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Abstract. The purpose of this paper is to introduce the concept of strongly extending

modules which are particular subclass of the class of extending modules, and study some

basic properties of this new class of modules. A module M is called strongly extending if

each submodule of M is essential in a fully invariant direct summand of M . In this paper

we examine the behavior of the class of strongly extending modules with respect to the

preservation of this property in direct summands and direct sums and give some proper-

ties of these modules, for instance, strongly summand intersection property and weakly

co-Hopfian property. Also such modules are characterized over commutative Dedekind

domains.

1. Introduction

The theory of extending modules has come to play an important role and major
contributions to this theory have been made in recent years, providing extensively
interesting results on extending properties in the module-theoretical setting. An
R-module M is called (strongly FI-) extending if each (fully invariant) submodule
is essential in a (fully invariant) direct summand. Now it is natural to ask: When
does a module have the property that every submodule is essential in a fully invari-
ant direct summand? The main purpose of this paper is to answer this question and
investigate these modules. Here is a brief summary of our paper. In fact, we will
show that direct summands of a strongly extending module are strongly extending,
and some conditions are given to show direct sum of two strongly extending modules
is strongly extending. Also we prove that an R-module M is strongly extending
if and only if M = Z2(M) ⊕ N for some submodule N of M , where Z2(M) and
N are both strongly extending and Hom(K, Z2(M)) = 0 for each submodule K of
N . We introduce the notion of strongly Rickart modules and use this to show that
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endomorphism ring of each strongly extending module has a ring direct summand
which is nonsingular and semiprime. Moreover, a number of results concerning
strongly extending modules and examples of such modules are given. In the end of
this paper, we investigate strongly extending modules over commutative Dedekind
domains.

Throughout all rings (not necessarily commutative rings) have identity and all
modules are unital right modules. For the sake of completeness, we state some
definitions and notations used throughout this paper. Let M be a module over a
ring R. For submodules N and K of M , N ≤ K denotes N is a submodule of K and
End(M) denotes the ring of right R-module endomorphisms of M . rM (.) denotes
the right annihilator of a subset of End(M) with elements from M . In what follows,
by ≤⊕ , ≤ess and E(M) we denote, respectively, a module direct summand, an
essential submodule and the injective hull of M . The symbols Z, Zn and Q stand
for the ring of integers, the ring of residues modulo n and ring of rational numbers,
respectively.

Definition 1.2. (a) An R-module M is called extending (or CS ), if each submodule
of M is essential in a direct summand. Equivalently, each closed submodule (i.e.
has no proper essential extensions in M , for example direct summands) is a direct
summand of M (see [5]). The second statement is clear because each submodule
of M is contained in a closed submodule of M in which is essential due to Zorn’s
lemma.

(b) An R-module M is called FI-extending, provided that each fully invariant
submodule of M is essential in a direct summand of M (see [1],[3]).

(c) An R-module M is called strongly FI-extending if each fully invariant sub-
module of M is essential in a fully invariant direct summand of M (see [1],[2],[4]).

(d) An R-module M is said to be Baer (resp., Rickart), if for any left ideal I of
End(M) (resp., φ ∈ End(M)), rM (I)(resp., rM (φ)) is a direct summand of M (see
[11],[14]).

(e) An R-module M is called duo (resp., weak duo), provided that each sub-
module (resp., direct summand) is fully invariant in M (see [13]).

(f) An R-module M is said to have SIP, if the intersection of any two direct
summands is a direct summand of M . A module M is said to have the strongly
summand intersection property (SSIP) if the intersection of any family of direct
summands is a direct summand of M (see [11]).

(g) An R- module M is called weakly co-Hopfian if every injective endomorphism
has an essential image (see [6]).

(h) An idempotent e ∈ R is called left semicentral if re = ere for each r ∈ R.
Equivalently, eR is an ideal of R. The set of all semicentral idempotents of R will
be denoted by Sl(R) (see [1]).

The following propositions are used in the sequel.

Proposition 1.2. (i) [7, Lemma1] Let M be any module and L ⊆ K be two sub-
modules of M . If L is closed in K and K is closed in M , then L is closed in
M .
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(ii) [2, Lemma1.2(i)] Let e2 = e ∈ End(M). Then e ∈ Sl(End(M)) if and only
if eM is a fully invariant direct summand.

(iii) [13, Lemma2.1] If N is a fully invariant submodule of M and the module
M = ⊕i∈IMi is a direct sum of submodules Mi (i ∈ I), then N = ⊕i∈I(N ∩Mi).

Proposition 1.3. [13, Theorem3.10] Let R be a Dedekind domain. Then the fol-
lowing statements are equivalent for a non-zero torsion R-module M .

(i) M is a duo module;
(ii) M is a weak duo module;
(iii) There exist distinct maximal ideals Pi (i ∈ I) of R and submodules Mi

(i ∈ I) of M such that M = ⊕i∈IMi and for each i ∈ I, either Mi
∼= E(R/Pi) or

Mi
∼= R/Pni

i for some positive integer ni.

2. Strongly Extending Modules

We begin with the key definition of this paper. Motivated by the definition of
a strongly FI-extending module, we define the strongly extending notion.
Definition 2.1. An R-module M is called strongly extending, if for every submod-
ule N of M , there exists a fully invariant direct summand K of M such that N
is an essential submodule of K. A ring R is called strongly right extending, if the
module RR has the corresponding property.

Remark 2.2. The diagram below offers a summary of the results mentioned above.

Duo ⇒ Weak duo
⇓ ⇑

Weakly co−Hopfian ⇐ Strongly extending ⇒ Strongly FI − extending
⇓ ⇓

Extending ⇒ FI − extending

It is known that an R-module M is extending if and only if every closed sub-
module of M is a direct summand of M . The following states similar property for
closed submodules of strongly extending modules.

Proposition 2.3. An R-module M is strongly extending if and only if every closed
submodule of M is a fully invariant direct summand.

Proof. Is straightforward. 2

We next give two other characterizations of strongly extending modules.

Theorem 2.4. The following are equivalent:
(i) M is a strongly extending module;
(ii) M is extending and each idempotent of End(M) is left semicentral;
(iii) M is extending and End(M) is an abelian ring.

Proof. (i)⇒ (ii) If M is a strongly extending module, then it is clear that M
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is extending. Let e be an idempotent element of End(M). Since M is strongly
extending, eM is fully invariant by Proposition 2.3. Hence e ∈ Sl(End(M)) by
Proposition 1.2(ii).

(ii)⇒ (iii) It suffices to show that each idempotent of End(M) is central. If
e = e2 ∈ End(M), then e and (1− e) are left semicentral by (ii), which implies that
e is central.

(iii)⇒ (i) By (iii), every direct summand of M is fully invariant. Thus every
closed submodule is a fully invariant direct summand. Therefore by Proposition
2.3, M is strongly extending. 2

We study some examples for motivation.

Example 2.5. (1) Every commutative domain R as a right R-module is strongly
extending.

(2) Every uniform module is strongly extending. The ring Z6 as Z6-module is
a strongly extending module which is not uniform.

(3) It can be seen that strongly extending modules are strongly FI-extending.

The converse is not true: consider the ring R =
(
Z4 Z4

0 Z4

)
of upper triangular

matrices over the ring Z4. If M = RR, then by [1, Theorem 2.8], M is a strongly
FI-extending module that is not strongly extending.

(4) Let F be a field and R =
(

F F
0 F

)
. Then RR is not strongly extending,

but RR is extending.

Theorem 2.6. Let M be a strongly extending module. Then every direct summand
of M is strongly extending.

Proof. If N is a direct summand of M , then N = eM for some e = e2 ∈ End(M).
Since M is extending, N is extending. It is known that End(N) = e(End(M))e.
By usual argument, each idempotent of End(N) is central. Thus by Theorem 2.4,
N is strongly extending. 2

In the following example, it is shown that an arbitrary direct sum of strongly ex-
tending modules is not necessarily strongly extending.

Example 2.7. Let R = Z and M = Z ⊕ Z. It is clear that MR is not strongly

extending, because e =
(

1 1
0 0

)
is an idempotent of End(M) =

(
Z Z
Z Z

)
which

is not central. But ZZ is strongly extending.

By Example 2.7, we obtain that strongly extending property is not a morita equiv-
alent property.

Proposition 2.8. Let M = ⊕i∈IMi. If M is a strongly extending module, then
Hom(Mi,Mj) = 0 for each i 6= j of I.

Proof. As M is strongly extending, every direct summand of M is fully invariant
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in M . Hence the result is clear. 2

The following example shows that if for each i ∈ I, Mi is strongly extending
and Hom(Mi,Mj) = 0 for each i 6= j of I, then M = ⊕i∈IMi may be not strongly
extending.

Example 2.9. Consider M = Zp⊕Q as Z-module where p is prime. It easily can be
seen Hom(Q,Zp) = 0 and Hom(Zp,Q) = 0. Also Q and Zp are strongly extending
Z-module. If N = (1+ pZ, 1)Z and K = ((p− 1)+ pZ, 0)Z, then N ∩K = 0. Hence
N is not essential in M . If M is strongly extending, then N ≤ess T for some fully
invariant direct summand T of M . By Proposition 1.2(iii), T = T ∩ Zp ⊕ T ∩ Q.
Since N ≤ T , 0 6= T ∩ Zp and 0 6= T ∩ Q. Since T ≤⊕ M , T ∩ Zp ≤⊕ Zp and
T ∩ Q ≤⊕ Q. Since Zp and Q are indecomposable, T = M . Hence N ≤ess M , a
contradiction. Therefore M is not strongly extending.

When direct sums of extending modules are extending are considered in [7] and
[12].

Theorem 2.10. Let M = M1 ⊕M2. Then M is strongly extending if and only if
each closed submodule K of M with K ∩M1 = 0 or K ∩M2 = 0 is a fully invariant
direct summand of M .

Proof. (⇒) is clear.
(⇐) We will show that, if K is a closed submodule of M , then K is a fully

invariant direct summand of M . Consider K ∩M1 as a submodule of K. By Zorn,s
Lemma, there exists a closed submodule L of K such that K ∩M1 ≤ess L. Since L
is closed in K and K is closed in M , L is closed in M by Proposition 1.2(i). Since
(K ∩M1) ∩ (M2 ∩ L) = 0 and K ∩M1 ≤ess L, M2 ∩ L = 0. By assumption L is a
fully invariant direct summand of M . Let M = L ⊕ L′ for some submodule L′ of
M . By modular law, K = L⊕ (K ∩L′). Since K ∩L′ is a direct summand of K (so
it is closed) and K is closed in M , K ∩ L′ is closed in M by Proposition 1.2(i). As
K ∩M1 ≤ L, (K ∩M1) ∩ L′ = 0. Thus (K ∩ L′) ∩M1 = 0. By hypothesis, K ∩ L′

is a fully invariant direct summand of M . Therefore M = (K ∩ L′) ⊕ Q for some
submodule Q of M . Hence by modular law, L′ = (K ∩ L′) ⊕ (Q ∩ L′). Thus we
have M = L⊕ L′ = L⊕ (K ∩ L′)⊕ (Q ∩ L′), where L⊕ (K ∩ L′) = K. Therefore
M = K ⊕ (Q ∩ L′). As L and K ∩ L′ are fully invariant in M , K is fully invariant
by [3, Lemma 1.1]. Hence M is strongly extending. 2

In the following theorem the necessary condition are given for that the direct
sum of two strongly extending modules is strongly extending.

Theorem 2.11. Let M = M1 ⊕M2. If M1 and M2 are strongly extending and for
each N1 ≤ M1 and N2 ≤ M2, Hom(N1,M2) = 0 and Hom(N2, M1) = 0, then M is
strongly extending.

Proof. Let K be a closed submodule of M such that K ∩ M1 = 0. Suppose
that π1 : M → M1 and π2 : M → M2 denote the canonical projections. Since
Ker(π2|K) = Ker(π2)∩K = M1∩K = 0, we have monomorphism π2|K : K → M2.
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As π1|K = π1((π2|K)−1) : π2(K) → M1 ∈ Hom(π2(K),M1) and by assumption
Hom(π2(K),M1) = 0, we have π1(K) = 0. Thus K ⊆ Ker(π1) = M2. Since
K is closed in M , K is closed in M2 and so by strongly extending property of
M2, K is a fully invariant direct summand of M2. Hence K is a direct sum-
mand of M . To complete the proof of theorem, it suffices to show that K is
fully invariant in M. Since Hom(M1,M2) = 0 and Hom(M2,M1) = 0, we have

End(M) =
(

End(M1) 0
0 End(M2)

)
. Thus M1 and M2 are fully invariant direct

summand of M . Since K ≤⊕ M2 ≤⊕ M and K is fully invariant in M2 and M2

is fully invariant in M , K is fully invariant in M by [3, Lemma 1.1]. Thus K is a
fully invariant direct summand of M . Similarly, if K is a closed submodule of M
with K ∩M2 = 0, then K is a fully invariant direct summand of M . Therefore by
Proposition 2.10, M is strongly extending. 2

It is well-known from [5] that a free Z-module F is extending if and only if F
has finite rank. In the following theorem, we extend this fact to the general setting
of strongly extending free modules.

Theorem 2.12. A free R- module F is strongly extending if and only if rank(F ) = 1
and R is strongly extending.

Proof. Assume that F is a strongly extending and free R-module. If rank(F ) ≥ 2 ,
then Proposition 2.8 gives Hom(R, R) = 0, a contradiction. Thus rank(F ) = 1, and
R is strongly extending. The converse is clear. 2

Theorem 2.13. If M is a strongly extending module, then M has SSIP.

Proof. Assume that M is a strongly extending module and let {Mi}i∈I be a family
of direct summands of M and Mi = eiM for some idempotent ei of End(M). If
∩i∈IMi = 0, then there is nothing to prove. Suppose that ∩iMi 6= 0 and so
∩iMi ≤ess eM for some e ∈ Sl(End(M)). Therefore for each i ∈ I, (1−ei)M∩eM =
0, whence eM ⊆ eiM . Thus ∩iMi = eM and M has SSIP. 2

Motivated by the definition of Rickart modules and strongly extending modules,
we define the following notion. There is a subclass of Baer modules say abelian Baer
[15], which contains the class of modules defined next.

Definition 2.14. An R-module M is called strongly Rickart, if for each φ ∈
End(M), rM (φ) is a fully invariant direct summand of M .

Proposition 2.15. For an R-module M , the following are equivalent:
(i) M is strongly Rickart;
(ii) M is Rickart and every direct summand of M is fully invariant;
(iii) M is Rickart and End(M) is an abelian ring.

Proof. (i) ⇒(ii) We only show that every direct summand of M is fully invariant.
Let e2 = e ∈ End(M) and eM ≤⊕ M . Since rM (1 − e) = eM , eM is a fully
invariant direct summand.
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(ii)⇒(iii) and (iii)⇒(i) are similar to Theorem 2.4. 2

Example 2.16. Every strongly Rickart module is Rickart, however the converse

is not true, for example, let R =
(

F F
0 F

)
, where F is a field. Then RR is a

Rickart module which is not strongly Rickart.

Theorem 2.17. Every direct summand of a strongly Rickart module is a strongly
Rickart module.

Proof. Let M be a strongly Rickart module and N = eM be a direct summand of
M . By Proposition 2.15, End(M) is an abelian ring and so End(N) = eEnd(M)e
is abelian. Since M is strongly Rickart, M is Rickart, whence N = eM is Rickart
by [11, Theorem 2.7]. Thus N is strongly Rickart by Proposition 2.15. 2

Theorem 2.18. Let {Mi}i∈I be a class of R-modules, for an index set I. The
following are equivalent.

(1) M = ⊕i∈IMi is strongly Rickart.
(2) (i) For each distinct i, j ∈ I, Hom(Mi,Mj) = 0.

(ii) For each i ∈ I, Mi is strongly Rickart.

Proof. (1) ⇒ (2) (i) Since M is strongly Rickart, each idempotent of End(M) is cen-
tral by Proposition 2.15. As proof of Proposition 2.8, we can prove Hom(Mi,Mj) =
0 for each distinct i, j ∈ I.

(ii) is clear from Theorem 2.17.
(2) ⇒ (1) The endomorphism ring of M is a ring of matrices, with elements of

End(Mi) in the ii-position and elements of Hom(Mi,Mj) in ij-position, for each
i, j ∈ I, i 6= j. By 2(i), for each i, j ∈ I with i 6= j, Hom(Mi, Mj) = 0. Therefore
every element of End(M) is a matrix where for each i, j ∈ I with i 6= j, the ij-
position is zero.

Let f ∈ End(M). We will show that rM (f) is a fully invariant direct summand.
By the structure of End(M), f is a matrix of the form fi ∈ End(Mi) in the ii-
position and elsewhere zero. We can show f by ⊕i∈Ifi. Hence rM (f) = Ker(f) =
⊕i∈IKer(fi) = ⊕i∈IrMi(fi). By (ii), for each i ∈ I, Mi is strongly Rickart, thus
rMi(fi) = eiMi for some e2

i = ei ∈ End(Mi). Since Mi is strongly Rickart, End(Mi)
is an abelian ring by Proposition 2.15. Therefore ei is central in End(Mi). Let e be
a matrix that ei in ii-position and zero elsewhere. Since for each i ∈ I, ei is central
in End(Mi), e is central in End(M). Thus we have rM (f) = ⊕i∈IeiM = eM .
Therefore M is strongly Rickart. 2

If M1 and M2 are strongly Rickart modules, then the module M1 ⊕ M2 need
not be a strongly Rickart module, as the following example shows. Thus we need
condition (2)(i) in Theorem 2.18.

Example 2.19. ([11, Example2.5]) The Z-modules Z and Z2 are both strongly
Rickart, however the Z-module Z ⊕ Z2 is not strongly Rickart. Because the map
(m,n) → (0, m̄) has the kernel 2Z⊕ Z2 which is not a direct summand of Z⊕ Z2.
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In general a strongly Rickart module need not be strongly extending.

Example 2.20. (1) Consider Q ⊕ Z2 as Z-module. Clearly Hom(Q,Z2) = 0 and
Hom(Z2,Q) = 0. Since Q and Z2 are strongly Rickart Z-modules, Q⊕Z2 is strongly
Rickart by Theorem 2.18. Although Q ⊕ Z2 is not strongly extending by Example
2.9.

(2) In view of Example 2.19 and part (1), the strongly Rickart property does not
always transfer to each of its submodules.

Remark 2.21. Let M be a strongly Rickart module. By Proposition 2.15, End(M)
is abelian. Since M is strongly Rickart, M is Rickart, whence End(M) is a Rickart
ring by [11, Proposition 3.2]. Thus End(M) is strongly Rickart, by Proposition
2.15.

The following proposition is similar to the Proposition 3.15 of [11].

Proposition 2.22. If S = End(M) is strongly regular (i.e. abelian von Neumann
regular), then M is a strongly Rickart module.

Proof. Since S is von Neumann regular, M is Rickart by [11, Proposition 3.15]. As
S is abelian, M is a strongly Rickart module, by Proposition 2.15. 2

Lemma 2.23. Let M be a nonsingular R-module. If M is a strongly extending
module, then M is a strongly Rickart module.

Proof. Suppose that φ ∈ End(M). Since M is strongly extending, rM (φ) ≤ess eM
for some e ∈ Sl(End(M)). By nonsingularity of M and M

rM (φ)
∼= Im(φ) ≤ M , we

have rM (φ) = eM . 2

The second singular submodule Z2(M) is the submodule of M which is defined
by Z( M

Z(M) ) = Z2(M)
Z(M) . The next theorem is similar to [9, Theorem 1] for extending

modules. In our proof of the following theorem, we use the method described in the
proof of Theorem 1 of [9].

Theorem 2.24. An R-module M is strongly extending if and only if M = Z2(M)⊕
N for some submodule N of M where Z2(M) and N are both strongly extending
and Hom(K, Z2(M)) = 0 for each submodule K of N .

Proof. Let M be a strongly extending module. It is known that Z2(M) is a closed
submodule of M and so it is a fully invariant direct summand. Thus M = Z2(M)⊕N
for some submodule N of M . By Theorem 2.6, Z2(M) and N are strongly extending.
Now we will show Hom(K,Z2(M)) = 0 for each submodule K of N . Let f ∈
Hom(K,Z2(M)). Set Y = {k − f(k)| k ∈ K}. It is clear that Y is a submodule
of M . Since M is strongly extending, Y ≤ess H for some fully invariant direct
summand H of M . Let M = H ⊕ H ′. We claim that Y ∩ Z2(M) = 0. Let
y = k − f(k) ∈ Y ∩ Z2(M) for some k ∈ K. Since f(k) ∈ Z2(M), we have
k ∈ K ∩ Z2(M) = 0, and so y = 0. From Y ≤ess H and Y ∩ Z2(M) = 0, we
have H ∩Z2(M) = 0. Hence Z2(M) = Z2(H ′), because Z2(M) = Z2(H)⊕Z2(H ′).
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Since Z2(H ′) is closed in H ′ and by Theorem 2.6, H ′ is strongly extending, we have
H ′ = Z2(H ′)⊕H ′′ for some submodule H ′′ of H ′. Therefore M = H⊕H ′′⊕Z2(M).
Let π : M → Z2(M) be the canonical projection, then π|N : N → Z2(M) is the
extension of f . Since Hom(N,Z2(M)) = 0 (by Proposition 2.8), π|N = 0 and so
f = 0. Thus for each K ≤ N , Hom(K, Z2(M)) = 0.

Conversely, assume that N and Z2(M) are both strongly extending and
Hom(K, Z2(M)) = 0 for each K ≤ N . We will show Hom(X,N) = 0 for each
X ≤ Z2(M). Let g ∈ Hom(X, N). Since X ≤ Z2(M), Z2(X) = X. Thus
f(X) = f(Z2(X)) ⊆ Z2(N) = 0. Thus f = 0. Therefore by Theorem 2.11, M
is strongly extending. 2

Theorem 2.25. Let M be a strongly extending module. Then M has a direct sum-
mand N such that N is a strongly Rickart module and End(N) is a reduced strongly
Rickart ring.

Proof. By Theorem 2.24, M = Z2(M) ⊕ N for some nonsingular submodule N of
M . By Theorem 2.6, N is a strongly extending module, whence by Lemma 2.23,
N is a strongly Rickart module. By Remark 2.21, End(N) is strongly Rickart.
We will show End(N) is reduced. Let f2 = 0 for some element f of End(N).
Then rEnd(N)(f) = eEnd(N) for some central idempotent e of End(N). Thus
f = ef = fe = 0, as desired. 2

Corollary 2.26. Let M be a strongly extending module. Then End(M) has a ring
direct summand which is a semiprime nonsingular ring.

Proof. By Theorem 2.24, M = Z2(M) ⊕ K for some submodule K of M . Thus

End(M) =
(

End(Z2(M)) Hom(K, Z2(M))
Hom(Z2(M),K) End(K)

)
. Since M is strongly extend-

ing, Hom(Z2(M), K) = 0, Hom(K, Z2(M)) = 0, by Proposition 2.8. Therefore
End(M) = End(Z2(M)) ⊕ End(K), and by Theorem 2.25, End(K) is reduced,
therefore it is semiprime. We will show End(K) is nonsingular. Let f ∈ End(K)
such that rEnd(K)(f) ≤ess End(K). By Theorem 2.25, End(K) is strongly Rickart,
thus rEnd(K)(f) = tEnd(K) for some idempotent t of End(K). Thus t = 1 and
rEnd(K)(f) = End(K). Hence f = 0 and so End(K) is nonsingular. 2

Proposition 2.27. If M is a strongly extending module, then M is weakly co-
Hopfian.

Proof. Let M be a strongly extending module and f ∈ End(M) be an injective en-
domorphism of M . Then f(M) ≤ess eM for some idempotent e ∈ End(M). Thus
(1 − e)f(M) = 0. As 1 − e is central, (1 − e)f(M) = f((1 − e)M) = 0. Since f is
injective, (1− e)M = 0, whence eM = M and f(M) ≤ess M . 2

In the following, we want to characterize torsion strongly extending module over
Dedekind domains. Torsion extending modules were characterized over Dedekind
domains in [8, Theorem 7(1)] and [9, Corollary 23]. At first we state the following
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lemma.

Lemma 2.28. Let M = ⊕i∈IMi. If M is a duo module and for each i ∈ I, Mi is
strongly extending, then M is strongly extending.

Proof. Let N be a submodule of M . It can be seen that N = ⊕i∈IN ∩ Mi, by
Proposition 1.2 (iii). Since Mi is strongly extending, for each i ∈ I, N ∩Mi ≤ess M ′

i

for some fully invariant direct summand M ′
i of Mi. Thus N ≤ess ⊕i∈IM

′
i . It is

clear that ⊕i∈IM
′
i is a direct summand of M . Since M is duo, ⊕i∈IM

′
i is fully

invariant. Thus M is strongly extending. 2

Theorem 2.29. Let R be a Dedekind domain. A torsion R-module M is strongly
extending if and only if M = ⊕i∈IMi and for each i ∈ I, either Mi

∼= E(R/Pi) or
Mi

∼= R/Pni
i for some distinct maximal ideals Pi and positive integer ni

Proof. Let M be a torsion strongly extending module over a Dedekind domain
R. Since M is a weak duo module, M = ⊕i∈IMi and for each i ∈ I, either
Mi

∼= E(R/Pi) or Mi
∼= R/Pni

i for some distinct maximal ideals Pi and positive
integer ni, by Proposition 1.3. Conversely, let M ∼= (⊕i∈JE( R

Pi
)) ⊕ (⊕i∈I

R
P

ni
i

),
where P ,

i s (i ∈ I ∪J) are distinct maximal ideals R and n,
is are positive integers. It

can be easily seen that E( R
Pi

) and R
P

ni
i

are uniform R-modules, so they are strongly
extending. By Proposition 1.3, M is a duo module, thus Lemma 2.28 gives that M
is strongly extending. 2

Proposition 2.30. Let R be a principle ideal domain. If M is a finitely generated
torsion-free R-module, then M is strongly extending if and only if M ∼= R.

Proof. It is known that, if M is a finitely generated torsion-free module over a
principle ideal domain, then M is a free R-module. Since M is strongly extending,
M ∼= R by Theorem 2.12. The converse is clear. 2
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