• Title/Summary/Keyword: extending modules

Search Result 31, Processing Time 0.024 seconds

On Generalizations of Extending Modules

  • Karabacak, Fatih
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.557-562
    • /
    • 2009
  • A module M is said to be SIP-extending if the intersection of every pair of direct summands is essential in a direct summand of M. SIP-extending modules are a proper generalization of both SIP-modules and extending modules. Every direct summand of an SIP-module is an SIP-module just as a direct summand of an extending module is extending. While it is known that a direct sum of SIP-extending modules is not necessarily SIP-extending, the question about direct summands of an SIP-extending module to be SIP-extending remains open. In this study, we show that a direct summand of an SIP-extending module inherits this property under some conditions. Some related results are included about $C_{11}$ and SIP-modules.

On Generalized FI-extending Modules

  • Yucel, Canan Celep
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.45-51
    • /
    • 2020
  • A module M is called FI-extending if every fully invariant submodule of M is essential in a direct summand of M. In this work, we define a module M to be generalized FI-extending (GFI-extending) if for any fully invariant submodule N of M, there exists a direct summand D of M such that N ≤ D and that D/N is singular. The classes of FI-extending modules and singular modules are properly contained in the class of GFI-extending modules. We first develop basic properties of this newly defined class of modules in the general module setting. Then, the GFI-extending property is shown to carry over to matrix rings. Finally, we show that the class of GFI-extending modules is closed under direct sums but not under direct summands. However, it is proved that direct summands are GFI-extending under certain restrictions.

On Strongly Extending Modules

  • Atani, S. Ebrahimi;Khoramdel, M.;Hesari, S. Dolati Pish
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.2
    • /
    • pp.237-247
    • /
    • 2014
  • The purpose of this paper is to introduce the concept of strongly extending modules which are particular subclass of the class of extending modules, and study some basic properties of this new class of modules. A module M is called strongly extending if each submodule of M is essential in a fully invariant direct summand of M. In this paper we examine the behavior of the class of strongly extending modules with respect to the preservation of this property in direct summands and direct sums and give some properties of these modules, for instance, strongly summand intersection property and weakly co-Hopfian property. Also such modules are characterized over commutative Dedekind domains.

Purely Extending Modules and Their Generalizations

  • Shiv Kumar;Ashok Ji Gupta
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.15-27
    • /
    • 2023
  • A purely extending module is a generalization of an extending module. In this paper, we study several properties of purely extending modules and introduce the notion of purely essentially Baer modules. A module M is said to be a purely essentially Baer if the right annihilator in M of any left ideal of the endomorphism ring of M is essential in a pure submodule of M. We study some properties of purely essentially Baer modules and characterize von Neumann regular rings in terms of purely essentially Baer modules.

GENERALIZATIONS OF T-EXTENDING MODULES RELATIVE TO FULLY INVARIANT SUBMODULES

  • Asgari, Shadi;Haghany, Ahmad
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.503-514
    • /
    • 2012
  • The concepts of t-extending and t-Baer for modules are generalized to those of FI-t-extending and FI-t-Baer respectively. These are also generalizations of FI-extending and nonsingular quasi-Baer properties respectively and they are inherited by direct summands. We shall establish a close connection between the properties of FI-t-extending and FI-t-Baer, and give a characterization of FI-t-extending modules relative to an annihilator condition.

The π-extending Property via Singular Quotient Submodules

  • Kara, Yeliz;Tercan, Adnan
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.391-401
    • /
    • 2019
  • A module is said to be ${\pi}$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this article, we focus on the class of modules having the ${\pi}$-extending property by looking at the singularity of quotient submodules. By doing so, we provide counterexamples, using hypersurfaces in projective spaces over complex numbers, to show that being generalized ${\pi}$-extending is not inherited by direct summands. Moreover, it is shown that the direct sums of generalized ${\pi}$-extending modules are generalized ${\pi}$-extending.

ON THE FI-EXTENDING MODULES

  • Min, Kang-Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.16 no.2
    • /
    • pp.79-88
    • /
    • 2003
  • In this paper, we study properties of a free normalizing extension ring of a FI-extending ring. We develop properties of formal triangular matrix rings and FI-extending rings. Several results on the quasi-extending modules are obtained.

  • PDF

ON THE DECOMPOSITION OF EXTENDING LIFTING MODULES

  • Chang, Chae-Hoon;Shin, Jong-Moon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1069-1077
    • /
    • 2009
  • In 1984, Oshiro [11] has studied the decomposition of continuous lifting modules. He obtained the following: every continuous lifting module has an indecomposable decomposition. In this paper, we study extending lifting modules. We show that every extending lifting module has an indecomposable decomposition. This result is an expansion of Oshiro's result mentioned above. And we consider some application of this result.

GOLDIE EXTENDING PROPERTY ON THE CLASS OF z-CLOSED SUBMODULES

  • Tercan, Adnan;Yasar, Ramazan;Yucel, Canan Celep
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.453-468
    • /
    • 2022
  • In this article, we define a module M to be Gz-extending if and only if for each z-closed submodule X of M there exists a direct summand D of M such that X ∩ D is essential in both X and D. We investigate structural properties of Gz-extending modules and locate the implications between the other extending properties. We deal with decomposition theory as well as ring and module extensions for Gz-extending modules. We obtain that if a ring is right Gz-extending, then so is its essential overring. Also it is shown that the Gz-extending property is inherited by its rational hull. Furthermore it is provided some applications including matrix rings over a right Gz-extending ring.

Weak F I-extending Modules with ACC or DCC on Essential Submodules

  • Tercan, Adnan;Yasar, Ramazan
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.239-248
    • /
    • 2021
  • In this paper we study modules with the W F I+-extending property. We prove that if M satisfies the W F I+-extending, pseudo duo properties and M/(Soc M) has finite uniform dimension then M decompose into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if M satisfies the W F I+-extending, pseudo duo properties and ascending chain (respectively, descending chain) condition on essential submodules then M = M1 ⊕ M2 for some semisimple submodule M1 and Noetherian (respectively, Artinian) submodule M2. Moreover, we show that if M is a W F I-extending module with pseudo duo, C2 and essential socle then the quotient ring of its endomorphism ring with Jacobson radical is a (von Neumann) regular ring. We provide several examples which illustrate our results.