

=—mP7 Y RN (n,e0)es

i=1
mP~1f Ricei
mP~f [(Ricci™ n)* + (Ricei™ ) T] .

We compute the second term of (4)

—(p — 2) trace, V(V'r, (i), di)|diP~*di = —(p — 2)mP~> > VIV fn,e:)e;,

ij=1
DV ey = [(ei(f)m e + F(VEn,e)]
1=1 =1
=—f Z<an(eiaei)>
I

By the last two equations, we have the following
(5) —(p—2) trace, V(Vir, (i), di)|di|P~*di = mP~ (p—2) (gradM 2+ mf377) .

The third term of (4) is given by

— trace, V|di|P2Vir, (i) = —mP~ 1ZVNVN
= —mP~ 1ZVN Pn+ Vi)

©) =~

AM(fn+2VY g+ £ vgfvgnl :

i=1
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Thus, at x, we obtain

m m

ZvaNn = ZV +(Vam']
= —ZV@{A e

(7) 772VMA e;) ZB ei, A(e;))

Since (A(X),Y) = (B(X,Y),n) for all X, Y € T(T'M), we get

i VM A(e;) =
=1

(Ve Alei), ej)e;

“r:

<
Il
—

K

ei(Ales), e5)e; — (Ales), V. ej)e;]

@

<
Il
—

:P”ﬂg

ei(Bl(ei ej),n)e;

@

<
Il
_

-

ei(Vi e n)e;

&

<
Il
_

1

(Vaviesne;

ZMS

2J

By using the definition of curvature tensor of (N™*1 (,)), we conclude

SOVMAe) = 3 [(RY (s e)enne; + (TEVesne]
i=1 ij=1

m

=3 [HBY M eense)e; + (VX Vesne;]

i,j=1
m m
= Z(RICCI n,ej)e;+ Z e Velel, nye;— Z (v el,Vezm .
7j=1 3,7=1 4,j=1

(8) = —(Ricci™ )" + mgrad™ f.
On the other hand, we have

i B(ei, Ale
i=1

(B(ei, A(ei)),mm

'Fnﬁs

«
Il
=

M-

(A(ei), Aei))n

<.
Il
_
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(9) =|A[*n.
Substituting (7), (8) and (9) in (6), we obtain
—trace, V!|di|P2Vir, (i) = —mP™! [AM(f)n —2A(grad™ f) + f(Ricci™ )T

(10) — o grad™ 2 — f APy

Theorem 2.1 follows by (4)-(5), and (10). O
As an immediate consequence of Theorem 2.1 we have:

Corollary 2.2. A hypersurface (M™,g) in an Einstein space (N™T1, (,)) is
p-biharmonic if and only if it’s mean curvature function f is a solution of the

following PDEs
S
AM 2 9\ 3 _ — 0.
) A () + fIAF+mp—2)f m+1f—0,

2A(gradM H+p-2+ %) gradM =0,

where S is the scalar curvature of the ambient space.

Proof. Tt is well known that if (N™*! ())) is an Einstein manifold, then
Ric™ (X, Y) = M(X,Y) for some constant \, for any X,Y € I'(TN). So that

S = trace(,) Ric™

= Z Ric™ (e;, €;) + RicY (n, 1)
i=1
= A(m+1),

where {e;}i=1,...m is a normal orthonormal frame on (M™,g) at x. Since
Ric™ (n,7) = A, we conclude that

. S
RlCN(U, n) = mal

On the other hand, we have
m

(Ricci¥ )T = Z(RicciN 7, €i)e;

i=1

Ric" (n,ei)e

|
.MS

N
Il
-

I
NE

>‘<77> €i>€i

I
=h
A

Corollary 2.2 follows by Theorem 2.1. (I
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Theorem 2.3. A totally umbilical hypersurface (M™,g) in an Einstein space
(N™+L ()Y with non-positive scalar curvature is p-biharmonic if and only if it
is minimal.

Proof. Take an orthonormal frame {e;,};=1,._» on the ambient space (N™*1,
(,)) such that {e;};=1,...m is an orthonormal frame on (M™,g). We have

f=<Hn>

= — Z (e, ei),
- ;@(emei)ﬁn,n)

=0,
where 8 € C*°(M). The p-biharmonic hypersurface equation (11) becomes

— AM(B) +m(p— 18 %5 ~0

(p—1+ )5gradMﬁ

Solving the last system, we have B =0 and hence f =0, or

S
b= j[\/m(m +1)(p—1)’

it’s constant and this happens only if S > 0. The proof is complete. (]

3. p-biharmonic hypersurface in conformally flat space

Leti: M™ — R™*! be a minimal hypersurface with the unit normal vector
field n, i : (M™,9) < (R™"1 h = €®7h), x — i(z) = i(z) = =z, where
v € C®(R™), h = (,)gm+1, and g is the induced metric by h, that is

(X, Y)=eg(X,Y) = (X, Y)gms1,
where g is the induced metric by h. Let {e;, n}i=1,....m be an orthonormal frame
adapted to the p-harmonic hypersurface on (R™*1, h), thus {€;,7}i=1,...m be-
comes an orthonormal frame on (R™*! h), where ¢; = e Ve; for all i =
1,...,m,and n = e .
Theorem 3.1. The hypersurface (M™,q) in the conformally flat space (R™T1,
h) is p-biharmonic if and only if

n(y)e~ [ M(y) - mHess ) + (1 — m)| grad™ 4|2 — | A]?
(12) { +m(l- )2] +AM(n(y)e ) +(m — 2)(grad™ 7)(n(v)e ™) =0;
—2A(gradM (n(v)e~ )) + 2(1 —m)n(y)e~" A(grad™ )
+(2p — m)n(y) grad™ (n(7)e™) =0,
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where Hessﬂjmﬂ is the Hessian of the smooth function « in (R™*1 h).

Proof. By using the Kozul’s formula, we have
VMY = VY + X()Y + Y (7)X — g(X,Y) grad™ 4;
{%%”“V =VE""'V L UV + V(U — h(U, V) grad®" " 4,
for all X,Y € T(TM), and U,V € T'(TR™*!). Consequently
Ldi(Y) = VY
Sy
=VE"y
(13) =VEY 4 X(1)Y + Y ()X — h(X,Y) grad®" " 7,
and the following
(VYY) = di(VYY) + X (7)di(Y) + Y (7)di(X) — g(X,Y)di(grad™ ~)
(14) =V¥Y + X(7)Y + Y(7)X — g(X,Y) grad™ ~.
From equations (13) and (14), we get
(Vd)(X,Y) = Vi di(Y) — di(VYY)
= (Vdi)(X,Y) + g(X,Y)[grad™ v — gmd]Rerl 7]
(15) = B(X,Y) — g(X,Y)n(y)n.

So that, the mean curvature function f of (M™,§) in (R™*1, k) is given by
f=-—n(y)e~ 7. Indeed, by taking traces in (15), we obtain
e H = H —n(y)n.
Since (M™, g) is minimal in (R™! k), we find that H = —e~27n(v)n, that is
H = —e ().
With the new notations the equation (3) for p-biharmonic hypersurface in

the conformally flat space becomes
m+41

~ A+ FIAR - fRic @) +m(p—2)F* =0
(16) e S
2A(grad  f) — 2f(Ricci n'+p-2+ ?)grad o

A straightforward computation yields

___RmtL ) .
Ricci n=e 7 [Ricci

n+1

’rl _ AR7VL+1 (/7)77 + (1 - m)v]:$7ll+1 gradR7n+l ’V
m+1 m—+1
+ (1 —m)|grad™” ~*n— (1 —m)n(y) grad®™ " ];

NRm+1 NR’YL+1

Ric  (7,7) = h(Ricci  7,7)
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NR'm+1
= h(Ricci 7,M)
- e*QVh( Ricei®™" n— AR (y)n+ (1 — m)Vﬂsm+1
m41 m41
+(L—m)|grad®" " 4>n — (1 —m)n(y) grad™" " ~,7)
= e 2 [ — AR () + (1 —m) HessEm+1 (n,m)
m+1
(17) + (1 —m)|grad™” " 4> = (1 —m)n(+)?];
R+
(Riccei mT
m Rm+1
= ) h(Ricci 7, ei)e;
i=1

= (L =m)e > [R(TE™ grad™™" 5, e)es — n()h(grad™ " o, eq)e]
=1

=(1-m)e?

=(1—-m)e [Z eih(gdem+1 v,m)e; — Z h(gradRm+1 , V§m+ln)ei
i=1 i=1

m

m+1 m+1
’ [Z h(VE" grad®” " y,m)e; — n(y) grad 7}
=1

= n(y) grad™ v}

_ m+1
= (1—m)e [ grad™ n(y) + Y h(grad®" " v, Ae;)e; — n(y) grad™ 4]

=(1—-m)e?

m

=1
[ grad™ n(v) + A(grad™ v) — n(v) grad™ 4];

A(f) = e [A(f) + (m — 2)df (grad™ )]
= e 2 [=A(n(y)e) — (m — 2)(grad™ 7) (n(v)e7)];

112
A5 =

i

o

@
I
-

o

<
Il
—

@
Il
_

o

G(Ae;, Ag))
g(ﬁei , Zei)

m41 __ ~mm-l
MVE 0, Ve

m—+1 __ —~ —~ m41 __ —~ —~
h(VE" 5+ e(n)i +7i(v)es, VE i+ ei(7)i + 7i(7)e:)

m—+1
gmd]R

v
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= > [(VET VR + 20()(VE" ) + es(7)2e 7
1=1

(18) + 26, () R(VE"7,7)] + mif(y)?.

The first term of (18) is given by

m
ST R(VE e, vET ey

m

Zh —e Ye;(y)n+e” 'YVR n,—e Ye;(v)n+e” VVRMH n)

m

_ m41 m1
= [eei(7)* + e Th(VE" 0, VE" )]
i=1

= e | grad™ 42 + e 27|42
The second term of (18) is given by

m

217(7) Y W(VE" i es) = —2e ()

=1

h(e 7, V]Rm“ei)

NE

1
= —2me~*"n(y)h(n, H)
—0.

.
Il

Here H = 0. We have also

m m4+1__ __ ~ o~
2> e(MI(VE 1,7 ei(7)esh(i, 1)
i=1

.

i=1

ei(v)ei(e™)

m

=2 ei()?

i=1
= —2¢ 27| grad™ ~|2.

.

=1

Thus
T2 -2 2 -2 2
[A[7 = e [A]" +me™ (7).
We compute
M ~ m ~
grad f=e) ei(f)es
i=1
= —e P grad™ (n(v)e™7);
and the following

M~ cpmAl
Algrad” ) = = V521 7
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_ — M ~ SR
=¢€ ’Y(grad f)(’Y)U—e ’ng’r;iM}'n

= — e Fgrad™ (n(y)e ) (v)n + 673”§§;Z§L(n(7>e—w)’7
= — e M grad™ (n(v)e ) (V) + e n(y) grad™ (n(y)e ")
e grad (n(1)e™ ) (N + € TVELLL e
(19) = e P(y) grad™ (n(y)e™) — e*7 A(grad™ n(y)e ™).
Substituting (17)—(19) in (16), and by simplifying the resulting equation we
obtain the system (12). O

Remark 3.2. (1) Using Theorem 3.1, we can construct many examples for
proper p-biharmonic hypersurfaces in the conformally flat space (see [9]).
(2) If the functions v and 7(7) are non-zero constants on M, then according

to Theorem 3.1, the hypersurface (M™,q) is p-biharmonic in (Rmﬂ,ﬁ) if and
only if
A2 = m(1 = p)n()* — mn(n(~)).

Example 3.3. The hyperplane i : R™ < (R™*1 ¢2®)h) 2+ (z,c¢), where
v € C*®(R), h =", dz?+dz?, and c € R, is proper p-biharmonic if and only
if (1 —p)y'(c)? —~"(c) = 0. Note that, the smooth function

yIn (cilp =Dz +c(p—1))

p—1
is a solution of the previous differential equation (for all ¢).

(2 , c1,c3 €ER,

Example 3.4. Let M be a surface of revolution in {(x,y,2) € R3|z > 0}.
If M is part of a plane orthogonal to the axis of revolution, so that M is
parametrized by

(w1, 22) — (f(22) cos(x1), f(22) sin(z1), ¢)
for some constant ¢ > 0. Here f(x2) > 0. Then, M is minimal, and according to
Theorem 3.1, the surface M is proper p-biharmonic in 3-dimensional hyperbolic
2
space (H3, z7=1h), where h = dz? + dy? + dz>.

Open Problems.

(1) If M is a minimal surface of revolution contained in a catenoid, that is

M is parametrized by
(21, 22) —> (a cosh (@ + b) cos(x1), acosh (ﬂ + b) sin(xl),wg) ,
a a

where a # 0 and b are constants. Is there p > 2 and v € C*°(R?) such
that M is proper p-biharmonic in (R3, €2V (da® + dy? + dz2))?

(2) Is there a proper p-biharmonic submanifolds in Euclidean space (R™,
da? + -+ da2)?
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