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GENERALIZATIONS OF T-EXTENDING MODULES

RELATIVE TO FULLY INVARIANT SUBMODULES

Shadi Asgari and Ahmad Haghany

Abstract. The concepts of t-extending and t-Baer for modules are gen-
eralized to those of FI-t-extending and FI-t-Baer respectively. These are
also generalizations of FI-extending and nonsingular quasi-Baer proper-

ties respectively and they are inherited by direct summands. We shall
establish a close connection between the properties of FI-t-extending and
FI-t-Baer, and give a characterization of FI-t-extending modules relative

to an annihilator condition.

1. Introduction

Recall that a submodule K of an R-module M is called fully invariant if
φ(K) ≤ K for every R-endomorphism φ ofM . For example, the Jacobson rad-
ical, the socle, the singular submodule Z(M), the torsion submodule or second
singular submodule Z2(M) and the submodules MI for every right ideal I of
R are fully invariant in M . A module M is called FI-extending if every fully
invariant submodule ofM is essential in a direct summand ofM . FI-extending
modules were introduced in [3] and further studied in [2], [4], [5], and [6]. In
[1] we called a submodule A of M t-essential in M (written A ≤tes M) if for
every submodule B of M , A ∩B ≤ Z2(M) implies that B ≤ Z2(M). Indeed a
t-essential submodule of M is a dense submodule of M in the Goldie torsion
theory on Mod-R and so the notion of a t-essential submodule is a generaliza-
tion of that of an essential submodule. A submodule C of M is called t-closed
in M (written C ≤tc M) if C ≤tes C ′ ≤ M implies that C = C ′. As in
[1], a module M is called t-extending if every t-closed submodule of M is a
direct summand. Indeed, M is t-extending if and only if every submodule of
M is t-essential in a direct summand [1, Theorem 2.11]. Now it is natural to
ask: When does a module have the property that every fully invariant submod-
ule is t-essential in a direct summand? In [4] a module M is called strongly
FI-extending if every fully invariant submodule is essential in a fully invariant
direct summand. This class of modules is properly contained in the class of
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FI-extending modules. Again it is natural to ask: When does a module have the
property that every fully invariant submodule is t-essential in a fully invariant
direct summand?

The main purpose of this paper is to answer these questions. We say a mod-
ule M is FI-t-extending if every fully invariant t-closed submodule of M is a
direct summand of M . FI-extending modules, t-extending modules (hence ex-
tending modules, all finitely generated abelian groups) and projective modules
over a ring R for which RR is FI-extending or t-extending, are examples of FI-
t-extending modules. We will show in Theorem 2.2 that every fully invariant
submodule of a moduleM is t-essential in a direct summand if and only if every
fully invariant submodule of M is t-essential in a fully invariant direct sum-
mand and that these are equivalent to M being FI-t-extending. In addition,
we show that an FI-t-extending module is exactly a direct sum of a nonsingu-
lar FI-extending module and a Z2-torsion module. By a Z2-torsion module K
we mean any module K with Z2(K) = K. Similar to the FI-extending mod-
ules, every direct sum of FI-t-extending modules is FI-t-extending and every
fully invariant submodule of any FI-t-extending module inherits the property.
Although it is not known whether a direct summand of an FI-extending mod-
ule is FI-extending, we will see that a direct summand of an FI-t-extending
module inherits the property (Corollary 2.4). As a consequence, a direct sum-
mand N of an FI-extending module is FI-extending if and only if Z2(N) is
FI-extending. In particular every direct summand of an FI-extending module
M is FI-extending if Z2(M) is extending, strongly FI-extending or weak duo.

For a left ideal I of End(M), set rM (I) = {m ∈ M : Im = 0} and
tM (I) = {m ∈ M : Im ≤ Z2(M)}. Recall from [10] that a module M is
(quasi-)Baer if the right annihilator in M of any (two-sided) left ideal I of
End(M) (i.e., rM (I)) is a direct summand of M . The notion of a (quasi-)Baer
module M coincides with that of a (quasi-)Baer ring when M = RR. A close
connection was established between (quasi-)Baer modules and (FI-) extending
modules in [10, Theorems 2.12 and 3.10]. In [1] we have introduced the notion
of a t-Baer module which is a generalization of the notions of a t-extending
module (hence an extending module) and of a nonsingular Baer module. In
fact, a moduleM is t-Baer if tM (I) is a direct summand ofM for any left ideal
I of End(M). There is a connection between t-extending and t-Baer properties,
that is, a moduleM is t-extending if and only if it is t-Baer and t-cononsingular
[1, Theorem 3.9]. We say that a module M is FI-t-Baer if tM (I) is a direct
summand of M for any two-sided ideal I of End(M). Every t-Baer module
and every nonsingular quasi-Baer module is FI-t-Baer. We give some equiv-
alent conditions to being FI-t-Baer similar to [1, Theorem 3.2] which is for a
t-Baer module. Moreover we show that a module M is FI-t-extending if and
only if it is FI-t-Baer and FI-t-cononsingular (Theorem 3.9).

A characterization of a quasi-continuous module relative to an annihilator
condition is given in [11, Theorem 8], which states that M is quasi-continuous
if and only if S = lS(A) + lS(B) for any submodules A and B of M with



GENERALIZATIONS OF T-EXTENDING MODULES 505

A∩B = 0 if and only if S = lS(A)+ lS(B) (or equivalently, S = lS(A)⊕ lS(B))
for any submodules A and B ofM which are complements to each other, where
S = End(M) and lS(A) and lS(B) are annihilators of A and B in S respec-
tively. Analogous to this, in [7, Corollary 2.5], it is shown that a module M
is extending if and only if for every closed submodule C of M there exists
a complement D of C in M such that S = lS(C) + lS(D) (or equivalently,
S = lS(C)⊕ lS(D)). We will show in Theorem 4.1 that there is a similar char-
acterization for FI-t-extending modules. In fact, a module M is FI-t-extending
if and only if for every fully invariant t-closed submodule C of M there exists
a complement D of C in M such that S = lS(C) + lS(D) (or equivalently,
S = lS(C) ⊕ lS(D)) if and only if for every fully invariant t-closed submodule
C ofM there exists a complement D to C inM such that D+Z2(M) is t-closed
in M and S = tS(C) + tS(D), where tS(N) = {φ ∈ S : φN ≤ Z2(M)} for a
submodule N of M .

We end this section by recording the following facts for future use.

Proposition 1.1 ([1, Proposition 2.2]). The following statements are equiva-
lent for a submodule A of an R-module M .

(1) A is t-essential in M .
(2) (A+ Z2(M))/Z2(M) is essential in M/Z2(M).
(3) A+ Z2(M) is essential in M .
(4) M/A is Z2-torsion.

Proposition 1.2 ([1, Proposition 2.6]). Let C be a submodule of a module M .
The following statements are equivalent.

(1) C is t-closed in M .
(2) C contains Z2(M) and C is a closed submodule of M .
(3) M/C is nonsingular.

Proposition 1.3. Let K ≤ N be submodules of a module M . If K is fully
invariant in M and N/K is fully invariant in M/K, then N is fully invariant
in M .

Proof. This is routine. □

2. FI-t-extending modules

Throughout rings will have unity and modules will be unitary. Unless stated
otherwise, modules will be right modules. Recall from [1] that a module M is
t-extending if every t-closed submodule is a direct summand. By restricting to
fully invariant t-closed submodules of M we have the following notion.

Definition 2.1. We say that a module M is FI-t-extending if every fully in-
variant t-closed submodule of M is a direct summand of M .

Clearly every t-extending module is FI-t-extending. From Theorem 2.2(8)
below, we conclude that every FI-extending module is FI-t-extending. The
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properties of strongly FI-extending, FI-extending and FI-t-extending are iden-
tified for a nonsingular module; see [4, Proposition 1.5].

Theorem 2.2. The following statements are equivalent for a module M .
(1) M is FI-t-extending.
(2) For every fully invariant submodule A of M , A2 is a direct summand of

M where A2/A = Z2(M/A).
(3) M = Z2(M)

⊕
M ′ where M ′ is a (nonsingular) FI-extending module.

(4) Every fully invariant submodule of M which contains Z2(M) is essential
in a direct summand of M .

(5) Every essential closure of a fully invariant submodule of M which con-
tains Z2(M) is a direct summand of M .

(6) Every fully invariant submodule of M which contains Z2(M) is essential
in a fully invariant direct summand of M .

(7) Every fully invariant submodule of M is t-essential in a fully invariant
direct summand.

(8) Every fully invariant submodule of M is t-essential in a direct summand.
(9) For every fully invariant submodule A of M , there exists a decomposition

M/A = N/A
⊕
N ′/A such that N is a direct summand of M and N ′ ≤tes M .

Proof. For (1) ⇒ (2) ⇒ (3) ⇒ (4) and (8) ⇒ (9) ⇒ (1) follow the proof of
(1) ⇒ (2) ⇒ (3) ⇒ (4) and (5) ⇒ (6) ⇒ (1) of [1, Theorem 2.11] respectively,
by assuming there, that C, K and A are fully invariant. Note that in (2) ⇒ (3),
it is enough to show that C is a direct summand by [4, Proposition 1.5]. The
implication (7) ⇒ (8) is clear.

(4) ⇒ (5). Let A be a fully invariant submodule of M which contains
Z2(M) and Ā be an essential closure of A (that is, Ā is a maximal member of
the set of submodules ofM which A is essential in them). Clearly Ā is a closed
submodule which contains Z2(M), hence by Proposition 1.2, Ā is t-closed. Now
we show that Ā is fully invariant. Assume that φ is an endomorphism of M
and x ∈ Ā. There exists an essential right ideal I such that xI ≤ A, hence
φ(x)I = φ(xI) ≤ A. Thus φ(x) + Ā ∈ Z(M/Ā) and so by Proposition 1.2(3),
φ(x) ∈ Ā. Therefore Ā is fully invariant, hence is essential in a direct summand
by (4), thus it is a direct summand of M .

(5) ⇒ (6). Let A be a fully invariant submodule ofM which contains Z2(M).
As shown in the previous part, an essential closure of A is fully invariant and
so it serves as such a desired direct summand.

(6) ⇒ (7). Let A be a fully invariant submodule ofM . Clearly A+Z2(M) is
also fully invariant, hence there exists a fully invariant direct summand N ofM
such that A+Z2(M) is essential in N . Thus by Proposition 1.1, A ≤tes N . □

Corollary 2.3. Every direct sum of FI-t-extending modules is FI-t-extending.

Proof. This is clear by Theorem 2.2(3) and [3, Theorem 1.3]. □

Corollary 2.4. Let M be an FI-t-extending module.
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(1) M/K is FI-t-extending for every fully invariant submodule K of M .
(2) Every fully invariant submodule of M is FI-t-extending.
(3) Every direct summand of M is FI-t-extending.

Proof. (1) Follow the proof of [1, Proposition 2.14(1)] by assuming there, that
K is a fully invariant submodule of M and L/K is a fully invariant submodule
of M/K and then apply Proposition 1.3.

(2) Follow the proof of [1, Proposition 2.14(2)] by assuming there, that L is
a fully invariant submodule of M and K is a fully invariant submodule of L.

(3) Let N be a direct summand of M , say M = N ⊕ N ′. First assume
that N is nonsingular. By Theorem 2.2(3), M = Z2(M) ⊕M ′ and so N ′ =
Z2(M) ⊕ (N ′ ∩ M ′). Hence M = N ⊕ (N ′ ∩ M ′) ⊕ Z2(M). Therefore by
(1), N ⊕ (N ′ ∩M ′) is strongly FI-extending and so by [4, Theorem 2.4], N is
strongly FI-extending, hence it is FI-t-extending.

Now if N is not nonsingular, then Z2(M) = Z2(N) ⊕ Z2(N
′) and so by

Theorem 2.2(3), N = Z2(N) ⊕ L for some submodule L. However L is a
nonsingular direct summand ofM , hence by what we showed first L is strongly
FI-extending. Thus N is FI-t-extending. □

Corollary 2.5. Let R be a ring. Then RR is FI-t-extending if and only if
every projective R-module is FI-t-extending.

Corollary 2.6. The following are equivalent for a module M .
(1) M is FI-extending.
(2) M = Z2(M)

⊕
M ′ where Z2(M) and M ′ are FI-extending.

Proof. (1) ⇒ (2). By Theorem 2.2(3), M = Z2(M)
⊕
M ′ where M ′ is FI-

extending. Thus it suffices to show that Z2(M) is FI-extending. Let A be a fully
invariant submodule of Z2(M). Since Z2(M) is a fully invariant submodule of
M , A is a fully invariant submodule of M . Therefore A is essential in a direct
summand N ofM , sayM = N⊕N ′. However A and N/A are Z2-torsion, hence
N is Z2-torsion and so N ≤ Z2(M). Thus Z2(M) = N

⊕
(Z2(M)∩N ′), hence

N is a direct summand of Z2(M). This implies that Z2(M) is FI-extending.
(2) ⇒ (1). This follows from the fact that a direct sum of FI-extending

modules is FI-extending [3, Theorem 1.3]. □

Remark 2.7. The implication (1) ⇒ (2) of Corollary 2.6 can also be obtained
from [4, Proposition 2.8 and Proposition 1.5].

Corollary 2.8. A moduleM is FI-extending if and only ifM is FI-t-extending
and Z2(M) is FI-extending.

Proof. This is clear by Corollary 2.6, Theorem 2.2 and [3, Theorem 1.3]. □

Recall from [9] that a module M is (weak) duo if every (direct summand)
submodule of M is fully invariant. In [3] there is an open problem asking
whether a direct summand of an FI-extending module is FI-extending. Clearly
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this is true if the FI-extending module is weak duo. The next corollary, in par-
ticular, shows that the above problem has an affirmative answer when Z2(M)
is weak duo. In fact this gives a necessary and sufficient condition for a direct
summand of an FI-extending module to be FI-extending.

Corollary 2.9. Let M be an FI-extending module.
(1) If N is a direct summand of M , then N is FI-extending if and only if

Z2(N) is FI-extending.
(2) Every direct summand of M is FI-extending if and only if every direct

summand of Z2(M) is FI-extending. In particular, if Z2(M) is weak duo,
extending or strongly FI-extending, then every direct summand of M is FI-
extending.

Proof. (1) is obtained by Corollaries 2.6, 2.4(3) and 2.8, while (2) follows from
(1). □

The next examples shows that the class of FI-t-extending modules properly
contains both the class of t-extending modules and the class of FI-extending
modules.

Examples 2.10. (1) Let R =
(
Z Z
0 Z

)
and M be an arbitrary R-module. Then

RR is FI-extending, but it is not extending; see [3, Example 2.6]. Note that
R is right nonsingular and so by Theorem 2.2(3) and [1, Theorem 2.11(3)],
R⊕ Z2(M) is an FI-t-extending R-module which is not t-extending.

(2) A characterization of an FI-extending Z2-torsion group is given in [2,
Theorem 2.3]. So every Z2-torsion Z-module which is not FI-extending is an
example of an FI-t-extending module which is not FI-extending.

3. FI-t-Baer modules

Let S = End(M) and I be a left ideal of S. Set rM (I) = {m ∈M : Im = 0}
and tM (I) = {m ∈ M : Im ≤ Z2(M)}. In addition, for a submodule N of M ,
set lS(N) = {φ ∈ S : φN = 0} and tS(N) = {φ ∈ S : φN ≤ Z2(M)}. Recall
from [10] that a module M is quasi-Baer if for every fully invariant submodule
N of M , the two-sided ideal lS(N) is a direct summand of S as a left ideal;
equivalently, for every two-sided ideal J of S, the submodule rM (J) is a direct
summand of M . Moreover, recall from [1] that a module M is t-Baer if tM (I)
is a direct summand of M for every left ideal I of S. By restricting the t-Baer
requirement to the two-sided ideals of S we have the following notion.

Definition 3.1. A module M is FI-t-Baer if tM (J) is a direct summand of M
for every two-sided ideal J of S.

Clearly every t-Baer module is FI-t-Baer, and the properties of FI-t-Baer
and quasi-Baer coincide for a nonsingular module.

Analogous to [1, Theorem 3.9], there is a connection between FI-t-extending
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modules and FI-t-Baer modules. Before establishing this, we give some charac-
terizations of FI-t-Baer modules which are analogous to the characterizations
of t-Baer modules [1, Theorem 3.2].

Theorem 3.2. The following statements are equivalent for a module M .
(1) M is FI-t-Baer.
(2) M = Z2(M)

⊕
M ′ where M ′ is a (nonsingular) quasi-Baer module.

(3)M has the strong summand intersection property for fully invariant direct
summands which contain Z2(M), and tM (J) is a direct summand of M for all
principal two-sided ideals J of S.

(4)
∩

φ∈T tM (SφS) is a direct summand of M for every subset T of S.

Proof. (1) ⇒ (2). Since M is FI-t-Baer, Z2(M) = tM (S) is a direct summand
of M , say M = Z2(M)

⊕
M ′. Now we show that M ′ is quasi-Baer. Let J ′ be

a two-sided ideal of S′ = End(M′), A = {1 ⊕ ψ : ψ ∈ J ′} and J = SAS. So
tM (J) = Z2(M)

⊕
rM ′(J ′). Since M is FI-t-Baer, tM (J) is a direct summand

of M and so rM ′(J ′) is a direct summand of M ′. Thus M ′ is a quasi-Baer
module.

(2) ⇒ (1). Assume that M = Z2(M)
⊕
M ′ where M ′ is a quasi-Baer mod-

ule. Let S′ = End(M′), J be a two-sided ideal of S, A′ = {π′φ |M ′ : φ ∈ J}
where π′ is the canonical projection to M ′, and J ′ = S′A′S′. Thus tM (J) =
Z2(M)

⊕
rM ′(J ′). SinceM ′ is quasi-Baer, rM ′(J ′) is a direct summand ofM ′,

hence tM (J) is a direct summand of M .
(1) ⇒ (3). Assume that {eλ : λ ∈ Λ} is a set of idempotents of S

such that eλM contains Z2(M) and is fully invariant submodule of M . Let
J =

∑
λ∈Λ S(1 − eλ)S. Then J is a two-sided ideal of S with tM (J) ≤

(1 − eλ)
−1Z2(M) = eλM for each λ ∈ Λ, and so tM (J) ≤

∩
λ∈Λ eλM . If

m ̸∈ tM (J), there exist λ0 ∈ Λ and θ ∈ S such that (1 − eλ0)θm ̸∈ Z2(M),
hence θm ̸∈ eλ0

M = (1 − eλ0
)−1Z2(M). Since eλ0

M is fully invariant, we
conclude that m ̸∈ eλ0M . Thus m ̸∈

∩
λ∈Λ eλM and so

∩
λ∈Λ eλM = tM (J),

hence
∩

λ∈Λ eλM is a direct summand of M as M is FI-t-Baer. The second
statement is clear.

(3) ⇒ (4). Since SφS is a two-sided ideal of S, tM (SφS) is a fully invariant
submodule of M , and tM (SφS) contains Z2(M) for every φ ∈ S, the implica-
tion is clear.

(4) ⇒ (1). Let J be a two-sided ideal of S. Clearly tM (J) =
∩

φ∈J tM (SφS).

Thus by assumption tM (J) is a direct summand of M and so M is FI-t-
Baer. □

Corollary 3.3. Let M =
⊕

λ∈ΛMλ such that each Mλ is FI-t-Baer and subi-
somorphic to Mµ for all µ ∈ Λ. Then M is FI-t-Baer.

Proof. Clearly Mλ/Z2(Mλ) is subisomorphic to Mµ/Z2(Mµ) for all λ, µ ∈ Λ.
Thus the result follows by Theorem 3.2(2) and [10, Proposition 3.19]. □
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Examples 3.4. (1) Let R be a Baer ring. Then by Theorem 3.2 and [10,
Corollary 3.20 and Theorem 3.17], P ⊕Z2(M) is FI-t-Baer for every projective
R-module P and every R-module M .

(2) It is well-known that the upper triangular matrix ring over a domain
which is not a division ring is quasi-Baer but not Baer. Therefore by Examples
2.10(1), Theorem 3.2 and [1, Theorem 3.2], there exist modules which are FI-
t-Baer but not t-Baer. Hence the class of FI-t-Baer modules properly contains
the class of t-Baer modules.

Proposition 3.5. If M is FI-t-Baer, then so is every direct summand of M .

Proof. First assume that M = M1

⊕
M2 is FI-t-Baer and M1 is Z2-torsion.

Then M2 is FI-t-Baer; in fact if I2 is a two-sided ideal of S2 = End(M2),
A = {1M1 ⊕ φ : φ ∈ I2} and I = SAS, then tM (I) = M1

⊕
tM2(I2). By

hypothesis tM (I) is a direct summand ofM , hence tM2(I2) is a direct summand
of M2.

Now let N be a direct summand of M , say M = K
⊕
N . Since M is FI-t-

Baer, Z2(M) = Z2(K)
⊕
Z2(N) is a direct summand of M . Hence Z2(K) is a

direct summand of K. Set L = Z2(K)
⊕
N . Then L is a direct summand ofM

which contains Z2(M). By the first paragraph it suffices to show that L is FI-t-
Baer. SinceM = Z2(M)

⊕
M ′ whereM ′ is quasi-Baer, L = Z2(M)

⊕
(L∩M ′).

Thus L ∩M ′ is a direct summand of M , hence it is a direct summand of M ′.
Therefore L∩M ′ is quasi-Baer by [10, Theorem 3.17] and so L is FI-t-Baer, as
desired. □

Corollary 3.6. Let R be a ring. Then RR is FI-t-Baer if and only if every
projective R-module is FI-t-Baer.

Proof. This follows by Corollary 3.3 and Proposition 3.5. □

In [10] a module M is called FI-K-cononsingular if for every fully invariant
direct summand N ofM and every fully invariant submodule K of N , lS′(K) =
0 implies that K is essential in N , where S′ = End(N).

Definition 3.7. We say that a module M is FI-t-cononsingular if for every
fully invariant submodule N of M and every fully invariant submodule K of
N , tS′(K) = tS′(N) implies that K is t-essential in N , where S′ = End(N).

Clearly, every Z2-torsion and every nonsingular uniform module is FI-t-
cononsingular.

Proposition 3.8. Let M be a module.
(1) If M is FI-t-cononsingular, then M/Z2(M) is FI-K-cononsingular.
(2) If M =

⊕
λ∈ΛMλ where each Mλ is FI-t-cononsingular, then M is FI-

t-cononsingular.
(3) If M =M1

⊕
M2 is FI-t-cononsingular and M1 is Z2-torsion, then M2

is FI-t-cononsingular.
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Proof. (1) Let N/Z2(M) be a fully invariant direct summand of M/Z2(M).
Set S′ = End(N) and S̄ = End(N/Z2(M)). Assume that K/Z2(M) is a fully
invariant submodule of N/Z2(M) such that lS̄(K/Z2(M)) = 0. Then tS′(K) =
tS′(N); in fact if φ ∈ tS′(K), then φ̄ : N/Z2(M) → N/Z2(M) defined by φ(x+
Z2(M)) = φ(x)+Z2(M) is an endomorphism of N/Z2(M), and φ̄(K/Z2(M)) =
0. Thus φ̄ = 0 and so φ ∈ tS′(N). This implies that tS′(K) = tS′(N). However
by Proposition 1.3, K is a fully invariant submodule of N and N is a fully
invariant submodule of M , hence by hypothesis K is t-essential in N . Thus by
Proposition 1.1(2), K/Z2(M) is essential in N/Z2(M).

(2) Assume that N is a fully invariant submodule of M and K is a fully
invariant submodule of N such that tS′(K) = tS′(N). Clearly N =

⊕
λ∈Λ(N ∩

Mλ), each N ∩Mλ is fully invariant in Mλ, also K =
⊕

λ∈Λ(K ∩Mλ) and each
K ∩Mλ is fully invariant in N ∩Mλ. Let Sλ = End(N ∩Mλ). It is easy to see
that tSλ

(K ∩Mλ) = tSλ
(N ∩Mλ), hence by assumption K ∩Mλ ≤tes N ∩Mλ.

Thus by Proposition 1.1(4), K ≤tes N .
(3) Let N2 be a fully invariant submodule of M2 and K2 be a fully invariant

submodule of N2 such that tS2(K2) = tS2(N2) where S2 = End(N2). By [10,
Lemma 1.11], there exists a fully invariant submodule N1 of M1 such that
N1 ⊕ N2 is a fully invariant submodule of M . Similarly, there exists a fully
invariant submoduleK1 ofN1 such thatK1

⊕
K2 is a fully invariant submodule

of N1 ⊕ N2. So tS′(K1

⊕
K2) = tS′(N1 ⊕ N2) where S′ = End(N1 ⊕ N2); in

fact, if φ ∈ S′ and φ(K1

⊕
K2) ≤ Z2(N1 ⊕ N2), then N1 ≤ Z2(N1 ⊕ N2) =

N1

⊕
Z2(N2) implies that π2φι2K2 ≤ Z2(N2) where ι2 : N2 → N1 ⊕ N2 and

π2 : N1⊕N2 → N2 are respectively the canonical injection and projection. Now
π2φι2 ∈ tS2(K2), hence π2φι2 ∈ tS2(N2) and so φ(N1 ⊕ N2) ≤ Z2(N1 ⊕ N2).
Therefore φ ∈ tS′(N1 ⊕ N2) and tS′(K1

⊕
K2) = tS′(N1 ⊕ N2), as desired.

Since M is FI-t-cononsingular, the latter implies that K1

⊕
K2 ≤tes N1

⊕
N2

and so K2 ≤tes N2 by Proposition 1.1(4). □

Next, we establish a close connection between FI-t-extending modules and
FI-t-Baer modules. This is in contrast with [10, Theorem 3.10].

Theorem 3.9. The following statements are equivalent for a module M .
(1) M is FI-t-extending.
(2) M is FI-t-Baer and FI-t-cononsingular.
(3) M is FI-t-Baer and C = tM (tS(C)) for every fully invariant t-closed

submodule C of M .

Proof. (1) ⇒ (2). By Theorem 2.2, M = Z2(M)
⊕
M ′ where M ′ is FI-

extending. However by [10, Proposition 2.10, Corollary 3.9 and Lemma 3.12],
every nonsingular FI-extending module is quasi-Baer, hence M ′ is quasi-Baer.
Thus by Theorem 3.2, M is FI-t-Baer. Now we show that M is FI-t-conon-
singular. Let N be a fully invariant submodule ofM and K be a fully invariant
submodule of N such that tS′(K) = tS′(N) where S′ = End(N). By Corollary
2.4(2), N is FI-t-extending. Assume that C is an essential closure of K+Z2(N)
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in N . By Theorem 2.2(5), C is a direct summand of N , say N = C ⊕C ′. Now
if πC′ : N → C ′ is the canonical projection, then clearly πC′ ∈ tS′(K), hence
πC′ ∈ tS′(N). Thus C ′ is Z2-torsion and so C ′ = 0 (note that Z2(N) ≤ C).
Therefore K + Z2(N) ≤e N = C. Thus K ≤tes N by Proposition 1.1(3).

(2) ⇐ (1). SinceM is FI-t-Baer,M = Z2(M)
⊕
M ′ whereM ′ is quasi-Baer.

But M is FI-t-cononsingular, hence M ′ is FI-K-cononsingular by Proposition
3.8(1). Thus by [10, Lemma 3.14], M ′ is FI-extending and so by Theorem 2.2,
M is FI-t-extending.

For (1) ⇒ (3) one may just follow the proof of [1, Theorem 3.9, (1) ⇒ (3)]
by assuming there, that C is a fully invariant t-closed submodule of M , and
finally (3) ⇒ (1) is clear. □

4. FI-t-extending modules and annihilator conditions

Recall that a module M is quasi-continuous (or π-injective) if M is an ex-
tending module and satisfies condition (C3), that is, if A and B are direct
summands of M such that A ∩B = 0, then A⊕B is a direct summand of M .
In [11, Theorem 8], a characterization of a quasi-continuous module relative to
an annihilator condition is given: a module M is quasi-continuous if and only
if S = lS(A) + lS(B) for any submodules A and B of M with A ∩ B = 0 if
and only if S = lS(A) + lS(B) (or equivalently, S = lS(A) ⊕ lS(B)) for any
submodules A and B of M which are complements to each other. Analogous
to this, a characterization of an extending module relative to an annihilator
condition is given in [7, Corollary 2.5]: a module M is extending if and only if
for every closed submodule C of M there exists a complement D to C in M
such that S = lS(C) + lS(D) (or equivalently, S = lS(C)⊕ lS(D)). Similar to
this, we shall obtain characterizations of an FI-t-extending module relative to
an annihilator condition.

Theorem 4.1. The following statements are equivalent for a module M with
S = End(M).

(1) M is FI-t-extending.
(2) For every fully invariant t-closed submodule C of M there exists a com-

plement D to C in M such that S = lS(C)
⊕
lS(D).

(3) For every fully invariant t-closed submodule C of M there exists a com-
plement D to C in M such that S = lS(C) + lS(D).

(4) For every fully invariant t-closed submodule C of M there exists a
complement D to C in M such that D + Z2(M) is t-closed in M and S =
tS(C) + tS(D).

Proof. (1) ⇒ (2). Let C be a fully invariant t-closed submodule of M . By
hypothesis M = C ⊕D for some submodule D and so D is a complement to C
in M . However C = eM and D = (1− e)M for some idempotent e ∈ S, hence
S(1− e) = lS(C) and Se = lS(D). Thus S = lS(C)

⊕
lS(D).

(2) ⇒ (3). This is a tautology.
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(3) ⇒ (4). By restricting the annihilator condition to fully invariant t-
closed submodules in the proof of [7, Lemma 2.1] we deduce that M = C ⊕D
and especially M = Z2(M) ⊕M ′ for some submodule M ′ of M . Therefore
M = Z2(M) ⊕ (C ∩ M ′) ⊕ D and so D ⊕ Z2(M) is t-closed in M . More-
over hypothesis implies that S = tS(C) + tS(D) since lS(C) ≤ tS(C) and
lS(D) ≤ tS(D).

(4) ⇒ (1). Let C be a fully invariant t-closed submodule of M . By hypoth-
esis S = tS(C) + tS(D) for some complement D to C for which D + Z2(M)
is t-closed in M . Then 1 = φ + ψ where φ ∈ tS(C) and ψ ∈ tS(D). Then
C ≤ tM (φ) ≤ tM (φ2) and D ≤ tM (ψ) ≤ tM (ψ2). Now let d ∈ D ∩ tM (φ2). As
d = φd+ ψd, we conclude that φd− φψd = φ2d ∈ Z2(M) and so φd ∈ Z2(M)
since ψ ∈ tS(D). Thus d = φd+ψd ∈ Z2(M). This implies that D∩ tM (φ2) ≤
Z2(M) and so D ∩ tM (φ2) = 0 as Z2(M) ≤ C by Proposition 1.2(2). However
D is a complement to C in M , hence by [8, Corollary 6.23], C is a complement
to D in M . Thus

C = tM (φ) = tM (φ2).

Similar to the above, we see that C ∩ tM (ψ2) ≤ Z2(M) and so C ∩ tM (ψ2) = 0
where the bar denotes the image in M/Z2(M). It is easy to see that C is
a complement to D in M . Moreover, D is a closed submodule of M , since
D+Z2(M) is t-closed in M by hypothesis. Therefore by [8, Corollary 6.23], D

is a complement to C in M and so D = tM (ψ2). Hence

D + Z2(M) = tM (ψ) = tM (ψ2).

Now we show that φψM ≤ Z2(M). For this purpose, it suffices to show that
φψM ∩ (C

⊕
D) ≤ Z2(M), since C

⊕
D ≤tes M . Assume that φψm = c + d

where c ∈ C and d ∈ D. From the equality 1 = φ+ψ, it is clear that φψ = ψφ.
Then φ2ψ2m = φψ(c + d) = ψφc + φψd ∈ Z2(M) (recall that φ ∈ tS(C) and
ψ ∈ tS(D)). Thus ψ2m ∈ tM (φ2) = tM (φ), hence ψ2φm = φψ2m ∈ Z2(M).
Consequently φm ∈ tM (ψ2) = tM (ψ) and so φψm ∈ Z2(M). This implies that
φψM ∩ (C

⊕
D) ≤ Z2(M), as desired.

From φψM ≤ Z2(M) we conclude that ψM ≤ tM (φ) = C and φM ≤
tM (ψ) = D + Z2(M). Thus M = φM + ψM ≤ C

⊕
D and so C

⊕
D = M ,

that is, C is a direct summand of M . □

Remark 4.2. In the proof of Theorem 4.1, if we assume that C is an arbitrary
t-closed submodule of M , then by the same proof, we obtain the following
equivalent statements for a t-extending module M .

(1) M is t-extending.
(2) For every t-closed submodule C of M there exists a complement D to C

in M such that S = lS(C)
⊕
lS(D).

(3) For every t-closed submodule C of M there exists a complement D to C
in M such that S = lS(C) + lS(D).

(4) For every t-closed submodule C of M there exists a complement D to C
in M such that D + Z2(M) is t-closed in M and S = tS(C) + tS(D).
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