Acknowledgement
We are very thankful to the referee for a thorough report and for many helpful suggestions. The first author also gratefully acknowledges financial support from UGC, INDIA to carry out this research work.
References
- S. E. Atani, M. Khoramdel and S. D. Pishhesari, Purely Baer Modules and Purely Rickart Modules, Miskolc Math. Notes, 19(1)(2018), 63-76. https://doi.org/10.18514/MMN.2018.1484
- G. F. Birkenmeier, J. K. Park and S. T. Rizvi , Extensions of Rings and Modules, Research Monograph, Birkhauser/Springer, (2013).
- A. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford Ser., 28(1)(1977), 61-80. https://doi.org/10.1093/qmath/28.1.61
- A. W. Chatters and S. M. Khuri, Endomorphism Rings of Modules over Nonsingular CS Rings, J. London Math. Soc., 2(3)(1980), 434-444. https://doi.org/10.1112/jlms/s2-21.3.434
- J. Clark, On Purely Extending Modules, Proceedings of the International Conference in Dublin, August 10-14, (1998), (Basel Birkhauser: Trends in Mathematics), 353-358.
- P. M. Cohn, On Free Product of Associative Rings, Math. Z., 71(1)(1959), 380-398. https://doi.org/10.1007/BF01181410
- D. J. Fieldhouse, Pure Theories, Math. Ann., 184(1970), 1-18. https://doi.org/10.1007/BF01350610
- K. R. Goodearl, Von Neumann Regular Rings, Monographs and Studies in Maths, 4, Pitman London(1979).
- T. Y. Lam , Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer, New York(1999).
- G. Lee, S. T. Rizvi and C. S. Roman, Modules whose Endomorphism Rings are Von Neumann Regular, Comm. Algebra, 41(2013), 4066-4088. https://doi.org/10.1080/00927872.2012.700979
- S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes, 147, Cambridge Univ. Press (1990).
- T. H. N. Nhan, Essentially Baer Modules, Chebyshevskii Sb., 16(3)(2015), 355-375.
- S. T. Rizvi and C. S. Roman, Baer and quasi-Baer Modules, Comm. Algebra, 32(1)(2004), 103-123. https://doi.org/10.1081/AGB-120027854
- A. Tercan and C. C. Yucel, Module theory, Extending modules and generalizations, Birkhauser Basel, Springer, Switzerland(2016).
- A. K. Tiwari and S. A. Paramhans, On Closures of Submodules, Indian J. Pure Appl. Math., 8(1977), 1415-1419.
- B. Ungor and S. Helicioglu, Strongly Extending Modules, Hacet. J. Math. Stat., 42(5)(2013), 465-478.
- R. Wisbaur, Foundations of Module and Ring theory, A handbook for study and research, Philadelphia(1991).