J. Korean Math. Soc. 55 (2018), No. 2, pp. 391-413
https://doi.org/10.4134/JKMS.j170252
pISSN: 0304-9914 / eISSN: 2234-3008

ON PSEUDO SEMI-PROJECTIVE SYMMETRIC MANIFOLDS

UbpAy CHAND DE AND PRADIP MAJHI

ABSTRACT. In this paper we introduce a new tensor named semi-projec-
tive curvature tensor which generalizes the projective curvature tensor.
First we deduce some basic geometric properties of semi-projective curva-
ture tensor. Then we study pseudo semi-projective symmetric manifolds
(PSPS)y which recover some known results of Chaki [5]. We provide
several interesting results. Among others we prove that in a (PSPS),
if the associated vector field p is a unit parallel vector field, then either
the manifold reduces to a pseudosymmetric manifold or pseudo projec-
tive symmetric manifold. Moreover we deal with semi-projectively flat
perfect fluid and dust fluid spacetimes respectively. As a consequence we
obtain some important theorems. Next we consider the decomposabil-
ity of (PSPS)y. Finally, we construct a non-trivial Lorentzian metric of
(PSPS)4.

1. Introduction

It is well known that symmetric spaces play an important role in differential
geometry. The study of locally symmetric Riemannian spaces was initiated in
the late twenties by Cartan [4], who, in particular, obtained a classification of
those spaces. Let (M™, g) be a Riemannian manifold, i.e., a manifold M with
the Riemannian metric g, and let V be the Levi-Civita connection of (M™, g).
A Riemannian manifold is called locally symmetric [4] if VR = 0, where R is
the Riemannian curvature tensor of (M™, g). This condition of local symmetry
is equivalent to the fact that at every point P € M, the local geodesic symmetry
F(P) is an isometry [25]. The class of locally symmetric Riemannian manifolds
is very natural generalization of the class of manifolds of constant curvature.
During the last five decades the notion of locally symmetric manifolds have
been weakened by many authors in several ways.
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A non-flat pseudo-Riemannian manifold (M™, g), (n > 2) is said to be a
pseudosymmetric [5] if its curvature tensor R of type (0,4) satisfies the condi-
tion

(VxR)(Y,Z,UV)=2AX)R(Y,Z,UV)+ AY)R(X, Z,U, V)
+AZ)R(Y, X, U V)+ AU)R(Y,Z,X,V)
+AWV)R(Y, Z,U, X),
where A is a non-zero 1-form, p is a vector field defined by
9(X, p) = A(X)

for all X, V denotes the operator of covariant differentiation with respect to the
metric tensor g and R(Y, Z,U,V) = g(R(Y, Z)U,V), where R is the curvature
tensor of type (1,3). The 1-form A is called the associated 1-form of the
manifold. If A =0, then the manifold reduces to a locally symmetric manifold
in the sense of Cartan. An n-dimensional pseudosymmetric manifold is denoted
by (PS),.

Gray [12] introduced the notion of cyclic parallel Ricci tensor and Codazzi
type of Ricci tensor. A pseudo-Riemannian manifold is said to satisfy cyclic
parallel Ricci tensor if its Ricci tensor S of type (0,2) is non-zero and satisfies
the condition

(1.1) (VxS)(Y, Z) + (Vy5)(Z, X) + (Vz9)(X,Y) = 0.

Again a pseudo-Riemannian manifold is said to satisfy Codazzi type of Ricci
tensor if its Ricci tensor S of type (0,2) is non-zero and satisfy the following
condition

(1.2) (VxS)(Y, 2) = (VyS)(X, 2).

General relativity flows from the Einstein equation which implies that the
energy-momentum tensor is of vanishing divergence. This requirement of the
energy-momentum tensor is satisfied if this tensor is covariant constant, that is,
VT = 0, where V denotes the operator of covariant differentiation with respect
to the metric tensor g. In the general theory of relativity, energy-momentum
tensor plays an important role and the condition on energy-momentum tensor
for a perfect fluid spacetime changes the nature of spacetime [28]. In a recent
paper [6] Chaki and Roy studied general relavistic spacetime with covariant
constant energy-momentum tensor. Recently, De and Velimirovié¢ [9] studied
spacetimes with semisymmetric energy-momentum tensor.

The spacetime of general relativity and cosmology is regarded as a con-
nected 4-dimensional semi-Riemannian manifold (M?, g) with Lorentzian met-
ric g with signature (—, +, +, +). The geometry of Lorentz manifold begins with
the study of causal character of vectors of the manifold. It is due to this causal-
ity that Lorentz manifold becomes a convenient choice for the study of general
relativity. Indeed by basing its study on Lorentzian manifold the general the-
ory of relativity opens the way to the study of global questions about it ([2],
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[8], [11], [13], [14]) and many others. Also several authors studied spacetimes
in different way such as ([9], [15], [19], [29]) and many others.
FEinstein’s field equation without cosmological constant is given by

(1.3) S(X,Y) - gg(X,Y) = KT (X,Y).

The equation (1.3) of Einstein imply that matter determines the geometry of
spacetime and conversely that the motion of matter is determined by the metric
tensor of the space which is not flat.

In general relativity the matter content of the spacetime is described by the
energy-momentum tensor. The matter content is assumed to be fluid having
density and pressure and possessing dynamical and kinematical quantities like
velocity, acceleration, vorticity, shear and expansion.

In a perfect fluid spacetime, the energy-momentum tensor T' of type (0, 2)
is of the form ([25]):

(1.4) T(X,Y) =pg(X,Y) + (o + p)A(X)A(Y),

where o and p are the energy density and the isotropic pressure respectively.
The velocity vector field p metrically equivalent to the non-zero 1-form A is
a time-like vector, that is, g(p,p) = —1. The fluid is called perfect because
of the absence of heat conduction terms and stress terms corresponding to
viscosity [13]. In addition, p and o are related by an equation of state governing
the particular sort of perfect fluid under consideration. In general, this is
an equation of the form p = p(o,Ty), where Ty is the absolute temperature.
However, we shall only be concerned with situations in which Tj is effectively
constant so that the equation of state reduces to p = p(¢). In this case, the
perfect fluid is called isentropic [13]. Moreover, if p = o, then the perfect fluid
is termed as stiff matter (see [28], page 66).

Apart from conformal curvature tensor, the projective curvature tensor is
another important tensor from the differential geometric point of view. Let M
be an n-dimensional pseudo-Riemannian manifold. If there exists a one-to-one
correspondence between each coordinate neighbourhood of M and a domain
in Euclidean space such that any geodesic of the pseudo-Riemannian manifold
corresponds to a straight line in the Euclidean space, then M is said to be
locally projectively flat. For n > 3, M is locally projectively flat if and only if
the well known Projective curvature tensor W vanishes.

Projective curvature tensor W in a pseudo-Riemannian manifold (M™,g)
(n > 2) is defined by [25]

(1.5) W(X,Y)Z = R(X,Y)Z — — S, 2)X — S(X, 2)Y],

n —

where R is the Riemannian curvature tensor of type (1,3) and S is the Ricci
tensor of type (0,2).
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In 2012, Mantica and Molinari [16] defined a generalized (0, 2) symmetric Z
tensor given by

(1.6) Z(X,Y)=8S(X,Y) + ¢g(X,Y),

where ¢ is an arbitrary scalar function. In Refs. ([19], [20] and [21]) various
properties of the Z tensor were pointed out.

Subsequently in 2013 Mantica and Suh [22] introduced a new curvature
tensor of type (1,3) in an n-dimensional Riemannian manifold (M™, g)(n > 2)
denoted by Q and defined by

v
(n—1)
where 1) is an arbitrary scalar function. Such a tensor Q is known as Q-
curvature tensor. The notion of Q-tensor is also suitable to reinterpret some
differential structures on a Riemannian manifold.

Motivated by the above studies in the present paper we define semi-projective
curvature tensor P of type (1,3) as follows:
¢

(1.8) PX.Y)U = R(X,Y)U — ——[S(Y,U)X ~ S(X.U)Y],

(1.7) X, Y)W =R(X,Y)W — [g(Y, W)X — g(X,W)Y],

where ¢ is an arbitrary scalar function. We prefer the name ‘semi-projective
curvature tensor’, since it is clear that for ¢ = 1, semi-projective curvature
tensor reduces to projective curvature tensor. If ¢ = 0, then semi-projective
curvature tensor and curvature tensor are equivalent. We can express (1.8) as
follows:

¢
19 P(X,Y,U,V) = R(X,Y,U,V) — o T

- S(X, U)g(Y, V)]a
where P(X,Y,U,V) = g(P(X,Y)U,V) and R(X,Y,U,V) = g(R(X,Y)U,V).
A non-flat pseudo-Riemannian manifold (M™, g), (n > 2) is said to be a pseudo
semi-projective symmetric manifold if the semi-projective curvature tensor P
of type (0,4) satisfies the condition

(VxP)Y,Z,UV)=2AX)P(Y,Z,UV)+ AY)P(X,Z,U,V)
+A2Z)PY, X, U V)+ AU)P(Y,Z,X,V)
+A(WV)P(Y,Z,U, X),
where A is a non-zero 1-form, p is a vector field defined by
9(X, p) = A(X).

[S(Y,U)g(X,V)

(1.10)

An n-dimensional pseudo semi-projective symmetric manifold is denoted by
(PSPS),, where P stands for pseudo, SP stands for semi-projective and S
stands for symmetric.

If ¢ = 0, then pseudo semi-projective symmetric manifold reduces to pseu-
dosymmetric manifolds introduced by Chaki [5]. Moreover if ¢ = 1, then
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pseudo semi-projective symmetric manifold includes pseudo projective sym-
metric manifolds (PW.S),, introduced by Chaki et al. [7]. The present paper
is organized as follows:

After introduction in Section 2, we study some basic geometric properties
of semi-projective curvature. Section 3 is devoted to study of curvature prop-
erty of (PSPS),. In Section 4, we study (PSPS), admitting Codazzi type
Ricei tensor. Sections 5 and 6 deal with Einstein (PSPS),, and (PSPS),, with
divP = 0 respectively. Section 7 is devoted to study of (PSPS), admitting
parallel vector field p. Among others we prove that in a (PSPS),, if the as-
sociated vector field p is a unit parallel vector field, then either the manifold
reduces to a pseudosymmetric manifold or pseudoprojective symmetric mani-
fold. Next in Section 8 we consider the decomposability of (PSPS),. Section
9 deals with semi-projectively flat spacetimes. Moreover in Sections 10 and
11 we consider semi-projectively flat perfect fluid and dust fluid spacetimes
respectively. As a consequence we obtain some important theorems. Finally,
we construct a non-trivial Lorentzian metric of (PSPS)4.

2. Preliminaries

Let S and r denote the Ricci tensor of type (0,2) and the scalar curvature
respectively and L denote the symmetric endomorphism of the tangent space
at each point corresponding to the Ricci tensor S, that is,

(2.1) g(LX,Y) = S(X,Y).

In this section, some formulas are derived, which will be useful to the study
of (PSPS),. Let {e;} be an orthonormal basis of the tangent space at each
point of the manifold where 1 < i < n. In a pseudo Riemannian manifold
the Ricci tensor S is defined by S(X,Y) = Y "  €g(R(X, e;)e;,Y), where
€ = g(e;,e;) = 1.

From (1.8) we can easily verify that the tensor P satisfies the following
properties:

) PX,Y)U = —P(Y, X)U,
i) PX,Y)U+PY,U)X +PU,X)Y =0.
Also from (1.8) we have

n n

(23) ZEiP(X,KCi,ﬁi) =0= Zeip(e’iaeiv U7V)7

i=1 i=1

(2.2)

(2.4) Z €iP(e;,Y,U,e;) = (1 — ¢)S(Y,U) = P1(Y,U) (say),
¢ ré

P(X,e5,e;,V)=(1+—)S(X,V) - ——g(X
i;ez (X,eiei,V) = (14 —)S(X, V) = —=g(X,V),
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(2.5) = Py(X,V), (say)

where r = 31" | €;5S(e;, €;) is the scalar curvature and €; = g(e;, e;) = £1.
From (1.8) and (2.2) it follows that

() P(X.Y.U.V)=—P(Y.X,U,V),

(ii) P(X,Y,UV)# P(X,Y,V,U),
) P(X,Y,U,V)#P(UV,X,Y),

(iv) P(X,Y,UV)+P(Y,UX,V)+PUX,Y,V)=0,

where P(X,Y,U,V) = g(P(X,Y)U,V).

(26) (iii

Proposition 2.1. A pseudo-Riemannian manifold is semi-projectively flat if
and only if it is of constant curvature provided the scalar curvature is non-zero.

Proof. The semi-projective curvature tensor is given by

¢
n—1)
(2.7) =S(X,U)g(Y, V)],
where ¢ is an arbitrary scalar function. If semi-projective curvature tensor
vanishes, then

P(X,Y,U,V) = R(X?KU7V) -

[S(Y,U)g(X,V)

28 RELY.OV) = CESISMUGY) = S DV
Taking a frame field and contracting Y and U in (2.8), we have
ro
2.9 S(X, V)= ——2 _4(X,V).
(2.9 (X.V) = = 9X.V)
Again contracting X and V in (2.9), we get
(2.10) r(n—1)(¢ —1)=0.

Therefore either r = 0 or ¢ = 1. For r = 0, the semi-projective curvature tensor
P is equivalent to the curvature tensor R. Also for ¢ = 1, the semi-projective
curvature tensor P is equivalent to the projective curvature tensor W. Conse-
quently semi-projectively flatness and projectively flatness are equivalent.

It is known that [25] a pseudo-Riemannian manifold is projectively flat if
and only if it is space of constant curvature. Therefore a pseudo-Riemannian
manifold is semi-projectively flat if and only if it is a manifold of constant
curvature provided the scalar curvature is non-zero. This completes the proof.

O

Proposition 2.2. If the semi-projective curvature tensor is symmetric in the
sense of Cartan, then the manifold reduces to a Ricci recurrent manifold.

Proof. The semi-projective curvature tensor is given by

¢

(2.11) WK@UZMK@U—@iﬁ

[S(Z,U)Y —S(Y,U)Z],
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where ¢ is an arbitrary scalar function. Differentiating (2.11) covariantly we
get

dé(X)

(VxP)Y. U = (VxR)(Y, 2)U = 0755

[S(Z,U)Y — S(Y,U)Z]

(2.12) (VxS)(Z,U)Y = (VxS)(Y.U)Z].

__¢

(n—1)
By hypothesis, semi-projective curvature tensor is symmetric. Hence from the
above equation

(VxR)Y. 2)U = TN S(2.0)Y - 8(v.0)2]
(2.13) i 0 SU(VxS)Z.0)Y ~ (VxS)(.0)2)

Contracting Y in (2.13) we get
do(X)

(VxS)(ZU) = (755 (n = DS(Z.0)
(2.14) + (nqz_ﬁ 0 (n—1)(VxS)(Z,U).
This implies
(2.15) (1-9)(VxS)(Z,U)=dp(X)S(Z,U).
Again contracting Z and U in the above equation we get
(2.16) (1=9¢)dr(X) =do(X)r.
It follows that
(2.17) (Xlogr) = d1¢£)i§)
From (2.15) and (2.17) it follows that
(2.18) (VxS)(Z,U) = (Xlogr)S(Z,U).
This completes the proof. O

Proposition 2.3. For a semi-projective curvature tensor divP = 0 and divW
= 0 are equivalent provided ¢ is constant.

Proof. The semi-projective curvature tensor is given by

¢
(n—1)
where ¢ is an arbitrary scalar function. Differentiating (2.11) covariantly we
get

(2.19) P(Y,Z)U = R(Y, Z)U —

[S(2,0)Y = S5(Y,U)Z],

do(X)
(n—1)

(VxP)(Y,2)U = (VxR)(Y, 2)U — [S(Z,U)Y = S(Y,U)Z]
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¢
(n—1)

(2.20) - [(Vx5)(Z,U)Y = (VxS)(Y,U)Z].

It follows that

(divP) (V. 2)U = (divR) (Y. Z)U ~ =5 S(ZU)Y0) = S(V.0)(Z9)
(2.21) - (O S)ZU) - (V2S) YD)

Making use of (divR)(Y, Z)U = (VyS)(Z,U) — (VzS)(Y,U), the above equa-
tion implies

(@P)(YV.2)0 = (1 = L) (T3 S)(Z.U) = (V2S)(V.U)
(2.22) - I SE DY) - SV
Now if ¢ is constant, then the above equation reduces to
(223)  (divP)(Y, Z2)U = (1 — (nf Dy S)Z0) ~ (V28)(V,0)]
This implies
(2.24) (divP)(Y, Z)U = W(dwwxx Z)U.
This completes the proof. O

3. Some curvature properties of (PSPS),(n > 2)

In this section we prove that in a (PSPS),(n > 2), the semi-projective
curvature tensor P(Y, Z, U, V) satisfies Bianchi’s 2nd identity, that is,

(3.1) (VxP)Y,zZ,UV)+ (VyP)(Z,X,UV)+(VzP)X,Y,U V) =0.
In view of (1.9), (1.10) and (3.1) we get
(VxP)Y,Z,UV)+ (VyP)(Z,X,UV)+ (VzP)(X,Y,U, V)
=AO[PY,Z,X,V)+ P(Z,X,Y,V)+ P(X,Y, Z, V)]
(3.2) + A(V)|P(Y, Z,U,X) + P(Z,X,U,Y) + P(X,Y,U, Z)].
Using Bianchi’s 1st identity (2.6) in (3.2) we have
(VxP)(Y,Z,UV)+ (VyP)(Z,X,U, V) + (VzP)(X,Y,U, V)
= AW)[S(Z, X)g(Y, V) = S(Y, X)g(Z,V) + S(X,Y)g(Z, V)
¢

- S(ZvY)g(va) +S(K Z)g(X,V) - S(X,Z)Q(Y,V)](*n_ 1

(33) =0.

)

Thus we can state the following:
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Theorem 3.1. The semi-projective curvature tensor in (PSPS),(n > 2) sat-
isfies Bianchi’s 2nd identity.

4. A (PSPS),(n > 2) admitting Codazzi type of Ricci tensor

In view of (1.9) we have
(VxP)(Y,2,U,V) + (Vy P)(Z, X,U,V) + (VzP)(X,Y,U,V)

= (xS UV V) — (VxS Y, U)g(Z,V)

n—1
+ (VYS)(Xa U)Q(Z’ V) - (vYS)(Z7 U)g(X, V)
+ (VZS)(Ya U)g(Xv V) - (VZS)(Xa U)g(Yv V)

- Xz, 0)90v.) - S 0)e(2 1)
- 09 150x,0)9(2,V) - S(2.V)g(X. V)]

n—1

wn - e v) - s v

Assume that (PSPS),, admits Codazzi type of Ricci tensor, then from (4.1)
we have

(VxP)(Y, Z,UV)+ (VyP)(Z X,U, V) + (VzP)(X,Y,U,V)
(X9)

= = n—1 [S(Za U)g(Y? V) - S(K U)g(Zv V)]
- O 09(2.v) - S(2.0)g(x. V)]
@)~ Bie g v) - s e v
Using (3.3) in (4.2) we have
~ 52, 0)9(v,v) — 5, 0)9(2. V)
- W5, 0)9(2.v) - 52, 09X, V)]
(4.9 -~ B s 01, v) — S(X, 0)g(v V)] =0
Contracting Y and V in (4.3) yields
(4.4) (X¢)S(2,U) = (Z¢)S(X, U).
Again contracting Z and U in (4.4) yields
(4.5) (X¢p)r = g(LX, gradg).

It follows that
(4.6) S(grad¢, X) = rg(gradeo, X)
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for all X. This implies that r is an eigenvalue of S corresponding to the
eigenvector grad¢. Thus we conclude the following:

Theorem 4.1. For a (PSPS), admitting Codazzi type of Ricci tensor, r is
an eigenvalue of the Ricci tensor S corresponding to the eigenvector gradg.

If ¢ is constant, then from (4.1) and Bianchi’s 2nd identity yields
(VxS)(Z,U)g(Y, V) = (VxS)(Y,U)g(Z,V)

(4.7) H(V28)(Y,U)g(X, V) — (V78)(X, U)g(Y, V) = 0.
Contracting Y and V in (4.7) yields
(4.8) (VxS)(Z,U) = (VzS)(X,U).

Therefore we are in a position to state the following:

Corollary 4.1. In a (PSPS),, the Ricci tensor is of Codazzi type provided ¢
s constant.

Again
(4.9) P(Z,U)=(1-¢)S(Z,U).
Contracting Z and U we have
(4.10) p1=(1—¢)r

In (PSPS),, the semi-projective curvature tensor satisfies the following:
(VxP)Y,Z,UV)=2AX)P(Y,Z,UV)+ AY)P(X,Z,UYV)
(4.11) +AZ)P(Y,X,U,V)+ AU)P(Y,Z,X,V)
+AV)P(Y,Z,U, X),
where A is a non-zero 1-form, p is a vector field defined by
9(X,p) = A(X).
Contracting Y and V in (4.11) we have
(VxP)(Z,U) =2A(X)P,(Z,U) + P(X, Z,U, p)

(4.12) + A(Z)Pi(X,U) + A(U)P,(Z,X) + P(p, Z,U, X).
Again contracting Z and U in (4.12) we have
(4.13) Vxp1 = 2A(X)py + 2P1(X, p) + 2Ps(X, p).

Therefore (4.10) and (4.13) yields
(414) (1= @)dr(X) — do(X)r = 2A(X)(1 — )7 + 2P, (X, p) + 2P5(X, p).
Again using (4.9) and (2.5) in (4.14) we have
(4.15)
ro ¢

(1= 0)dr(X) = do(X)r = [2(1 = O)r — — - A(X) +2[2— 6+ ——|S(X, ).
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It follows that
(4.16)

(1= ¢)dr(X) —do(X)r = [2(1 = ¢)r —
Thus we can state the following:

Theorem 4.2. In a (PSPS),(n > 2) the following identity holds:

(1 - §)dr(X) — do(X)r = [2(1 — ¢)r — nr—_(bl}A(X) +22 ¢+ %]A(LX).

¢

n—1

JA(X) +2[2— ¢+ %]A(LX).

In particular, let us assume that ¢ = 0, then from Theorem 4.2 we have
(4.17) dr(X) =2A(X)r +4A(LX).
Thus we recover the Chaki’s result [5] as follows:
Corollary 4.2. In a (PS), the following identity holds:
dr(X) =2A(X)r +4A(LX).
The above result was proved by Chaki [5].

5. Einstein (PSPS),(n > 2)

In this section we consider Einstein (PSPS),(n > 2). Since for every Ein-
stein manifold the scalar curvature r is constant, hence for Einstein (PSPS),,
(n > 2) we have dr(X) = 0. Therefore from Theorem 4.2 we have

(5.1) —dp(X)r = 2A(X)(1 — ¢)r + 4(1 — $)A(LX).

Since in an Einstein manifold (M™, g), we have S(X,Y) = £g(X,Y), (5.1) can
be written as

(5.2) —dp(X)r =2(1+ %)(1 — ) A(X)r.

If ¢ is a constant, then r = 0, as A(X) # 0. Therefore we can state the

following:

Theorem 5.1. An Einstein (PSPS),(n > 2) is of zero scalar curvature pro-
vided ¢ is constant.

If possible, let (PSPS),(n > 2) be a space of constant curvature. Then we
have

(5.3) R(X.Y)Z = k[g(Y, 2)X — (X, Z)Y],
where k is a constant. Contracting X in (5.3), we have
(5.4) S(Y, 2) = k(n - 1)g(Y, 2).
Again contracting Y, Z in (5.4), we have

(5.5) r=k(n—1)n.
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Using (5.5) in (5.3) yields

r
5.6 R(X,) YY) = ——
(56) (X¥)Z = s
Since every space of constant curvature is an Einstein manifold, then from
Theorem 5.1 we have r = 0. Hence from (5.6) it follows that R(X,Y)Z = 0,
which is in admissible by definitions. This leads to the following corollary of
the above theorem under the assumption ¢ is constant:

9(Y, 2)X - g(X, 2)Y].

Corollary 5.1. A (PSPS),(n > 2) can not be of constant curvature.

6. (PSPS),(n > 2) with divP =0
For (PSPS),(n > 2), we have
(VxP)Y,2)U =2A(X)YP(Y,Z2)U + A(Y)P(X, Z)U
(6.1) +AZ)P(Y,X)U+ AU)YP(Y,Z)X
+9(P(Y, 2)U, X)p,
where A is a non-zero 1-form, p is a vector field defined by
9(X, p) = A(X).
Therefore
(divP)(Y, 2)U = Y g((Ve,P)(Y, Z)U, €5),

= Z{QA(ei)g(P(Y, Z)U,ei) + A(Y)g(P(ei, Z)U, e)

T+ A(Z)g(PY, U, e5) + AU)g(P(Y; Z)es, )
T g(P(Y, Z)U, ei)bg(p, )

(6.2) =3APY,2)U)+ A(Y)P(Z,U) — A(Z)PL(Y,V).

Therefore (divP)(Y, Z)U = 0 implies

(6.3) BA(P(Y,2)U)+ A(Y)P(Z,U) — A(Z)P,(Y,V) =0.

Contracting Z and U we get

(6.4) 3P (Y,p) + (1= O)rA(Y) — Pi(Y, p) = 0.

Therefore using (2.4), (2.5) in (6.4) we have

Bor —(n =1 = ¢)r]

(6.5) S0 = BT 9) (- D1~ 9]

9(Y,p).

It follows that
(6.6) S(Y,p) = \g(Y, p),
[Bor—(n—1)(1—¢)r]

n—1+¢)—(n—1)(1—¢
a position to state the following:

where \ = El @ scalar. In view of the above results we are
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Theorem 6.1. For a (PSPS),(n > 2) with divP =0, X is an eigenvalue of
the Ricci tensor S corresponding to the eigenvector p.

7. (PSPS),(n > 2) admitting a parallel vector field

In this section we obtain a sufficient condition for a (PSPS), to be a (PS),
or (PWS),. For this we require a notion of parallel vector field defined as
follows:

A vector field V is said to parallel [10] if

(7.1) VxV =0.

We now suppose that a (PSPS),, admitting a unit parallel vector field p, that
is,

(7.2) Vxp=0.

Applying Ricci identity to (7.2) we have

(7.3) R(X,Y)p = 0.
Contracting Y in (7.3) we have

(7.4) S(Y,p) =0.
Therefore (2.4) and (7.4) yield

(7.5) PUX,p) = (1- )S(X, p) = 0.

Again from definition of (PSPS),, we have
(VxP)(Y,Z,UV) = 2A(X)P(Y, Z,U,V) + AY)P(X, Z,U,V)
(7.6) + A(Z)P(Y,X,UV)+ A{U)P(Y, Z,X,V)
+ AWV)P(Y,Z,U, X),
where A is a non-zero 1-form, p is a vector field defined by
9(X, p) = A(X).
Therefore

n

(VxP)(Z,U) = Y (VxP)(es, Z,U,e;)

i=1
=Y {2A(X)P(e;, Z,U,e;) + Ale;) P(X, Z, U, e;)
=1

+ A(Z)P(e;, X,U,e;) + A(U)P(e;, Z, X, €;)
+ A(e;)P(e;, Z,U, X))},
=2A(X)P(Z,U)+ A(Z)P (X, U)+ A(U)P1(Z,X)
(7.7 +P(X,Z,U,p)+ P(p, Z,U, X).
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Therefore substituting U = p in (7.7) we get

(VxP)(Z,p) = 2A(X)Py(Z, p) + AZ)PL(X, p) + A(p) P Z, X)
+P(X,Z,p,p)+ P(p, Z,p, X).

Using P(X, Z,p,p) =0= P(p,Z,p, X) in (7.8) we have

(7.8)

(7.9) (VxP)(Z,p) = A(p)Pr(Z, X),
Using (7.5) in the above equation we get

(7.10) P (Z,X)=0.

It follows that

(7.11) 1-9¢)S(Z,X)=0.

Therefore either ¢ = 1 or S(X,Z) = 0. For ¢ = 1, (PSPS),, reduces to pseudo
projective symmetric manifolds, that is, (PWS),. Also for S = 0, (PSPS),
reduces to pseudosymmetric manifolds, that is, (P.S),. Therefore we can state
the following:

Theorem 7.1. In a (PSPS), if the associated vector field p is a unit parallel
vector field, then either the manifold reduces to a pseudosymmetric manifold
or pseudo projective symmetric manifold.

8. Decomposable (PSPS),

A pseudo-Riemannian manifold (M",g) is said to be decomposable or a
product manifold ([10]) if it can be expressed as MY x My~ ? for 2 < p < (n—2),
that is, in some coordinate neighbourhood of the pseudo-Riemannian manifold
(M™, g), the metric can be expressed as

(8.1) ds? = gijdxidxj = Japdadz® + g(’;ﬁdasad:cﬁ,

where g, are functions of z',z2, ..., 2?7 denoted by Z and g, 5 are functions of

Pt xP+2 2™ denoted by z*; a,b,c, ... run from 1 to p and a, 3,7, ... run
from p+ 1 to n.

The two parts of (8.1) are the metrics of MY (p > 2) and My *(n —p > 2)
which are called the components of the decomposable manifold M"™ = M7} x
My P(2<p<n-2).

Let (M™,g) be a pseudo-Riemannian manifold such that M} (p > 2) and
M3 P(n —p > 2) are two components of this manifold. Here throughout this
section each object denoted by a ‘bar’ is assumed to be from M; and each
object denoted by ‘star’ is assumed to be from Ms.

Let X,Y,Z,U,V € x(M;) and X*,Y*, Z*,U*,V* € x(Ms). Then in a
decomposable Riemannian manifold M"™ = MY x M3 "(2 < p < n —2), the
following relations hold [10]:

R(X*,Y,Z,U)=0=R(X,Y*, Z,U*) = R(X,Y*, Z*,U*"),

(Vx«R)(Y,Z,U,V)=0= (VgR)(Y,Z*, U, V*) = (Vx-R)(Y,Z*,U,V*),

R(X7Y7Z’U): R X 230)7 R(X*?Y*’Z*7U*):R*(X*7Y*7Z*5U*)7

0
R(X,Y,
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S(X,YV) = 8(X,V); S(X*,YV*) = §*(X*,V*),

(VxS)(Y,Z2) = (VS)(Y, 2); (Vx-S)(Y*, Z*) = (V%.9)(Y*, Z%),
and r = 7 4+ r*, where r,7 and r* are scalar curvatures of M, M; and M,
respectively.

Let us consider a pseudo-Riemannian manifold (M™, g), which is a decom-
posable (PSPS),.

Then M™ = M} x My P(2<p<n-2).

Now from (1.8), we get

P(Y*,Z,U,V)=0=P(Y,Z*U*V*)

(®.2) =P(Y,Z*,U,V)=P(Y,Z,U"V),
(8.3) PY*,Z*U,V)=0=P(Y,Z,U" V"),
and
(8.4) P(Y*, Z,U* V) = (ngz_s ) [S(Y*, U*)g(Z,V)].
Again from (1.10), we get
(Vo P)(V,2,0,V) = 2A(X)P(Y, 2,0, V) + AV)P(X, 2,0, V)
(8.5) + A(Z2)P(Y,X,U,V)+AU)P(Y,Z,X,V)
+AWV)P(Y,Z,U, X).
Replacing X by X* in (8.5) we get
(8.6) 2A(X*)P(Y,Z,U,V) =0,
(8.7) AVHP(Y,Z,U,X)=0.
Similarly, we have
(8.8) AYHP(X,Z,U,V) =0,
(8.9) AUNPY,Z,X,V)=0.
Now putting X = X*, Y = Y* in (8.5) we get
(8.10) BAU)S(Y*, X*)g(Z, V) — A(V)S(Z,U)g(Y*, X*)] = 0.
Similarly, putting X = X*, U = U* in (8.5) we obtain
(8.11) P[AY)S(X*,U*)g(Z,V) — A(Z)S(X*,U*)g(Y,V)] = 0.

Also from (1.10), we obtain
(Vx-P)Y™*,Z*, U, V")

= 2A(X*)P(Y*, 2%, U*, V*) + A(Y*)P(X*, Z*, U*, V")
+AZ")PY*, X" U, V) + AUNPY ™", Z*, X", V")
+AVHP(Y ™, Z*,U", X™).

(8.12)
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From (8.12), it follows that

(8.13) AX)P(Y*, Z*,U*,V*) =0,
(8.14) AY)P(X*,Z*,U*,V*) =0,
(8.15) A(Z)P(Y*, X", U", V*) =0,
(8.16) A@)P(Y*,Z*, X", V*) =0,
(8.17) A(V)P(Y*, 2", U*, X*) = 0.

From equations (8.6)-(8.9) we have two cases, namely,
I) A=0on Mo,
IT) M, is semi-projectively flat.
At first we consider the case (I). Then from (8.12), it follows that

(Vx«P)(Y*, Z*,U*,V*) =0,
that is,
(Vx~R)(Y*, Z*,U*,V*)

(818)  (X"9)
(n—1)

[S(Z7,U")g(Y™, V) = S(Y™,U")g(Z", V") = 0.

Setting Z* = U* = ¢, in (8.18) and taking summation over o, p+ 1 < a < m,
we obtain

(X™9)
n—1

since r = 7 + r* and if we take (X*¢) = 0 in My, then from (8.19) we have
(Vx-S)(Y*, V*) = 0.

(8.19) (Vx-9) (Y, V") - [rrg(Y™", V") = S(Y*, V)] =0,

This implies that M5 is Ricci symmetric if ¢ is constant in Ms.
For case (II). Since M; is semi-projectively flat, therefore it is a manifold of
constant curvature. Hence we can state the following;:

Theorem 8.1. Let (M™,g) be a pseudo-Riemannian manifold such that M =
MY x M3 P (2<p<n-—2). If Mis a (PSPS),, then the following statements
hold:

(I) In the case of A =0 on Ma, the manifold Ms is Ricci symmetric, provided
¢ = constant in Ms.

(IT1) When M, is semi-projectively flat, then My is a manifold of constant
curvature.

Similarly, from equations (8.13)-(8.17), we obtain:
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Theorem 8.2. Let (M™,qg) be a pseudo-Riemannian manifold such that M =
MV x M3 7P (2<p<n—2). If Mis a (PSPS),, then the following statements
hold:

(I) In the case of A =0 on My, the manifold M; is Ricci symmetric, provided
¢ = constant in M;.

(IT1) When My is semi-projectively flat, then My is a manifold of constant
curvature.

If possible, let My be an Einstein manifold, then we have

*

* * r * *
It follows that
(8.21) (TrS) V) = 5 g, v,
Therefore from (8.19), (8.20) and (8.21) we have

1 Kk 7‘* n—p-— 2 * * *
(8.22) m[(x rt) — %(X P)g(Y*,V*) =0.
Since g(Y*,V*) # 0 on Ms, then from (8.22) we have
*, r*(n — p— 2 *

Thus from (8.23) one can conclude that if M; is Einstein, then r* is constant if
and only if ¢ is constant. But for an n-dimensional (n > 2) Einstein manifold
the scalar curvature is constant. Hence if M is Einstein, then ¢ is constant.
Thus we are in a position to state the following:

Theorem 8.3. Let (M",g) be a pseudo-Riemannian manifold such that M =
MY x M7P(2<p<n-—=2).If Misa(PSPS), and M is Einstein, then ¢
s constant in Ms.

Similarly, equations (8.13)-(8.17) we obtain:

Theorem 8.4. Let (M™,g) be a pseudo-Riemannian manifold such that M =
MY x My7P(2<p<n-=2).If Misa(PSPS), and M, is Einstein, then ¢
is constant in M.

9. Semi-projectively flat spacetimes

From Proposition 2.1, it follows that a spacetime (M4, g) is semi-projectively
flat if and only if it is of constant curvature provided the scalar curvature is
non-zero. In this case in view of (2.9) the Ricci tensor is of the form

(9.1) S(X,Y) = J9(X.Y),
and

R(X,Y)Z =
(X,Y)Z =

[9(Y, 2)X — g(X, Z)Y].
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Thus we conclude the following:

Theorem 9.1. A semi-projectively flat spacetime with non-zero scalar curva-
ture is a space of constant curvature.

Remark. The space of constant curvature play a significant role in cosmol-
ogy. The simplest cosmological model is obtained by making the assumption
that the universe is isotropic and homogeneous. This is known as cosmological
principle. This principle, when translated into the language of Differential ge-
ometry, asserts that the three dimensional position space is a space of maximal
symmetry [28], that is, a space of constant curvature whose curvature depends
upon time. The cosmological solution of Einstein equations which contain a
three dimensional spacelike surface of a constant curvature are the Robertson-
Walker metrics, while four dimensional space of constant curvature is the de
Sitter model of the universe ([24], [28]).

Let us consider a spacetime satisfying the Einstein’s field equation with
cosmological constant

(9.2) S(X,Y) - gg(X, Y) + \g(X,Y) = kT(X,Y),

where S and r denote the Ricci tensor and scalar curvature respectively. A is
the cosmological constant,  is the gravitational constant and 7'(X,Y) is the
energy-momentum tensor.
Using (9.1) and (9.2) we obtain
1 r

(9.3) T(X,Y) = ~[A = 7J9(X.Y).
Taking covariant derivative of (9.3) we get

1
(9.4) (VAT)(X,Y) = ——dr(Z)g(X.Y).

Since semi-projectively flat spacetime is Einstein, therefore the scalar curvature
r is constant. Hence

(9.5) dr(X)=0
for all X.
Equations (9.4) and (9.5) together yield
(VzT)(X,Y) =0.
Thus we can state the following:

Theorem 9.2. In a semi-projectively flat spacetime with non-zero scalar curva-
ture satisfying Finstein’s field equation with cosmological constant, the energy-
momentum tensor ts covariant constant.

In [6] Chaki et al. proved that in a general relativistic space time VI = 0
implies V.S = 0. Conversely if V.S = 0, it is clear that in our case VI = 0.
Thus we can state the following:
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Corollary 9.1. In a semi-projectively flat spacetime with non-zero scalar cur-
vature VT =0 and V.S = 0 are equivalent.

10. Semi-projectively flat perfect fluid spacetimes

Now we consider the matter distribution is perfect fluid whose velocity vector
field is the vector field p corresponding to the 1-form A of the spacetime.
Therefore the energy-momentum tensor T' of type (0, 2) is of the form ([25]):

(10.1) T(X,Y)=pg(X,Y)+ (6 +p)A(X)A(Y),

where ¢ and p are the energy density and the isotropic pressure respectively.
Hence from the Einstein’s field equation we get

(10.2) S(XY) = 59(X,Y) = rlpg(X,Y) + (0 + P AX)AY ).
Contracting X and Y in the above equation we have
(10.3) r = k(o — 3p).
Using (2.9) in (10.2) we have
T r
(104)  3"g(X.Y) = oY) = klpg(X.Y) + o + PAC)AY )]
Putting Y = p in (10.4) and making use of A(X) # 0, we have
9+ ¢
10. _ 9t+e
(10.5) r+ Ko 2(3+¢)r
Also equations (10.3) and (10.5) yield
(10.6) (¢+1)o = (¢ —3)p.

Thus in view of the above we can state the following:

Theorem 10.1. In a semi-projectively flat perfect fluid spacetime with non-
zero scalar curvature obeying Finstein’s field equation without cosmological con-
stant the energy density and the isotropic pressure are related by (10.6).

Remark 1. In a semi-projectively flat spacetime with non-zero scalar curvature,
¢ is equal to 1. Therefore the equation (10.6) reduces to o = —p. It follows
that p = —o, that is, of the form p = p(c). Hence we conclude that the fluid
is isentropic [13].

Remark 2. In perfect fluid spacetime the equation of state parameter w = £ =

—1. The dark energy is usually described by an equation of stateparameter
w = £, the ratio of the spatially homogeneous dark energy pressure p to its
energy density p. A value w < —% is required for cosmic acceleration. The
simplest explanation for dark energy is a cosmological constant, for which w =

~1[3].
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Now we consider spacetimes with divP = 0 with the additional condition
¢ is constant. Then from equation (2.22) it follows that the Ricci tensor is of
Codazzi type. In [26] Chaki and Ray proved the following:

Theorem 10.2. If the Ricci tensor of the perfect fluid spacetime is a Codazzi
tensor, then the velocity vector field U of the fluid is hypersurface orthogonal
and energy density is constant over a hypersurface orthogonal to U. Further
the fluid has vanishing vorticity and vanishing shear.

If the Ricci tensor is Codazzi then the divergence of the conformal curva-
ture tensor vanishes. In [18] (see also [23]) the authors showed that a perfect
fluid with closed fluid velocity and vanishing conformal curvature tensor is a
generalized Robertson-walker spacetime, i.e., a space-time endowed with the
metric

ds? = —dt* + f(t)*Gapdr™da’,
being §og is the metric tensor of a n — 1 dimensional Riemannian manifold.
For the most recent review on generalized Robertson-Walker space-times see
the survey [17] and references therein. So we have

Theorem 10.3. A perfect fluid space-time with divP = 0 and ¢ constant is a
generalized Robertson-walker space-time.

It has been proved by Barnes [1] if a perfect fluid spacetimes is vorticity free
and shear-free and velocity vector field U of the fluid is hypersurface orthogonal
and energy density is constant over a hyper surface orthogonal to U, then the
possible local cosmological structures of the spacetime are of Petrov type I, D
or O (conformally flat). Thus we can state the following:

Theorem 10.4. If the semi-projective curvature tensor is divergence free in
a perfect fluid spacetime with ¢p=constant, then the possible local cosmological
structures of the spacetime are of Petrov type I, D or O (conformally flat).

11. Semi-projectively flat dust fluid spacetime
In a dust or pressureless fluid spacetime, the energy-momentum tensor is of
the form [27]
(11.1) T(X,Y)=cA(X)A®Y),
where o is the energy density of the dust-like matter and A is a non-zero 1-form
such that g(X,p) = A(X) for all X, A being the velocity vector field of the

flow, that is, g(p, p) = —1.
Using (1.4) and (11.1) we obtain

K0 T
11.2 X,)Y)— —g(X,Y) = cA(X)A(Y).
(11.2) F9(XY) = F9(X.Y) = RA(X)A(Y)
Taking a frame field and contracting over X and Y leads to
(11.3) P

319 2



ON PSEUDO SEMI-PROJECTIVE SYMMETRIC MANIFOLDS 411

Again, if we put X =Y = p in (11.2), we get
ro r

— =) = ko.

3+¢ 2

Thus combining the equations (11.3) and (11.4), we finally obtain that
(11.5) o=0.

Thus from (11.1) and (11.5) we conclude that

T(X,Y)=0.

(11.4) —(

This means that the spacetime is devoid of matter. Thus we can state the
following:

Theorem 11.1. A semi-projectively flat dust fluid spacetime satisfying Ein-
stein’s field equation without cosmological constant is vacuum.

12. Example of a (PSPS),

We consider a Lorentzian manifold (M*,g) endowed with the Lorentzian
metric g given by

(12.1) ds? = gijda'da? = (da')? + (2)2(dz?)? + (22)*(d2®)? — (da?)?,

where 4, j = 1,2,3,4 and 2!, 22 are non zero.

The only non-vanishing components of the Christoffel symbols, the curvature
tensor and the Ricci tensor are

2
x 1 1
Il,=—a', T2, =———— T2, =— T35, =—
22 ’ 33 (1,1)2 ’ 12 2l ’ 23 72 ’
2
x 1
Rizzp = ——, Si2=———.
xl’ rla2

We shall now show that this M* is a pseudo semi-projective symmetric space-
time i.e., it satisfies the defining relation (1.10).
In this example we consider the scalar ¢ as follows:

b= %, for non-zero components of the curvature tensor
0, for vanishing components of the curvature tensor.

Then only the non vanishing component for semi-projective curvature tensor
and its covarient derivatives are given by

x? 222
Pigzo = ——, Pizs2n = 7150 Piss22 = —3-

We choose the 1-forms as follows:

—3%, for i=1
Ai(z) = —5p=, for i=2

0, for 1 =3,4
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at any point z € M. In our (M4, g), (1.10) reduces with these 1-forms to the
following equations:

(12.2) Pi3321 = 2A1 Pigga + A1 Pissa + AsPrisa + AsPisi2 + A P33y
and
(12.3) Pi3329 = 2A5Pi332 + A1 Pagsa + A3 Piaga + AsPisaa + AaPisso

It can be easily verified that the equations (12.2) and (12.3) are true.
So, the manifold under consideration is a pseudo semi-projective symmetric
spacetime, that is, (PSPS),.

Thus we can state the following:

Theorem 12.1. Let (R%, g) be a 4-dimensional Lorentzian manifold with the
Lorentzian metric g given by

ds? = g;jda'da? = (da')? + (21)2(dz?)? + (22)*(d2®)? — (da?)?,

4

where i, j = 1,2,3,4 and ', 2% are non zero. Then (R*,g) is a pseudo semi-

projective symmetric spacetime.
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