MODULI SPACES OF 3-DIMENSIONAL FLAT MANIFOLDS ### Eun Sook Kang ABSTRACT. For 3-dimensional Bieberbach groups, we study the deformation spaces in the group of isometries of \mathbb{R}^3 . First we calculate the discrete representation spaces and the automorphism groups. Then for each of these Bieberbach groups, we give complete descriptions of Teichmüller spaces, Chabauty spaces, and moduli spaces. #### 1. Introduction Let M be a 3-dimensional manifold with an effective circle action with $M = \pi \setminus \widetilde{M}$, where π is a discrete subgroup of the group $\mathrm{Isom}(\widetilde{M})$ of isometries of \widetilde{M} . It is known that the evaluation map of the circle action at the base point, $i: S^1 \longrightarrow M$, induces an injective homomorphism $$i_{\sharp}: \mathbb{Z} \longrightarrow \pi = \pi_1(M)$$ unless \widetilde{M} is the three-sphere S^3 . Furthermore, the Seifert structure lifts to an \mathbb{R} -action on the universal covering \widetilde{M} of M. Let π be a cocompact discrete subgroup of $\operatorname{Isom}(\widetilde{M})$ which acts on \widetilde{M} properly discontinuously as above. The quotient space $M = \pi \setminus \widetilde{M}$ is said to have a *geometric structure* modelled on $(\widetilde{M}, \operatorname{Isom}(\widetilde{M}))$. We use the notation $\mathcal I$ for the group of isometries; that is, $$\mathcal{I} = \mathrm{Isom}(\widetilde{M}).$$ Received April 1, 2005. Revised September 8, 2005. ²⁰⁰⁰ Mathematics Subject Classification: 32M17, 57N12, 32G15. Key words and phrases: Bieberbach group, flat manifold, moduli space, Teichmüller space. This research was supported by the Korea University Grant 2004. The space of discrete representations, the Weil space, is defined as follows: $\mathcal{R}(\pi; \mathcal{I})$ = the space of all injective discrete homomorphisms θ of π into \mathcal{I} such that $\theta(\pi)$ is discrete in \mathcal{I} and $\mathcal{I}/\theta(\pi)$ is compact. Every element of $\mathcal{R}(\pi;\mathcal{I})$ gives rise to an orbifold modelled on $(\widetilde{M}, \operatorname{Isom}(\widetilde{M}))$. The group of automorphisms of π , $\operatorname{Aut}(\pi)$, acts on $\mathcal{R}(\pi;\mathcal{I})$ on the right; for $\theta \in \mathcal{R}(\pi;\mathcal{I})$ and $\varphi \in \operatorname{Aut}(\pi)$, $$\mathcal{R}(\pi; \mathcal{I}) \times \operatorname{Aut}(\pi) \to \mathcal{R}(\pi; \mathcal{I}).$$ $(\theta, \varphi) \longmapsto \theta \circ \varphi$ On the other hand, the group $\text{Inn}(\mathcal{I})$ of inner automorphisms of \mathcal{I} acts on the space $\mathcal{R}(\pi;\mathcal{I})$ from the left by $$\operatorname{Inn}(\mathcal{I}) \times \mathcal{R}(\pi; \mathcal{I}) \to \mathcal{R}(\pi; \mathcal{I}),$$ $$(\mu(g), \theta) \longmapsto \mu(g) \circ \theta$$ where $\mu(g)$ is the conjugation by $g \in \mathcal{I}$. DEFINITION 1.1. The deformation spaces of π are the orbit spaces defined as follows: $$\begin{split} \mathcal{T}(\pi;\mathcal{I}) &= \mathrm{Inn}(\mathcal{I}) \setminus \mathcal{R}(\pi;\mathcal{I}) \\ \mathcal{S}(\pi;\mathcal{I}) &= \mathcal{R}(\pi;\mathcal{I}) / \operatorname{Aut}(\pi) \\ \mathcal{M}(\pi;\mathcal{I}) &= \mathrm{Inn}(\mathcal{I}) \setminus \mathcal{R}(\pi;\mathcal{I}) / \operatorname{Aut}(\pi). \end{split}$$ These are the Teichmüller space, Chabauty space (or space of discrete subgroups), and the moduli space of π , respectively. The Chabauty space is the space of all distinct discrete subgroups of \mathcal{I} isomorphic to π . If $\theta, \theta' \in \mathcal{R}(\pi; \mathcal{I})$ represent the same point in $\mathcal{T}(\pi; \mathcal{I})$, then $\theta' = \mu(q) \circ \theta$ for some $g \in \mathcal{I}$. This implies $$g \circ \theta(\alpha) = \theta'(\alpha) \circ g$$ for all $\alpha \in \pi$. Then, g induces a map \bar{g} $$\widetilde{M} \xrightarrow{g} \widetilde{M}$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$ $$\theta(\pi) \setminus \widetilde{M} \xrightarrow{\overline{g}} \theta'(\pi) \setminus \widetilde{M}$$ which is an isometry. Two embeddings θ and θ' represent the same point in $\mathcal{M}(\pi; \mathcal{I})$ if and only if $\theta(\pi) \setminus \widetilde{M}$ and $\theta'(\pi) \setminus \widetilde{M}$ are isometric. Therefore, the moduli space $\mathcal{M}(\pi; \mathcal{I})$ of π is the space of isometry classes of the orbifolds $\{\theta(\pi) \setminus \widetilde{M} : \theta \in \mathcal{R}(\pi; \mathcal{I})\}$. Let M be a closed oriented 3-manifold. Thurston's classification yields 8 geometries: $\mathbb{R} \times S^2$, \mathbb{R}^3 , $\mathbb{R} \times \mathbb{H}^2$, S^3 , Nil, $\mathrm{PSL}_2\mathbb{R}$, Sol and \mathbb{H}^3 . It is known that if a closed 3-dimension manifold M admits a geometric structure modelled on one of the eight geometries, then the geometry involved is unique. The classical closed 3-dimensional Seifert manifolds encompass the first 6 of the 8 geometries. In cases of $$\widetilde{M} = \mathbb{R} \times S^2$$, Nil, $\mathbb{R} \times \mathbb{H}^2$, and $\widetilde{\mathrm{PSL}_2\mathbb{R}}$, R. Kulkarni, K. B. Lee and F. Raymond computed the deformation spaces $\mathcal{R}(\pi;\mathcal{I})$, $\mathcal{T}(\pi;\mathcal{I})$, $\mathcal{S}(\pi;\mathcal{I})$ and $\mathcal{M}(\pi;\mathcal{I})$ in their paper [5]. And the Weil space $\mathcal{R}(\pi;\mathcal{I})$ and the Teichmüller space $\mathcal{T}(\pi;\mathcal{I})$ of the case of \mathbb{R}^3 are calculated in [3] and [4]. The aim of this work is to calculate the Chabauty spaces $\mathcal{S}(\pi; \mathcal{I})$ and the moduli spaces $\mathcal{M}(\pi; \mathcal{I})$ for 3-dimensional Bieberbach groups π with $(\mathbb{R}^3, \mathrm{Isom}(\mathbb{R}^3))$ -geometry. #### 2. Preliminaries A rigid motion is an ordered pair (\mathbf{a}, A) with $\mathbf{a} \in \mathbb{R}^n$ and $A \in \mathrm{O}(n)$, which acts on \mathbb{R}^n by $$(\mathbf{a}, A) \cdot \mathbf{x} = A\mathbf{x} + \mathbf{a} \quad \text{for } \mathbf{x} \in \mathbb{R}^n,$$ and these are the isometries of \mathbb{R}^n . For n=3, $$\mathcal{I} = \mathrm{Isom}(\mathbb{R}^3) = \mathbb{R}^3 \rtimes \mathrm{O}(3).$$ The group $\text{Isom}(\mathbb{R}^3)$ is a subgroup of the affine group $$Aff(3) = \mathbb{R}^3 \times GL(3, \mathbb{R}).$$ A subgroup π of Isom(\mathbb{R}^3) is said to be a *Bieberbach* group if π is cocompact, discrete and torsion free. If π is a Bieberbach subgroup of Isom(\mathbb{R}^3), then the quotient space $\pi \setminus \mathbb{R}^3$ is a Riemannian manifold of sectional curvature $\kappa = 0$. Conversely, a flat closed Riemannian manifold of dimension 3 can be expressed a quotient space of \mathbb{R}^3 by a Bieberbach subgroup of Isom(\mathbb{R}^3). See e.g., [7; Chapter 3]. A Bieberbach group π contains a unique maximal normal abelian subgroup \mathbb{Z}^3 , fitting the following commutative diagram of groups with exact rows $$(2.1) \qquad 0 \longrightarrow \mathbb{Z}^3 \longrightarrow \pi \longrightarrow \Phi \longrightarrow 1$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$ $$0 \longrightarrow \mathbb{R}^3 \longrightarrow \mathbb{R}^3 \rtimes O(3) \longrightarrow O(3) \longrightarrow 1$$ where Φ is called the *holonomy group* of π . It is finite and $\Phi \to O(3)$ is injective. The Bieberbach's second theorem says that any isomorphism between Bieberbach groups on \mathbb{R}^n is conjugation by an element of the affine group Aff(n). See [2] or [7]. There are only 10 Bieberbach groups in dimension 3 up to affine change of coordinates. Out of them six are orientable and the others are non-orientable. See [6] or [7]. Let I be the 3×3 identity matrix, $\{\mathbf{e}_i\}$ the standard basis in \mathbb{R}^3 and R_k the rotation matrix of rotation of \mathbb{R}^3 about the x-axis through $\frac{2\pi}{k}$; namely, $$\mathbf{e}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{e}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{e}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},$$ $$R_{k} = R\left(\frac{2\pi}{k}\right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\frac{2\pi}{k}) & -\sin(\frac{2\pi}{k}) \\ 0 & \sin(\frac{2\pi}{k}) & \cos(\frac{2\pi}{k}) \end{bmatrix}$$ and let $\mathbf{t}_i = (\mathbf{e}_i, I)$, for i = 1, 2, 3. LEMMA 2.1. We list all the 3-dimensional Bieberbach groups embedded in $\mathbb{R}^3 \times O(3)$ and their holonomy groups ([3] and [4]). Let $$E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$ - 1) \mathfrak{G}_1 . $\Phi = \{1\}$ and π is generated by $\mathbf{t}_1, \mathbf{t}_2$ and \mathbf{t}_3 , - 2) \mathfrak{G}_2 . $\Phi = \mathbb{Z}_2$ and π is generated by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3$ and $\alpha = (\frac{1}{2}\mathbf{e}_1, R_2)$, - 3) $\mathfrak{G}_3.\Psi = \mathbb{Z}_3$ and π is generated by $\mathbf{t}_1, \mathbf{s}_1 = (R_3\mathbf{e}_2, I), \mathbf{s}_2 = ((R_3)^2\mathbf{e}_2, \mathbf{I})$ and $\beta = (\frac{1}{3}\mathbf{e}_1, R_3),$ - 4) \mathfrak{G}_4 . $\Phi = \mathbb{Z}_4$ and π is generated by \mathbf{t}_1 , \mathbf{t}_2 , \mathbf{t}_3 and $\alpha = (\frac{1}{4}\mathbf{e}_1, R_4)$, - 5) \mathfrak{G}_5 . $\Phi = \mathbb{Z}_6$ and π is generated by \mathbf{t}_1 , $\mathbf{s}_1 = (R_6 \mathbf{e}_2, I)$, $\mathbf{s}_2 = ((R_6)^2 \mathbf{e}_2, \mathbf{I})$ and $\beta = (\frac{1}{6} \mathbf{e}_1, R_6)$, - 6) \mathfrak{G}_6 . $\Phi = \mathbb{Z}_2 \times \mathbb{Z}_2$ and π is generated by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, \alpha = (\frac{1}{2}\mathbf{e}_1, R_2),$ $\beta = (\frac{1}{2}(\mathbf{e}_2 + \mathbf{e}_3), -ER_2),$ - 7) \mathfrak{B}_1 . $\Phi = \mathbb{Z}_2$ and π is generated by \mathbf{t}_1 , \mathbf{t}_2 , \mathbf{t}_3 and $\varepsilon = (\frac{1}{2}\mathbf{e}_1, E)$, - 8) \mathfrak{B}_2 . $\Phi = \mathbb{Z}_2$ and π is generated by $\mathbf{t}_1, \mathbf{t}_2, \mathbf{s} = (\frac{1}{2}(\mathbf{e}_1 + \mathbf{e}_2) + \mathbf{e}_3, I)$ and $\varepsilon = (\frac{1}{2}\mathbf{e}_1, E)$, - 9) \mathfrak{B}_3 . $\Phi = \mathbb{Z}_2 \times \mathbb{Z}_2$ and π is generated by $\mathbf{t}_1, \mathbf{t}_2, \ \mathbf{t}_3, \ \alpha = (\frac{1}{2}\mathbf{e}_1, R_2)$ and $\varepsilon = (\frac{1}{2}\mathbf{e}_2, E)$, - 10) \mathfrak{B}_4 . $\Phi = \mathbb{Z}_2 \times \mathbb{Z}_2$ and π is generated by \mathbf{t}_1 , \mathbf{t}_2 , \mathbf{t}_3 , $\alpha = (\frac{1}{2}\mathbf{e}_1, R_2)$ and $\varepsilon = (\frac{1}{2}(\mathbf{e}_2 + \mathbf{e}_3), E)$. In the above list, the matrices which span the holonomy groups are integral except two cases \mathfrak{G}_3 , \mathfrak{G}_5 . We want to conjugate π 's of type \mathfrak{G}_3 and \mathfrak{G}_5 into $\mathbb{R}^3 \rtimes \mathrm{GL}(3,\mathbb{Z})$. LEMMA 2.2. The Bieberbach group π of type \mathfrak{G}_3 or \mathfrak{G}_5 is conjugates to a subgroup of the form $\langle \mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, \alpha \rangle$ of $\mathbb{R}^3 \rtimes \mathrm{GL}(3, \mathbb{Z})$, where if π is of type \mathfrak{G}_3 then $\alpha = (\frac{1}{3}\mathbf{e}_1, A_3)$, and if \mathfrak{G}_5 then $\alpha = (\frac{1}{6}\mathbf{e}_1, A_5)$, $$A_3 = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & -1 \ 0 & 1 & -1 \end{bmatrix} \quad ext{and} \quad A_5 = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & -1 \ 0 & 1 & 1 \end{bmatrix}.$$ *Proof.* For $(\mathbf{0}, P) \in \text{Aff}(3)$ let $\mu_{(\mathbf{0}, P)}$ be the conjugation by $(\mathbf{0}, P)$; so, $$\mu_{(\mathbf{0},P)}(\mathbf{a},A) = (\mathbf{0},P)(\mathbf{a},A)(\mathbf{0},P)^{-1}$$ for $(\mathbf{a}, A) \in \text{Aff}(3)$. If we take the following P_3 and P_5 $$P_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & \frac{1}{\sqrt{3}} \\ 0 & -1 & -\frac{1}{\sqrt{3}} \end{bmatrix} \qquad P_5 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{\sqrt{3}} \\ 0 & -1 & \frac{1}{\sqrt{3}} \end{bmatrix},$$ it is easy to check that $$\mu_{(\mathbf{0},P_3)}: \mathfrak{G}_3 \longrightarrow \langle \mathbf{t}_1, \ \mathbf{t}_2, \ \mathbf{t}_3, \ \alpha = (\frac{1}{3}\mathbf{e}_1, A_3) \rangle$$ $$\mu_{(\mathbf{0},P_5)}: \mathfrak{G}_5 \longrightarrow \langle \mathbf{t}_1, \ \mathbf{t}_2, \ \mathbf{t}_3, \ \alpha = (\frac{1}{6}\mathbf{e}_1, A_5) \rangle.$$ The proof is complete. Let $\mathcal{N}(\pi)$ denote the normalizer of π in Aff(3). If $\xi \in$ Aff(3), then $$\xi \mathcal{N}(\pi) \xi^{-1} = \mathcal{N}(\xi \pi \xi^{-1}).$$ And so, in order to compute the normalizer $\mathcal{N}(\pi)$ of a Bieberbach group π with type \mathfrak{G}_3 or \mathfrak{G}_5 , we shall use the integral representation as in Lemma 2.2. ## 3. Automorphisms of a 3-dimensional Bieberbach group Let $\mathcal{N}(\pi) = \mathcal{N}_{\mathrm{Aff}(3)}(\pi)$ and $\mathcal{C}(\pi) = \mathcal{C}_{\mathrm{Aff}(3)}(\pi)$ be the normalizer and the centralizer of a Bieberbach group π in the affine group Aff(3). The following is a commutative diagram in which all rows and columns are exact [2]: where $\mathcal{Z}(\pi)$ is the center of π and $C(\pi)$ is the centralizer of π in Aff(3). The top row is always of the form $$1 \longrightarrow \mathbb{Z}^k \longrightarrow \mathbb{R}^k \longrightarrow T^k \longrightarrow 1,$$ where k is the rank of the center of π . (So, k = 3 for \mathfrak{G}_1 ; k = 2 for \mathfrak{B}_1 , \mathfrak{B}_2 ; k = 1 for \mathfrak{G}_2 , \mathfrak{G}_3 , \mathfrak{G}_4 , \mathfrak{G}_5 , \mathfrak{B}_3 , \mathfrak{B}_4 ; and k = 0 for \mathfrak{G}_6). In order to calculate $\operatorname{Aut}(\pi)$, it is enough to compute $\mathcal{N}(\pi)$ and $\mathcal{C}(\pi)$ because $$\operatorname{Aut}(\pi) = \mathcal{N}(\pi)/\mathcal{C}(\pi).$$ We have the exact sequence $$0 \ \longrightarrow \ \mathbb{Z}^3 \ \longrightarrow \ \pi \ \stackrel{p}{\longrightarrow} \ \Phi \ \longrightarrow \ 1.$$ Let $j: \Phi \longrightarrow \operatorname{Aut}(\mathbb{Z}^3)$ be the map induced by the action of Φ on \mathbb{Z}^3 which assigns a conjugation by an element of π ; $$[j(A)](\mathbf{x}) = \sigma(\mathbf{x}, \ I)\sigma^{-1}$$ for $\mathbf{x} \in \mathbb{Z}^3$ and $\sigma \in p^{-1}(A)$. For our rigid motions, Φ -action on \mathbb{Z}^3 is given by multiplications of matrices on 3-vectors of \mathbb{Z}^3 on the left. And it can be lifted to an action on \mathbb{R}^3 . The centralizer $\mathcal{C}(\pi)$ of π in Aff(3) is a subgroup of pure translations, $(\mathbb{R}^3)^{\Phi}$, the fixed point set of the Φ -action on \mathbb{R}^3 . Let $\mathcal{N}(\Phi)$ be the normalizer of $j(\Phi)$ in $\operatorname{Aut}(\mathbb{Z}^3) = \operatorname{GL}(3,\mathbb{Z})$. We need to figure out the normalizer $\mathcal{N}(\pi)$ of π in Aff(3). In the following theorem, $$\mathcal{N}^+(\Phi) = \{ X \in \mathcal{N}(\Phi) | \det X > 0 \}.$$ THEOREM 3.1. Let M be a 3-dimensional orientable flat manifold with $\pi = \pi_1(M)$. Then the normalizer $\mathcal{N}(\pi)$ in Aff(3) of π is a semi-direct product $$T \rtimes \mathcal{M} \subset \mathbb{R}^3 \rtimes \mathrm{GL}(3,\mathbb{Z})$$ where the pure translations T and the matrix group \mathcal{M} are as follows: - 1. If $\pi = \mathfrak{G}_1$, then $T = \mathbb{R}^3$ and $\mathcal{M} = \mathcal{N}(\Phi) = \mathrm{GL}(3, \mathbb{Z})$. - 2. If $\pi = \mathfrak{G}_2$, then $T = \mathbb{R}\mathbf{e}_1 \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_2) \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_3)$, $\mathcal{M} = \mathcal{N}(\Phi) = \mathbb{Z}_2 \times \mathrm{GL}(2,\mathbb{Z})$, where $\mathcal{M} = \mathcal{N}(\Phi)$ is the matrices of the form $$\begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{bmatrix}.$$ 3. If $\pi = \mathfrak{G}_3$, then $T = \mathbb{R}\mathbf{e}_1 \oplus \mathbb{Z}(\frac{1}{3}\mathbf{e}_2 + \frac{2}{3}\mathbf{e}_3) \oplus \mathbb{Z}(\frac{2}{3}\mathbf{e}_2 + \frac{1}{3}\mathbf{e}_3)$, $\mathcal{M} = \mathcal{N}^+(\Phi) = \mathbb{Z}_6 \rtimes \mathbb{Z}_2 = \mathbf{D}_6$, where the dihedral group \mathbf{D}_6 is generated by the matrices $$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } J = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$ 4. If $\pi = \mathfrak{G}_4$, then $T = \mathbb{R}\mathbf{e}_1 \oplus \mathbb{Z}(\mathbf{e}_2) \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_2 + \frac{1}{2}\mathbf{e}_3)$, $\mathcal{M} = \mathcal{N}^+(\Phi) = \mathbb{Z}_4 \rtimes \mathbb{Z}_2 = \mathbf{D}_4$, where the dihedral group \mathbf{D}_4 is generated by the matrices $$D = R_4 \text{ and } J = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$ 5. If $\pi = \mathfrak{G}_5$, then $T = \mathbb{R}\mathbf{e}_1 \oplus \mathbb{Z}(\mathbf{e}_2) \oplus \mathbb{Z}(\mathbf{e}_3)$, $\mathcal{M} = \mathcal{N}^+(\Phi) = \mathbb{Z}_6 \rtimes \mathbb{Z}_2 = \mathbf{D}_6$, where the dihedral group \mathbf{D}_6 is generated by the matrices $$D = A_5 \text{ and } J = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$ 6. If $\pi = \mathfrak{G}_6$, then $T = \mathbb{Z}(\frac{1}{2}\mathbf{e}_1) \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_2) \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_3)$, $\mathcal{M} = \mathcal{N}(\Phi) = (\mathbb{Z}_2)^3 \rtimes \mathcal{S}_3$, where $$(\mathbb{Z}_2)^3 = \begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}$$ and S_3 is the permutation group of 3 letters. Proof. In order for an element $(\mathbf{x}, X) \in \mathbb{R}^3 \rtimes \mathrm{GL}(3, \mathbb{R}) = \mathrm{Aff}(3)$ to lie in the normalizer $\mathcal{N}(\pi)$, it should conjugate the pure translational subgroup \mathbb{Z}^3 to itself. This implies $X \in \mathrm{GL}(3, \mathbb{Z})$. So, we first find all such X which normalizes the holonomy group $\Phi \subset \mathrm{GL}(3, \mathbb{Z})$. For each of such matrices X, it is not hard to see $(\mathbf{0}, X)$ normalizes the whole group (with $\mathbf{x} = \mathbf{0}$). This means that the group $\mathcal{N}(\pi)$ splits as a semi-direct product $T \rtimes \mathcal{M}$. To find the pure translations T, one just solves the equation $$(\mathbf{x}, I)(\mathbf{a}, A)(-\mathbf{x}, I) \in \pi$$ for **x** and $(\mathbf{a}, A) \in \pi$, for every non-trivial generator A of the holonomy group. If π is of type \mathfrak{G}_n (n=1,2,6), then the matrix part \mathcal{M} is equal to the normalizer $\mathcal{N}(\Phi)$ of the holonomy group Φ in $\mathrm{GL}(3,\mathbb{Z})$. For the cases of \mathfrak{G}_n (n=3,4,5), $X \in \mathcal{N}(\Phi)$ if and only if, for a generator A of Φ , $XAX^{-1} = A^r$ for r coprime to the order of A. Thus r can only be 1 or -1. The centralizer $$\mathcal{C}(\Phi) = \{ X \in \mathrm{GL}(3, \mathbb{R}) : XAX^{-1} = A \}.$$ of Φ in $GL(3,\mathbb{Z})$ is isomorphic to $\langle D \rangle \times \mathbb{Z}_2$, where $-I \in \mathbb{Z}_2$ and $\langle D \rangle$ is a finite cyclic group of order 6 $(\mathfrak{G}_3, \mathfrak{G}_5)$ or 4 (\mathfrak{G}_4) , and $\mathcal{C}(\Phi)$ has index 2 in the normalizer $\mathcal{N}(\Phi)$. More precisely, there is $J \in GL(3,\mathbb{R})$ such that $JAJ^{-1} = A^{-1}$ with $\det(J) = 1$. Consequently, $$\mathcal{N}(\Phi) = (\langle \pm I \rangle \times \mathbb{Z}_m) \rtimes \mathbb{Z}_2 = \langle \pm I \rangle \times (\mathbb{Z}_m \rtimes \mathbb{Z}_2) = \langle \pm I \rangle \times \mathcal{N}^+(\Phi),$$ where the \mathbb{Z}_2 is generated by J. Now consider $(\mathbf{x}, -I)$. For the cases of \mathfrak{G}_3 , \mathfrak{G}_4 and \mathfrak{G}_5 , $$(\mathbf{x}, -I)(\mathbf{a}, A)(\mathbf{x}, -I)^{-1}(\mathbf{a}, A)^{-1} \in \mathbb{Z}^3$$ does not have a solution for $\mathbf{x} \in \mathbb{R}^3$. Therefore, we only need to look at the subgroup $\mathcal{N}^+(\Phi) = \mathbb{Z}_m \rtimes \mathbb{Z}_2 = \mathbf{D}_m$. For non-orientable Bieberbach groups, we need a special subgroup of $GL(2, \mathbb{Z})$. Consider the natural homomorphism $$\rho: \operatorname{GL}(2,\mathbb{Z}) \longrightarrow \operatorname{GL}(2,\mathbb{Z}_2)$$ induced from the natural homomorphism $\mathbb{Z} \to \mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$. It is easy to see that $$\mathrm{kernel}(\rho) = \widehat{\mathrm{GL}}(2,\mathbb{Z}) = \left\{ \begin{bmatrix} 2a+1 & 2b \\ 2c & 2d+1 \end{bmatrix} \in \ \mathrm{GL}(2,\mathbb{Z}) \mid a,b,c,d \in \mathbb{Z} \right\}$$ and $$\operatorname{image}(\rho) = \operatorname{GL}(2, \mathbb{Z}_2) \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_2,$$ which is generated by $$E = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix} \in \mathrm{GL}(2, \mathbb{Z}) \quad \text{ and } \quad J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$ Therefore, LEMMA 3.2. We have an exact sequence $$1 \longrightarrow \widehat{GL}(2,\mathbb{Z}) \longrightarrow GL(2,\mathbb{Z}) \stackrel{\rho}{\longrightarrow} \mathbf{D}_3 \longrightarrow 1,$$ where \mathbf{D}_3 is the dihedral group. Then the normalizer $\mathcal{N}(\pi)$ in Aff(3) of π is as follows. LEMMA 3.3. Let M be a non-orientable flat manifold with $\pi_1(M) = \pi$. Let $$\overline{\operatorname{GL}}(2,\mathbb{Z}) = \left\{ \begin{bmatrix} A & 0 \\ 0 & \pm 1 \end{bmatrix} : A \in \widehat{\operatorname{GL}}(2,\mathbb{Z}) \right\}.$$ - 1. If $\pi = \mathfrak{B}_1$, then $\mathcal{N}(\pi) = \mathbb{R}\mathbf{e}_1 \oplus \mathbb{R}\mathbf{e}_2 \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_3) \rtimes \overline{GL}(2,\mathbb{Z})$. - 2. If $\pi = \mathfrak{B}_2$, then $\mathcal{N}(\pi) = \left((\mathbb{R}\mathbf{e}_1 \oplus \mathbb{R}\mathbf{e}_2 \oplus \mathbb{Z}\mathbf{e}_3) \rtimes \overline{\mathrm{GL}}(2,\mathbb{Z}) \right) \rtimes \mathbb{Z}_2$, where \mathbb{Z}_2 is generated by $\xi = \left(\begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \right)$. 3. If $$\pi = \mathfrak{B}_3$$ or \mathfrak{B}_4 , then $\mathcal{N}(\pi) = (\mathbb{R}\mathbf{e}_1 \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_2) \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_3)) \rtimes (\mathbb{Z}_2)^3$, where $(\mathbb{Z}_2)^3 = \begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & \pm 1 \end{bmatrix}$. *Proof.* When π is of type \mathfrak{B}_1 , similarly to the proof of Theorem 3.1, if $(\mathbf{x}, X) \in \mathcal{N}(\pi)$ for some $\mathbf{x} \in \mathbb{R}^3$, then $(\mathbf{0}, X)$ normalizes the whole group π . That is, $$(\mathbf{0}, X)(\frac{1}{2}\mathbf{e}_1, E)(\mathbf{0}, X)^{-1} \in \pi.$$ Hence we obtain an exact sequence $$0 \longrightarrow \mathbb{R}\mathbf{e}_1 \oplus \mathbb{R}\mathbf{e}_2 \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_3) \longrightarrow \mathcal{N}(\pi) \longrightarrow \overline{\mathrm{GL}}(2,\mathbb{Z}) \longrightarrow 1$$ which splits. Now if π is of type \mathfrak{B}_2 , each element of $(\mathbb{R}\mathbf{e}_1 \oplus \mathbb{R}\mathbf{e}_2 \oplus \mathbb{Z}\mathbf{e}_3) \rtimes \overline{\mathrm{GL}}(2,\mathbb{Z})$ conjugates the whole group π and furthermore, $\xi \in \mathrm{Isom}(\mathbb{R}^3)$ does conjugate π into itself. So, the result (2) holds. Notice that ξ has a non-trivial translation part. For π of type \mathfrak{B}_3 or \mathfrak{B}_4 , let $(\mathbf{x}, X) \in \mathcal{N}(\pi)$. By the similar computation to Theorem 3.1, we see $X \in \mathcal{C}(\pi)$, and so X has to be diagonal. We get $\mathbb{R}\mathbf{e}_1 \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_2) \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_3)$ as the translation part of $\mathcal{N}(\pi)$. It is worth emphasizing that the translation part of the normalizer $\mathcal{N}(\pi)$ can be expressed by the direct sum of the centralizer $\mathcal{C}(\pi) = \mathbb{R}^k$ and \mathbb{Z}^{3-k} for the rank k of the center of π . If the holonomy group Φ of π has order greater than two, then the normalizer of Φ in $GL(3,\mathbb{R})$ is finite and $Aut(\pi)$ itself becomes a crystallographic group. There are only 17 crystallographic groups in dimension 2 and 219 in dimensional 3. THEOREM 3.4. Let π be a 3-dimensional Bieberbach group. If the order of the holonomy group Φ of π is greater than two, then the automorphism group $\operatorname{Aut}(\pi)$ of π is a crystallographic group of dimension 2 or 3: - 1. If Φ is isomorphic to \mathbb{Z}_3 or \mathbb{Z}_6 , then $\operatorname{Aut}(\pi) \cong \mathbb{Z}^2 \rtimes \mathbf{D}_6$. - 2. If Φ is isomorphic to \mathbb{Z}_4 , then $\operatorname{Aut}(\pi) \cong \mathbb{Z}^2 \rtimes \mathbf{D}_4$. - 3. If $\Phi \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \subset SO(3)$, then $Aut(\pi) \cong \mathbb{Z}^3 \rtimes ((\mathbb{Z}_2)^3 \rtimes \mathcal{S}_3)$. - 4. If $\Phi \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \nsubseteq SO(3)$, then $Aut(\pi) \cong \mathbb{Z}^2 \rtimes (\mathbb{Z}_2)^3$. *Proof.* Recall that $$\operatorname{Aut}(\pi) = \mathcal{N}(\pi)/\mathcal{C}(\pi),$$ where a list of $\mathcal{C}(\pi) = (\mathbb{R}^3)^{\Phi}$'s was made. (1) From Theorem 3.1, the exact sequence $$0 \longrightarrow \mathbb{R}\mathbf{e}_1 \oplus \mathbb{Z}(\frac{1}{3}\mathbf{e}_2 + \frac{2}{3}\mathbf{e}_3) \oplus \mathbb{Z}(\frac{2}{3}\mathbf{e}_2 + \frac{1}{3}\mathbf{e}_3) \longrightarrow \mathcal{N}(\mathfrak{G}_3) \longrightarrow \mathbf{D}_6 \longrightarrow 1$$ splits. The centralizer $C(\pi) = \mathbb{R}\mathbf{e}_1$ consists of the first axis (See 4.2). Therefore we have the exact sequence $$0 \longrightarrow (\mathbb{Z})^2 \longrightarrow \operatorname{Aut}(\mathfrak{G}_3) \longrightarrow \mathbf{D}_6 \longrightarrow 1,$$ where \mathbb{Z}^2 which is generated by $\left\{\frac{1}{3}\begin{bmatrix}1\\2\end{bmatrix}, \frac{1}{3}\begin{bmatrix}2\\1\end{bmatrix}\right\}$ and the dihedral group \mathbf{D}_6 of degree 12 is generated by D and J. Here if Φ is isomorphic to \mathbb{Z}_3 (or \mathbb{Z}_6), then $$D = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \quad (\text{or } D = \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}) \quad \text{ and } J = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$ Note that D has order 6, $JDJ^{-1} = D^{-1}$ and $Aut(\pi)$ is a 2-dimensional crystallographic group. (2) The automorphism group $\operatorname{Aut}(\mathfrak{G}_4)$ is a 2-dimensional crystallographic group $$1 \longrightarrow \mathbb{Z}^2 \longrightarrow \operatorname{Aut}(\mathfrak{G}_4) \longrightarrow \mathbf{D}_4 \longrightarrow 1$$, where \mathbb{Z}^2 is generated by $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$, and the quotient \mathbf{D}_4 is the dihedral group of order 8 which is generated by $D = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, J = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Note that D has order 4, and $JDJ^{-1} = D^{-1}$. - (3) Since the centralizer $C(\pi)$ is trivial, $\mathcal{N}(\pi) \cong \operatorname{Aut}(\pi)$. - (4) The centralizer $C(\pi) = \mathbb{R}\mathbf{e}_1$ consists of the first axis and the translation part of the normalizer $\mathcal{N}(\pi)$ is equal to $\mathbb{R}\mathbf{e}_1 \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_2) \oplus \mathbb{Z}(\frac{1}{2}\mathbf{e}_3)$. If the holonomy group Φ of π is isomorphic to a cyclic group \mathbb{Z}_2 with order two, then $\operatorname{Aut}(\pi)$ is as follows: THEOREM 3.5. Let π be a 3-dimensional Bieberbach group. The automorphism groups $\operatorname{Aut}(\pi)$'s are as follow; - 1. If π is of type \mathfrak{G}_1 , $\operatorname{Aut}(\pi) \cong \operatorname{GL}(3,\mathbb{Z})$. - 2. If π is of type \mathfrak{G}_2 , $\operatorname{Aut}(\pi) \cong \mathbb{Z}^2 \rtimes (\operatorname{GL}(2,\mathbb{Z}) \times \mathbb{Z}_2)$. - 3. If π is of type \mathfrak{B}_1 , $\operatorname{Aut}(\pi) \cong \mathbb{Z} \rtimes \overline{\operatorname{GL}}(2,\mathbb{Z})$. - 4. If π is of type \mathfrak{B}_2 , $\operatorname{Aut}(\pi) \cong (\mathbb{Z} \rtimes \overline{\operatorname{GL}}(2,\mathbb{Z})) \times \mathbb{Z}_2$. *Proof.* (1) If Φ is trivial, then $\mathcal{C}(\pi) = (\mathbb{R}^3)^{\Phi} = \mathbb{R}^3$. (2) Since $\Phi \cong \mathbb{Z}_2 \subset SO(3)$ and $C(\pi) = \mathbb{R}\mathbf{e}_1$ consists of the first axis, $$\operatorname{Aut}(\pi) = \left\langle \frac{1}{2} \begin{bmatrix} 1\\0 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 0\\1 \end{bmatrix} \right\rangle \rtimes (\mathbb{Z}_2 \times \operatorname{GL}(2, \mathbb{Z}))$$ $$\cong \mathbb{Z}^2 \rtimes (\operatorname{GL}(2, \mathbb{Z}) \times \mathbb{Z}_2).$$ (3), (4) If $\Phi \cong \mathbb{Z}_2 \nsubseteq SO(3)$, then the centralizer is $\mathcal{C}(\pi) = \mathbb{R}\mathbf{e}_1 \oplus \mathbb{R}\mathbf{e}_2$. If $\pi = \mathfrak{B}_1$, $$\operatorname{Aut}(\pi) = \left\langle \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix} \right\rangle \rtimes \overline{\operatorname{GL}}(2, \mathbb{Z})$$ $$\cong \mathbb{Z} \rtimes \overline{\operatorname{GL}}(2, \mathbb{Z}).$$ If $\pi = \mathfrak{B}_2$, $$\begin{split} \operatorname{Aut}(\pi) = & (\left\langle \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\rangle \rtimes \overline{\operatorname{GL}}(2, \mathbb{Z})) \rtimes \mathbb{Z}_2 \\ \cong & (\mathbb{Z} \rtimes \overline{\operatorname{GL}}(2, \mathbb{Z})) \times \mathbb{Z}_2, \end{split}$$ where $$\mathbb{Z}_2$$ is generated by $\left(\begin{bmatrix}0\\\frac{1}{2}\end{bmatrix},\begin{bmatrix}0&1\\1&0\end{bmatrix}\right) \in \mathbb{R}^2 \rtimes GL(2,\mathbb{Z}).$ REMARK 3.6. Let M be a 3-dimensional orientable flat manifold with $\pi = \pi_1(M)$. From 3.1 we are able to compute the group Aff(M) of affinities of a 3-dimensional flat manifold M; $$1 \longrightarrow T^k \longrightarrow Aff(M) \longrightarrow \mathcal{M}/\Phi \longrightarrow 1,$$ where k is the rank of the center of π . # 4. Chabauty spaces and moduli spaces For a 3-dimensional Bieberbach group π with holonomy group Φ , let θ_0 be the embedding of π into $\mathbb{R}^3 \times O(3)$ as in Lemma 2.1. In fact, we think of $\theta_0(\pi)$ as π . Let $$\mathcal{X}(\Phi) = \{ X \in \mathrm{GL}(3, \mathbb{R}) | XAX^{-1} \in \mathrm{O}(3) \text{ for all } A \in \Phi \}.$$ It is not a subgroup in general, but is a nice algebraic sub-variety of $GL(3,\mathbb{R})$. NOTATION 4.1. Consider the set ([3] and [4]) $$\mathbb{R}^3 \rtimes \mathcal{X}(\Phi) = \{ (\mathbf{r}, R) | \mathbf{r} \in \mathbb{R}^3 \text{ and } R \in \mathcal{X}(\Phi) \} \subset \mathbb{R}^3 \rtimes \mathrm{O}(3).$$ This is not a subgroup, but a topological subspace. It is shown that the Weil space is $$\mathcal{R}(\pi; \mathcal{I}) = \{ \mu_{\xi} \circ \theta_0 | \xi \in \mathbb{R}^3 \rtimes \mathcal{X}(\Phi) \}$$ $$\approx (\mathbb{R}^3 \rtimes \mathcal{X}(\Phi)) / \mathcal{C}(\pi),$$ where μ_{ξ} is the conjugation by ξ and $C(\pi)$ is the centralizer of π in Aff(3). The action of the automorphism group $\operatorname{Aut}(\pi) = \mathcal{N}(\pi)/\mathcal{C}(\pi)$ on $\mathcal{R}(\pi;\mathcal{I})$ is inherited from the action of the normalizer $\mathcal{N}(\pi)$, which is given by the rule: $$\begin{array}{ccc} \pi & \xrightarrow{\varphi} & \pi \\ \downarrow \theta_0 & & \downarrow \theta_0 \\ \theta_0(\pi) & \xrightarrow{\mu_n} & \theta_0(\pi) & \xrightarrow{\mu_{\mathcal{E}}} & \theta(\pi) \end{array}$$ for each $[\xi = (\mathbf{r}, R)] \in \mathcal{R}(\pi; \mathcal{I})$ and $\eta = (\mathbf{x}, X) \in \mathcal{N}(\pi)$. Recall that μ denotes conjugation. For the readers' conveniences, we write $\mathcal{X}(\Phi)$ for each of the Bieberbach groups. See [3; Proposition 2.3] and [4; Theorem 3.1]. PROPOSITION 4.2. For each of the 3-dimensional Bieberbach groups π , 1. For $$\pi = \mathfrak{G}_1$$, $\mathcal{X}(\Phi) = \operatorname{GL}(3, \mathbb{R})$ and $(\mathbb{R}^3)^{\Phi} = \mathbb{R}^3$. 2. For $$\pi = \mathfrak{G}_2$$, $\mathcal{X}(\Phi) = SO(3) \cdot \Big(GL(1, \mathbb{R}) \times GL(2, \mathbb{R}) \Big)$ and $(\mathbb{R}^3)^{\Phi} = \mathbb{R}\mathbf{e}_1$. 3. For $$\pi = \mathfrak{G}_3$$, \mathfrak{G}_4 , and \mathfrak{G}_5 , $$\mathcal{X}(\Phi) = \mathrm{SO}(3) \cdot \left(\mathbb{R}^* \cdot \mathrm{SO}(1) \times \mathbb{R}^* \cdot \mathrm{SO}(2)\right) \quad and \quad (\mathbb{R}^3)^{\Phi} = \mathbb{R}\mathbf{e}_1.$$ 4. For $$\pi = \mathfrak{G}_6$$, $\mathcal{X}(\Phi) = SO(3) \cdot (\mathbb{R}^*)^3$ and $(\mathbb{R}^3)^{\Phi} = \{0\}$. 5. For $\pi = \mathfrak{B}_1$ and \mathfrak{B}_2 , $$\mathcal{X}(\Phi) = SO(3) \cdot \Big(\operatorname{GL}(2,\mathbb{R}) \times \operatorname{GL}(1,\mathbb{R})\Big) \quad \text{and} \quad (\mathbb{R}^3)^\Phi = \mathbb{R} \mathbf{e}_1 \oplus \mathbb{R} \mathbf{e}_2.$$ 6. For $$\pi = \mathfrak{B}_3$$ and \mathfrak{B}_4 , $\mathcal{X}(\Phi) = SO(3) \cdot (\mathbb{R}^*)^3$ and $(\mathbb{R}^3)^{\Phi} = \mathbb{R}e_1$. Here $GL(2,\mathbb{R})\times GL(1,\mathbb{R})$ are the blocked diagonal matrices, \mathbb{R}^* is the set of all non-zero real numbers and $(\mathbb{R}^+)^3$ are the group of 3-dimensional diagonal matrices with positive entries. Note that in (3) of the above theorem, $\mathcal{X}(\Phi)$ is computed using the orthogonal representation as in Lemma 2.1. Now we can get the Chabauty space as follows: $$S(\pi; \mathcal{I}) = \mathcal{R}(\pi; \mathcal{I}) / \operatorname{Aut}(\pi)$$ $$= (\mathbb{R}^3 \rtimes \mathcal{X}(\Phi)) / \mathcal{N}(\pi).$$ THEOREM 4.3. Let M be a 3-dimensional flat manifold with $\pi_1(M) = \pi$. The Chabauty spaces are as follow: - 1. If π is of type \mathfrak{G}_1 , $S(\pi; \mathcal{I}) \approx \operatorname{GL}(3, \mathbb{R})/\operatorname{GL}(3, \mathbb{Z})$. This is 9-dimensional. - 2. If π is of type \mathfrak{G}_2 , $S(\pi; \mathcal{I}) \approx \mathbf{T}^2 \times SO(3) \cdot \left(\mathbb{R}^+ \times GL(2, \mathbb{R}) / GL(2, \mathbb{Z})\right)$. Since $SO(3) \cap GL(2, \mathbb{R}) \cong SO(2)$, $S(\pi; \mathcal{I})$ is 9-dimensional. 3. If π is of type \mathfrak{G}_3 or \mathfrak{G}_5 , $$S(\pi; \mathcal{I}) \approx \mathbf{T}^2 \times SO(3) \cdot (\mathbb{R}^+ \times \mathbb{R}^+ \cdot SO(2)/\mathbb{Z}_6).$$ Since $SO(3) \cap SO(2) \cong SO(2)$, $S(\pi; \mathcal{I})$ is 7-dimensional. 4. If π is of type \mathfrak{G}_4 , $$S(\pi; \mathcal{I}) \approx \mathbf{T}^2 \times SO(3) \cdot (\mathbb{R}^+ \times \mathbb{R}^+ \cdot SO(2)/\mathbb{Z}_4).$$ Since $SO(3) \cap SO(2) \cong SO(2)$, $S(\pi; \mathcal{I})$ is 7-dimensional. - 5. If π is of type \mathfrak{G}_6 , $\mathcal{S}(\pi;\mathcal{I}) \approx \mathbf{T}^3 \times \left(\operatorname{SO}(3)/\mathbb{Z}_3 \right) \cdot (\mathbb{R}^+)^3$. This is 9-dimensional. - 6. If π is of type \mathfrak{B}_1 , $$\mathcal{S}(\pi; \mathcal{I}) \approx \mathbf{T}^1 \times \mathrm{SO}(3) \cdot \Big(\mathrm{GL}(2, \mathbb{R}) \times \mathrm{GL}(1, \mathbb{R}) / \overline{\mathrm{GL}}(2, \mathbb{Z}) \Big)$$ $$\approx \mathbf{T}^1 \times \mathrm{SO}(3) \cdot \Big(\mathrm{GL}(2, \mathbb{R}) / \widehat{\mathrm{GL}}(2, \mathbb{Z}) \times \mathbb{R}^+ \Big).$$ Since $SO(3) \cap GL(2,\mathbb{R}) \cong SO(2)$, $S(\pi; \mathcal{I})$ is 8-dimensional. 7. If π is of type \mathfrak{B}_2 , $$S(\pi; \mathcal{I}) \approx \left(\mathbf{T}^1 \times SO(3) \cdot GL(2, \mathbb{R}) \times GL(1, \mathbb{R}) / \overline{GL}(2, \mathbb{Z})\right) / \mathbb{Z}_2$$ $$\approx \widehat{\mathbf{T}}^1 \times SO(3) \cdot \left(GL(2, \mathbb{R}) / \widehat{GL}(2, \mathbb{Z}) \times \mathbb{R}^+\right),$$ where $\widehat{\mathbf{T}}^1$ is a circle doubly covered by \mathbf{T}^1 . $\mathcal{S}(\pi;\mathcal{I})$ is 8-dimensional. 8. If π is of type \mathfrak{B}_3 or \mathfrak{B}_4 , $$S(\pi; \mathcal{I}) \approx \mathbf{T}^2 \times SO(3) \cdot (\mathbb{R}^+)^3$$. This is 8-dimensional. *Proof.* Except for the case when $\pi = \mathfrak{B}_2$. the Chabauty space is obtained by $$S(\pi; \mathcal{I}) = (\mathbb{R}^3 \rtimes \mathcal{X}(\Phi)) / \mathcal{N}(\pi)$$ $$= (\mathbb{R}/\mathbb{Z})^{3-k} \times [\mathcal{X}(\Phi)/\mathcal{M}],$$ where k is the rank of the center $\mathcal{Z}(\pi)$ of π and \mathcal{M} is the matrix part of $\mathcal{N}(\pi)$. The proof is obvious from Proposition 4.2 and Theorem 3.1. For the cases of \mathfrak{G}_3 and \mathfrak{G}_5 , since the spaces $\mathcal{X}(\Phi)$ are computed using by not integral representations of Lemma 2.2 but orthogonal those of Lemma 2.1 and $\mathcal{N}(\xi \cdot \pi \cdot \xi^{-1}) = \xi \cdot \mathcal{N}(\pi) \cdot \xi^{-1}$, the matrix parts of $\mathcal{N}(\pi)$ become \mathbf{D}_6 generated by $R(\frac{\pi}{3})$ and a half turn H. (If π is of \mathfrak{G}_3 then H is the matrix of rotation of \mathbb{R}^3 about y-axis through 180°, and If π is of \mathfrak{G}_5 then H is the matrix of rotation of \mathbb{R}^3 about z-axis through 180°.) For the case of \mathfrak{B}_2 , the finite group \mathbb{Z}_2 acts on the circle \mathbf{T}^1 yielding a doubly covered circle $\widehat{\mathbf{T}}^1$. For completeness, we state the Teichmüller spaces of our groups. They appeared in [3] and [4]. THEOREM 4.4. Let M be a 3-dimensional flat manifold with $\pi_1(M) = \pi$. Then the Teichmüller spaces are as follow: - 1. For $\pi = \mathfrak{G}_1$, $\mathcal{T}(\pi; \mathcal{I}) = O(3) \backslash GL(3, \mathbb{R}) \approx \mathbb{R}^6$. - 2. For $\pi = \mathfrak{G}_2$, $\mathcal{T}(\pi; \mathcal{I}) = \mathbb{R}^+ \times (\backslash O(2)GL(2, \mathbb{R})) \approx \mathbb{R}^+ \times \mathbb{R}^3 \approx \mathbb{R}^4$. - 3. For $\pi = \mathfrak{G}_3$, \mathfrak{G}_4 , and \mathfrak{G}_5 , $\mathcal{T}(\pi; \mathcal{I}) = (\mathbb{R}^+)^2 \approx \mathbb{R}^2$. - 4. For $\pi = \mathfrak{G}_6$, $\mathcal{T}(\pi; \mathcal{I}) = (\mathbb{R}^*)^3/(\mathbb{Z}_2)^3 = (\mathbb{R}^+)^3 \approx \mathbb{R}^3$. - 5. For $\pi = \mathfrak{B}_1$ and \mathfrak{B}_2 , then $\mathcal{T}(\pi; \mathcal{I}) = (O(2) \setminus GL(2, \mathbb{R})) \times \mathbb{R}^+ \approx \mathbb{R}^3 \times \mathbb{R}^+ \approx \mathbb{R}^4$. - 6. For $\pi = \mathfrak{B}_3$ and \mathfrak{B}_4 , then $\mathcal{T}(\pi; \mathcal{I}) = (\mathbb{Z}_2)^3 \setminus (\mathbb{R}^*)^3 = (\mathbb{R}^+)^3 \approx \mathbb{R}^3$. Now we investigate the moduli spaces $\mathcal{M}(\pi; \mathcal{I})$'s. We will show that if the holonomy group Φ of a 3-dimensional Bieberbach group has order greater than two, then the moduli spaces are homeomorphic to the Euclidean spaces. The moduli space is homeomorphic to \mathbb{R}^2 if Φ is a cyclic group of order > 2 and \mathbb{R}^3 if $\Phi \cong \mathbb{Z} \times \mathbb{Z}$. THEOREM 4.5. Let M be a 3-dimensional flat manifold with $\pi_1(M) = \pi$. Then the moduli spaces are as follow: - 1. If π is of type \mathfrak{G}_1 , $\mathcal{M}(\pi;\mathcal{I}) = \mathrm{O}(3) \setminus \Big(\mathrm{GL}(3,\mathbb{R}) / \mathrm{GL}(3,\mathbb{Z}) \Big)$. - 2. If π is of type \mathfrak{G}_2 , $\mathcal{M}(\pi;\mathcal{I}) = \mathbb{R}^+ \times \Big(\operatorname{O}(2) \setminus (\operatorname{GL}(2,\mathbb{R})/\operatorname{GL}(2,\mathbb{Z})) \Big)$. - 3. If π is of type \mathfrak{G}_3 , \mathfrak{G}_4 or \mathfrak{G}_5 , $\mathcal{M}(\pi;\mathcal{I})=(\mathbb{R}^+)^2$. - 4. If π is of type \mathfrak{G}_6 , $\mathcal{M}(\pi; \mathcal{I}) = (\mathbb{R}^+)^3$. - 5. If π is of type \mathfrak{B}_1 or \mathfrak{B}_2 , $$\mathcal{M}(\pi;\mathcal{I}) = \Big(\operatorname{O}(2) \setminus \operatorname{GL}(2,\mathbb{R}) / \widehat{\operatorname{GL}}(2,\mathbb{R}) \Big) \times \mathbb{R}^+.$$ 6. If π is of type \mathfrak{B}_3 or \mathfrak{B}_4 , $\mathcal{M}(\pi;\mathcal{I}) = (\mathbb{R}^+)^3$. *Proof.* The moduli space is obtained by $$\mathcal{M}(\pi; \mathcal{I}) = \mathcal{I} \setminus (\mathbb{R}^3 \rtimes \mathcal{X}(\Phi)) / \mathcal{N}(\pi)$$ $$= O(3) \setminus \mathcal{X}(\Phi) / \mathcal{M},$$ where \mathcal{M} is the matrix part of $\mathcal{N}(\pi)$. # References - [1] H. Brown, R. Bülow, J. Neubüser, H. Wondratschek, and H. Zassenhaus, Crystal-lographic groups of four-dimensional space, Wiley-Interscience, New York, 1978. - [2] L. S. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, 1986. - [3] E. S. Kang and J. Y. Kim, Deformation spaces of 3-dimensional flat manifolds, Commun. Korean Math. Soc. 18 (2003), no. 1, 95-104. - [4] ______, Teichmüller spaces of nonorientable 3-dimensional flat manifolds, J. of Chungcheong Math. Soc. 15 (2002), no. 2, 57-66. - [5] R. Kulkarni, K. B. Lee, and F. Raymond, Deformation Spaces for Seifert Manifolds, Springer Lecture Notes in Mathematics, vol. 1167, 1986. - [6] P. Orlik, Seifert Manifolds, Lecture Notes in Math. Vol. 291, Spriger-Verlag, Berlin-New York, 1972. - [7] J. Wolf, Spaces of Constant Curvature, McGraw-Hill, New York, 1967. Department of Mathematics Korea University Chungnam 339-800, Korea E-mail: kes@korea.ac.kr