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MODULI SPACES OF
3-DIMENSIONAL FLAT MANIFOLDS

EuN Sook KaNG

ABSTRACT. For 3-dimensional Bieberbach groups, we study the de-
formation spaces in the group of isometries of R3. First we calculate
the discrete representation spaces and the automorphism groups.
Then for each of these Bieberbach groups, we give complete descrip-
tions of Teichmiiller spaces, Chabauty spaces, and moduli spaces.

1. Introduction

Let M be a 3-dimensional manifold with an effective circle action with
M = 7\ M, where 7 is a discrete subgroup of the group Isom(M) of
isometries of M. It is known that the evaluation map of the circle action
at the base point, i : S — M, induces an injective homomorphism

iy L — 1 =m(M)

unless M is the three-sphere S3. Furthermore, the Seifert structure lifts
to an R-action on the universal covering M of M.

Let 7 be a cocompact discrete subgroup of Isom(M) which acts on
M properly discontinuously as above. The quotient space M = 7\ M is

said to have a geometric structure modelled on (M, Isom(M)). We use
the notation Z for the group of isometries; that is,

I= Isom(ﬂ).
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The space of discrete representations, the Weil space, is defined as
follows:

R(m; ) = the space of all injective discrete homomorphisms 6 of 7
into Z such that 6(r) is discrete in 7 and Z/6(n) is compact.

Every element of R(m;T) gives rise to an orbifold modelled on (M ,
Isom(M)).
The group of automorphisms of 7, Aut(r), acts on R(m;Z) on the
right; for § € R(m;Z) and ¢ € Aut(n),
R(m;I) x Aut(m) — R(m;I).
(0,0) — fop

On the other hand, the group Inn(Z) of inner automorphisms of 7
acts on the space R(m;Z) from the left by

Inn(Z) x R(m;T) — R(m; 1),

(u(g9),0) — ufg)ob
where p(g) is the conjugation by g € 7.

DEeFINITION 1.1. The deformation spaces of m are the orbit spaces
defined as follows:

T(mI) =Inn(Z) \ R(m;T)
S(mI) = R(m;I)/ Aut(n)
M(m; ) = Inn(Z) \ R(m; Z)/ Aut(r).
These are the Teichmiiller space, Chabauty space (or space of discrete
subgroups), and the moduli space of m, respectively.
The Chabauty space is the space of all distinct discrete subgroups of

T isomorphic to 7. If 6,8’ € R(m;Z) represent the same point in 7 (m; T),
then ¢ = u(g) o @ for some g € Z. This implies

gof(a)=60(a)og

for all & € 7. Then, g induces a map g

which is an isometry.
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Two embeddings 6 and 6’ represent the same point in M(m;Z) if and
only if (r)\ M and ¢'(r) \M are isometric. Therefore, the moduli space
M(m;Z) of  is the space of isometry classes of the orbifolds { 6(r) \M :
6eR(mI)}.

Let M be a closed oriented 3-manifold. Thurston’s classification
yields 8 geometries: R x S%, R3, R x H?, §3, Nil, PSLyR, Sol and H?®.
It is known that if a closed 3-dimension manifold M admits a geometric
structure modelled-on one of the eight geometries, then the geometry
involved is unique. The classical closed 3-dimensional Seifert manifolds
encompass the first 6 of the 8 geometries. In cases of

M = RxS2 Nil, RxH?, and PSL.R,

R. Kulkarni, K. B. Lee and F. Raymond computed the deformation
spaces R(m;Z), T(m;I), S(m;I) and M(m;Z) in their paper [5]. And
the Weil spaceR(m;Z) and the Teichmiiller space 7 (m;Z) of the case of
R3 are calculated in [3] and [4].

The aim of this work is to calculate the Chabauty spaces S(m;Z) and
the moduli spaces M(7;T) for 3-dimensional Bieberbach groups 7 with
(R3, Isom(R3))-geometry.

2. Preliminaries

A rigid motion is an ordered pair (a, A) with a € R" and A € O(n),
which acts on R by

(a,A) - x=Ax+a forx € R",
and these are the isometries of R™. For n = 3,
T = Isom(R3) = R? x O(3).
The group Isom(R3) is a subgroup of the affine group
Aff(3) = R x GL(3,R).

A subgroup 7 of Isom(R?) is said to be a Bieberbach group if 7 is
cocompact, discrete and torsion free. If 7 is a Bieberbach subgroup of
Isom(R3), then the quotient space m \ R? is a Riemannian manifold of
sectional curvature k = 0. Conversely, a flat closed Riemannian manifold
of dimension 3 can be expressed a quotient space of R3 by a Bieberbach
subgroup of Isom(R?). See e.g., [7; Chapter 3].
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A Bieberbach group 7 contains a unique maximal normal abelian
subgroup Z3, fitting the following commutative diagram of groups with
exact rows

0 z? T _ & —1
(2.1) l el l
0 R3 R*%x0O(3) —— 0O(8) —— 1

where ® is called the holonomy group of 7. It is finite and & — O(3) is
injective. The Bieberbach’s second theorem says that any isomorphism
between Bieberbach groups on R™ is conjugation by an element of the
affine group Aff(n). See [2] or [7].

There are only 10 Bieberbach groups in dimension 3 up to affine
change of coordinates. Out of them six are orientable and the others are
non-orientable. See [6] or [7]. Let I be the 3 x 3 identity matrix, {e;}
the standard basis in R3 and Rj the rotation matrix of rotation of R3
about the z-axis through %} ; namely,

1 0 0
e1 = |0 , ©€2= 1 y €3= 0 )

0 0 1

or 1 0 0
Ry = R<?) = [0 cos(¥) —sin(2F)
0 sin(¥) cos(2E)

and let t; = (e;,I), fori=1,2,3.

LEMMA 2.1. We list all the 3-dimensional Bieberbach groups embed-
ded in R3 x O(3) and their holonomy groups ([3] and [4]). Let

1 0 O
E=(01 0
0 0 -1

1) ;.9 = {1} and = is generated by t1,t2 and ts,

2) &9. 9 = Zg and 7 is generated by ti,ts,t3 and o = (%el,RQ),

3) ®3.U = Z3 and 7 is generated by t1,s1 = (Rzes,I),s2 = ((R3)%es,I)
and f = (%elaR3)7 .

4) B4. P = Z4 and © is generated by ti, to, t3 and a = (%el,R4),

5) ®5.® = Zg and 7 is generated by t1,s1 = (Rgez, I),s2 = ((Re)%e2,I)
and 3= (%el,Rg),

6) B6. & = Zo X Zo and 7 is generated by tq,t2,t3,00 = (%el,Rz),
B = (5(e2+e3), —ERy),



Moduli spaces of 3-dimensional flat manifolds 1069

7) B1.9 = Zy and 7 is generated by ti, te, t3 and ¢ = (%el,E),

8) Bo. ® = Zy and  is generated by t1,t2,5 = (1(ey +e2) +e3,I) and
e = (3e1, E),

9) B3.® = Zy x Zy and 7 is generated by t,ts, t3, a = (%el,Rg) and
£ = (%GQ,E),

10) B4. P = Zs X Zs and 7 is generated by ti, to, t3, a = (%el,Rg)
and ¢ = (3(ez + e3), E).

In the above list, the matrices which span the holonomy groups are
integral except two cases B3, 5. We want to conjugate 7’s of type &3
and &5 into R? x GL(3,Z).

LEMMA 2.2. The Bieberbach group w of type &3 or &5 is conjugates
to a subgroup of the form (t1, ts, t3, ) of R® x GL(3,Z), where if 7 is
of type &3 then o = (%el, A3), and if G5 then a = (%el, As),

1.0 0 1 0 0
As; =10 0 -1 and A;= 10 0 -1
01 -1 01 1

Proof. For (0, P) € Aff(3) let p (g p) be the conjugation by (0, P); so,
H(o,P) (a7 A) = (07 P) (a, A)(O’ P)—l
for (a, A) € Aff(3). If we take the following P3; and P;

1 0 0 1 0 0
Py=1(0 -1 % p=10 1 —%,
0 -1 —== 0 -1 =

it is easy to check that

1
1(0,py) : B3 — (t1, to, t3, a = (Fe1, A3))

3
1
Ko,ps) : B5 — (t1, t2, t3, a = (gel,A5)>-
The proof is complete. O

Let N () denote the normalizer of 7 in Aff(3). If £ € Aff(3), then
EN(m)ET = N (Ene™).

And so, in order to compute the normalizer N'(r) of a Bieberbach group
7 with type &3 or &5, we shall use the integral representation as in
Lemma 2.2.
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3. Automorphisms of a 3-dimensional Bieberbach group
Let N (m) = Nags)(m) and C(7) = Cag3)(m) be the normalizer and
the centralizer of a Bieberbach group 7 in the affine group Aff(3). The

following is a commutative diagram in which all rows and columns are
exact [2] :

1 — Z(r) —— C(r) —— Affy(M) —— 1

8y 1—— 7w« —— N — Aff(M) — 1

1 —— Inn(r) —— Aut(r) —— Out(r) —— 1

1 1 1

where Z(7) is the center of 7 and C(r) is the centralizer of 7 in Aff(3).
The top row is always of the form

1 zk R* T* 1,
where k is the rank of the center of 7. (So, k = 3 for &1; k = 2 for B,
%2; k=1 for QSQ, @3, @4, @5, ‘33, %4; and k£ = 0 for 66)-

In order to calculate Aut(r), it is enough to compute NV (7) and C()
because

Aut(n) = N(x)/C(m).

We have the exact sequence

0 A T 1.
Let j : ® — Aut(Z3) be the map induced by the action of ® on Z3
which assigns a conjugation by an element of ;
[(A)(x) =o(x, I)o~! for x € Z3 and o € p~1(A).

For our rigid motions, ®-action on Z3 is given by multiplications of
matrices on 3-vectors of Z3 on the left. And it can be lifted to an
action on R3. The centralizer C(r) of m in Aff(3) is a subgroup of pure
translations, (R®)®, the fixed point set of the ®-action on R3. Let N (®)
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be the normalizer of j(®) in Aut(Z?) = GL(3,Z). We need to figure out
the normalizer N (7) of m in Aff(3). In the following theorem,

NT (@) ={X e N(®)| det X >0 }.

THEOREM 3.1. Let M be a 3-dimensional orientable flat manifold
with m = m(M). Then the normalizer N(7) in Aff(3) of = is a semi-
direct product

T x M C R3x GL(3,Z),

where the pure translations T and the matrix group M are as follows:

1.
2.

If 7 = &y, then T = R3 and M = N(®) = GL(3,Z).

If 7 = ®,, then T = Rei @ Z(3e2) ® Z(3e3), M = N(®) =
Zy x GL(2,Z), where M = N (®) is the matrices of the form

+1 0 0
0 * ok
0 * %

If 7 = ®3, then T = Re; & Z(3e; + 3e3) ® Z(3e2 + 3e3), M =
NT(®) = Zg x Zy = Dg, where the dihedral group Dg is generated
by the matrices

0 -1
1| and J =

D= 0
0 0

L e ]

0
0
1

o O =
SO = O

If 1 = By, then T = Re; @Z(eg) @Z(%ez + %83), M = N+((I’) =
Z4 ¥ Zoy = Dy, where the dihedral group Dy is generated by the
matrices

-1 0 0
D=RsgandJ=|0 1 O0].
0 0 ~1

Ift = ®g, thenT = Rel@Z(eg)GBZ(eg), M= N+(<I’) = ZeXZo =
Dg, where the dihedral group Dg is generated by the matrices

-1 00
D=AsandJ=(0 0 1}.

0 10



1072 Eun Sook Kang

6. If T = B, then T = Z(1e1) ® Z(es) ® Z(Je3), M = N(®) =
(Z2)® x S3, where

+1 0 0
(Zo)=10 +1 0
0 0 =+1

and 83 is the permutation group of 3 letters.

Proof. In order for an element (x,X) € R3 x GL(3,R) = Aff(3) to
lie in the normalizer A/(7), it should conjugate the pure translational
subgroup Z3 to itself. This implies X € GL(3,Z). So, we first find all
such X which normalizes the holonomy group ® € GL(3,Z). For each of
such matrices X, it is not hard to see (0, X') normalizes the whole group
(with x = 0). This means that the group N (m) splits as a semi-direct
product T x M. To find the pure translations 7, one just solves the
equation

(X, I)(aa A)(—X, I) en
for x and (a, A) € m, for every non-trivial generator A of the holonomy
group.

If 7 is of type ®, (n = 1,2,6), then the matrix part M is equal
to the normalizer A'(®) of the holonomy group ® in GL(3,Z). For the
cases of &, (n = 3,4,5), X € M(®) if and only if, for a generator A of
& XAX~! = A" for r coprime to the order of A. Thus r can only be 1
or —1. The centralizer

C(®)={X € GL(3,R): XAX 1= A}.

of ® in GL(3,2) is isomorphic to (D) x Za, where —I € Zy and (D) is
a finite cyclic group of order 6 (&3, B5) or 4 (&4), and C(®P) has index
2 in the normalizer AN'(®). More precisely, there is J € GL(3,R) such
that JAJ™! = A~! with det(J) = 1. Consequently,

N(®) = ((£I) X Zm) } Ly = () X (Zp, ¥ Lg) = (£I) x NT(®),
where the Z, is generated by J.

Now consider (x, —I). For the cases of &3, &4 and &s,

(x,—I)(a, A)(x,~1)7"(a, A) "' € Z°

does not have a solution for x € R3. Therefore, we only need to look at
the subgroup N (®) = Z,,, x Za = Dyy,. O

For non-orientable Bieberbach groups, we need a special subgroup of
GL(2,Z). Consider the natural homomorphism

p: GL(2,Z) — GL(2,Z)
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induced from the natural homomorphism Z — Zy = Z/2Z. 1t is easy to
see that

kernel(p) = GL(2,Z) = {{2“21’ b dzi 1] € GL(2,Z) | ab,c,d e z}

and
image(p) = GL(2, Z2) = Z3 » Zs,
which is generated by

0 -1 01
E=L 1]6GL(2,Z) and J:[l 0].

Therefore,
LEMMA 3.2. We have an exact sequence
1 —— GL(2,Z2) —— GL(2,Z) —*— D3 —— 1,
where D3 is the dihedral group.
Then the normalizer N (7) in Aff(3) of 7 is as follows.

LEMMA 3.3. Let M be a non-orientable flat manifold with m (M) =
7. Let

S A 0 —~
GL(2,Z) = {[0 ﬂ] tA€ GL(2,Z)}.
1. If 7 = By, then N(n) = Re; @ Re; © Z(e3) x GL(2,Z).

2. If 7 = By, then N(m) = ((Rel ® Rey @ Zez) X @L—(Z,Z)) X Za,

0 01 0
where Z, is generated by § = 01,1t 0 O .
il [0 0 -1

3. If 7 = B3 or By, then N (7) = (Re; ® Z(}e2) ® Z(3e3)) x (Z2)?,

1 0 O
where (Zg)* =] 0 £1 0 ].
0 0 =1

Proof. When 7 is of type B4, similarly to the proof of Theorem 3.1,
if (x,X) € N(n) for some x € R®, then (0, X) normalizes the whole
group 7. That is,

(0,X)(e1, E)(0,X) " €.
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Hence we obtain an exact sequence
0 — Re; ® Rey ® Z(1e3) — N (r) — GL(2,Z) — 1

which splits.

Now if 7 is of type By, each element of (Re; ® Rey ® Zes) x GL(2,Z)
conjugates the whole group 7 and furthermore, ¢ € Isom(R3) does conju-
gate 7 into itself. So, the result (2) holds. Notice that £ has a non-trivial
translation part.

For 7 of type B3 or By, let (x,X) € N(r). By the similar compu-
tation to Theorem 3.1, we see X € C(w), and so X has to be diagonal.
We get Re; @ Z(%ez) @ Z(5es) as the translation part of N(m). O

It is worth emphasizing that the translation part of the normalizer
N (7) can be expressed by the direct sum of the centralizer C(r) = R*
and Z3~F for the rank k of the center of =.

If the holonomy group @ of 7 has order greater than two, then the
normalizer of ® in GL(3, R) is finite and Aut(r) itself becomes a crystal-
lographic group. There are only 17 crystallographic groups in dimension
2 and 219 in dimensional 3.

THEOREM 3.4. Let m be a 3-dimensional Bieberbach group. If the
order of the holonomy group ® of 7 is greater than two, then the auto-
morphism group Aut(rw) of = is a crystallographic group of dimension 2
or 3:

1. If ® is isomorphic to Z3 or Zg, then Aut(m) = Z? x Ds.

2. If ® is isomorphic to Zy, then Aut(r) 2 Z? x Dj.

3. If b= ZQ X ZQ C 80(3), then Aut(w) = Z3 A ((Z2)3 A 53)
4. If ® 2 Zy x Zo ¢ SO(3), then Aut(m) = Z2 x (Z3)3.

Proof. Recall that

Aut(r) = N(m)/C(n),

where a list of C(7) = (R?)®’s was made.
(1) From Theorem 3.1, the exact sequence

0 — Re; @ Z(%eg -+ %eg) @Z(%eg + %eg) — N(Q§3) —Dg — 1

splits. The centralizer C(m) = Re; consists of the first axis (See 4.2).
Therefore we have the exact sequence

0 — (Z)> — Aut(®3) — Dg — 1,
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where Z? which is generated by {3 [2] , % [ﬂ } and the dihedral group

Ds of degree 12 is generated by D and J. Here if ® is isomorphic to Zg
(or Zg), then

1 -1 0 -1 0 1
D= [1 0} (or D= [1 1]) and J = [1 O]’
Note that D has order 6, JDJ~! = D=1 and Aut(n) is a 2-dimensional
crystallographic group.

(2) The automorphism group Aut(®,4) is a 2-dimensional crystallo-
graphic group

1 — Z? — Aut(64) — Dy — 1,

where Z? is generated by { [(1)] , % [ﬂ } , and the quotient D4 is the
dihedral group of order 8 which is generated by D = (1) _01 , J =
(1) _01 . Note that D has order 4, and JDJ ! = D1

(3) Since the centralizer C(m) is trivial, N'(m) = Aut(n).

(4) The centralizer C(m) = Re; consists of the first axis and the
translation part of the normalizer N(7) is equal to Re; & Z(3e2) &
Z(%e3). O

If the holonomy group @ of 7 is isomorphic to a cyclic group Zo with
order two, then Aut(r) is as follows:

THEOREM 3.5. Let m be a 3-dimensional Bieberbach group. The
automorphism groups Aut(m)’s are as follow;

1. If w is of type &1, Aut(m) = GL(3 Z).

2. If 7 is of type &2, Aut(m) = Z* x (GL(2,2Z) X Zs).

3. If 7 is of type B1 , Aut(n) 2 Z x GL(2,Z).

4. If 7 is of type B2, Aut(n) = (Z x GL(2,Z)) X Zs.

Proof. (1) If ® is trivial, then C( ) (R3)® = R3.
(2) Since ® = Zy C SO(3) and C(w) = Re; consists of the first axis,

aae(r) = (4 [g] 2H> (22 x GL(2, 7))

=72 x (GL(2,7Z) x Zs3).
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(3), (4) If ® = Zy ¢ SO(3), then the centralizer is C(m) = Re; ® Rea.
Ifr= %1,
Aut(r) = < m > x GL(2,7)

p
~7 x GL(2,Z).

If 7 =By,

Aut(r) :(< m> w GL(2, 7)) x Zs
~(Z x GL(2,7Z)) X Za,

01

where Zs is generated by <[g] ) [1 0

2 D € R? x GL(2, 7). 0

REMARK 3.6. Let M be a 3-dimensional orientable flat manifold with
7 = m(M). From 3.1 we are able to compute the group Aff(M) of
affinities of a 3-dimensional flat manifold M;

1 Tk AE(M) —— M/ —— 1,

where k is the rank of the center of «.

4. Chabauty spaces and moduli spaces

For a 3-dimensional Bieberbach group m with holonomy group ®, let
0y be the embedding of 7 into R® x O(3) as in Lemma 2.1. In fact, we
think of fp(7) as 7. Let

X(®) = {X € GL(3,R)| XAX ! € O(3) for all A € }.

It is not a subgroup in general, but is a nice algebraic sub-variety of
GL(3,R).

NoTAaTION 4.1. Consider the set ([3] and [4])

R3 x X(®) = {(r,R)|r e R} and R € X(®)} C R x O(3).

This is not a subgroup, but a topological subspace.

It is shown that the Weil space is

R(m; T) = {pe 0 6o| € € R? x X (D)}
~ (R® x X(®))/C(r),

where pg is the conjugation by & and C(m) is the centralizer of 7 in
Aff(3). The action of the automorphism group Aut(w) = N(m)/C(r)
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on R(m;Z) is inherited from the action of the normalizer N (7), which
is given by the rule:

@
T EE— w

b

Go(r) P fo(m) o o(m)

for each [¢ = (r,R)] € R(m;Z) and n = (x,X) € N(xn). Recall that p
denotes conjugation.

For the readers’ conveniences, we write X'(®) for each of the Bieber-
bach groups. See [3; Proposition 2.3] and [4; Theorem 3.1].

PROPOSITION 4.2. For each of the 3-dimensional Bieberbach groups
7T7
1. For 7 = &1, X(®) = GL(3,R) and (R*)? = R3.
2. For 7 = &4, X(®) = SO(3) - (GL(l,R) x GL(Z,R)) and (R®)® =
Rel.
3. For m = ®&3, By, and B,

X(®) = SO(3) - (R* .S0(1) x R* - 50(2)) and (R3)® = Re;.

4. For m = B¢, X(®) = SO(3) - (R*)® and (R®)? = {0}.
5. For m = By and B,

X(3) = S0(3) - (GL(Z,]R) x GL(I,R)) and (R®)® = Re; @ Rey.

6. For m = B3 and By, X(®) = SO(3) - (R*)? and (R*)® = Re;.
Here GL(2,R) x GL(1,R) are the blocked diagonal matrices, R* is the set
of all non-zero real numbers and (R*)3 are the group of 3-dimensional
diagonal matrices with positive entries.

Note that in (3) of the above theorem, X' (®) is computed using the
orthogonal representation as in Lemma 2.1.
Now we can get the Chabauty space as follows:

S(m;Z) = R(m;T)/ Aut(n)
= (R® x X(®))/N ().

THEOREM 4.3. Let M be a 3-dimensional flat manifold with mi(M) =
m. The Chabauty spaces are as follow:
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1. If m is of type &1, S(m;I) =~ GL(3,R)/GL(3,Z). This is 9-
dimensional.

2. If 1 is of type B, S(m;T) ~ T2 x SO(3) - <R+ x GL(2,R)/ GL(2,
z)). |
Since SO(3) N GL(2,R) = S0(2), S(m;T) is 9-dimensional.

3. If w is of type B3 or &5,

S(mI) ~ T2 x SO(3) - (R+ x RT - 30(2)/z6).
Since SO(3) NSO(2) = SO(2), S(m;I) is 7-dimensional.

4. If 7 is of type By,

S(mT) ~ T2 x SO(3) - (R+ x R* - S0(2) /24).
Since SO(3) N SO(2) = SO(2), S(m;T) is 7-dimensional.
5. If w is of type ®g, S(m;T) ~ T3 x (SO(3)/Z3) (RT3,

This is 9-dimensional.
6. If w is of type B,

S(m;T) ~ Tt x SO(3) - (GL(?,R) x GL(1,R) /@L‘(z,Z))
~ T x SO(3) - (GL(z,R)/c?L(z,Z) X R*).

Since SO(3) N GL(2,R) 2 SO(2), S(m;Z) is 8-dimensional.
7. If m is of type B,

S(mT) = (Tl % SO(3) - GL(2,R) x GL(1,R) /@(2,2)) /Z,

~ T x SO(3) - (GL(2,R) /GL(2,Z) x R+),

where T is a circle doubly covered by T!. S(m;Z) is 8-dimensional.

8. If m is of type B3 or By,
S(m; I) ~ T? x SO(3) - (RT)3.
This is 8-dimensional.

Proof. Except for the case when m = Bs. the Chabauty space is
obtained by '

S(mI) = (R® x X(&))/N(n)
= (R/Z)*™* x [X(®)/M],

where k is the rank of the center Z(7) of 7 and M is the matrix part
of A(m). The proof is obvious from Proposition 4.2 and Theorem 3.1.
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For the cases of &3 and &3, since the spaces X'(®) are computed using
by not integral representations of Lemma 2.2 but orthogonal those of
Lemma 2.1 and N(§-m-£71) = £ N(m) - €71, the matrix parts of V()
become Dg generated by R(%) and a half turn H. (If 7 is of &3 then H
is the matrix of rotation of R? about y-axis through 180°, and If 7 is of
®5 then H is the matrix of rotation of R? about z-axis through 180°.)

For the case of Bs, the finite group Z, acts on the circle T! yleldlng
a doubly covered circle T?. O

For completeness, we state the Teichmiiller spaces of our groups.
They appeared in [3] and [4].

THEOREM 4.4. Let M be a 3-dimensional flat manifold with 71 (M) =
. Then the Teichmiiller spaces are as follow:
For m = &1, T(m;Z) = O(3)\GL(3,R) ~ RS.
Form = 89, T(m;I) = R* x (\O(2)GL(2,R) ~ RT x R® ~ R%.
For m = 83, B4, and 65, T(m:I) = (R)? ~ R2
For m = &6, T(m;I) = (R*)3/(Z2)% = (RT)3 ~ R3.
For m = 81 and Bo, then T(m;I) = (0(2) \ GL(2,R)) x RT ~
R3 x Rt ~ R4,
6. For m = B3 and By, then T (m;I) = (Z2)? \ (R*)3? = (RT)3 ~ R3.

DAl

Now we investigate the moduli spaces M(m;Z)’s. We will show that
if the holonomy group ® of a 3-dimensional Bieberbach group has order
greater than two, then the moduli spaces are homeomorphic to the Eu-
clidean spaces. The moduli space is homeomorphic to R? if & is a cyclic
group of order > 2 and R3if ® 2 Z x Z.

THEOREM 4.5. Let M be a 3-dimensional flat manifold with w1 (M) =
7. Then the moduli spaces are as follow:

1. If 7 is of type &1, M(m;I) = O(3) \ (GL(3,R)/ GL(3,Z)).
9. If 1 is of type ®a, M(m; T) = R* x (0(2) \(GL(2,R)/ GL(2, Z))).

3. If m is of type B3, B4 or &5, M(m;I) = (RT)2.
4. If w is of type &g, M(m;T) = (RT)3.
5. If w is of type 81 or B,

M(m;T) = (0(2) \ GL(z,R)/éi(z,R)) x R*.

6. If 7 is of type B3 or By, M(m;I) = (R*)3.
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Proof. The moduli space is obtained by
M(mI) =T\ (R® x X(®))/N(7)
=0(3)\ X(2)/ M,
where M is the matrix part of N (7). d
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