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Abstract. A module M is said to be SIP-extending if the intersection of every pair

of direct summands is essential in a direct summand of M . SIP-extending modules are a

proper generalization of both SIP-modules and extending modules. Every direct summand

of an SIP-module is an SIP-module just as a direct summand of an extending module is

extending. While it is known that a direct sum of SIP-extending modules is not neces-

sarily SIP-extending, the question about direct summands of an SIP-extending module

to be SIP-extending remains open. In this study, we show that a direct summand of an

SIP-extending module inherits this property under some conditions. Some related results

are included about C11 and SIP-modules.

1. Introduction

Throughout this paper all rings are associative with unity and R always denotes
such a ring. Modules are unital and for an abelian group M , we use MR (resp. RM)
to denote a right (resp. left) R-module. Let M be a R-module and N a submodule
of M . We use N ≤e M and N ≤d M to denote that N is essential in M and N is a
direct summand of M , respectively. Moreover we use End(MR) and r(m) to denote
the ring of endomorphisms of M and the right annihilator in R of an element m
in M , i.e., r(m) = {r ∈ R : m.r = 0}. Recall that a ring is called Abelian if every
idempotent is central. For any unexplained terminology please see [1] and [5].

A module MR has the Summand Intersection Property, SIP, if the intersection
of every pair of direct summands of MR is a direct summand of MR. The study of
modules having SIP was motivated by the following result of Kaplansky [7]: every
free module over any principal ideal domain has SIP. The Summand Intersection
Property has been studied by many authors (see e.g. [2], [3], [6], [8] and [17].)

Recall that a module M is called an extending module (or a CS-module) if every
submodule is essential in a direct summand of M . In [5] and [11], extending modules
were studied in detail.

The concept of C11-modules was introduced in [15] as a generalization of ex-
tending modules. A module M is called C11-module (or satisfies C11)[15] if every
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submodule of M has a complement which is a direct summand. It is known that a
direct summand of a C11-module is not a C11-module, in general (see [16, Exercise
4]). A module is called a C+

11-module if its every direct summand is a C11-module
[15]. In this paper we further the study of SIP-extending modules and we show that
if M is a C11-module which is also SIP-extending then every direct summand of M
is a C11-module, i.e., M is C+

11-module (see Proposition 7). In the main result we
show that if M is an SIP-extending module such that End(MR) is Abelian then
every direct summand of M is SIP-extending.

2. SIP-extending modules

In [9], a module M is called an SIP-extending module provided that the intersec-
tion of every pair of direct summands of M is essential in a direct summand of M .
We say a ring R is a right SIP-extending ring if the module RR is an SIP-extending
module, i.e., for every pair of idempotents e, c in R there exists g2 = g ∈ R such
that eR ∩ cR is essential in gR. Examples of SIP-extending modules include every
extending (hence every injective) module, every uniform module, every semisimple
module and every module having the SIP (e.g. any Baer module [13]). The concept
of an SIP-extending module is a proper generalization of both SIP-modules and
extending modules, as shown by the following examples.

Example 1. Let F be any field and V be a F -vector space with dimVF ≥ 2. Let

R =

{[
a v
0 a

]
: a ∈ F, v ∈ V

}
,

be the trivial extension of F by V . Then R is a right SIP-extending ring however
since dimVF ≥ 2, R is not right extending ring.

Example 2([4, Exercise 1.5]). Let F be a field and

T =




a x 0 0
0 b 0 0
0 0 b y
0 0 0 a

 : a, b, x, y ∈ F

 .

Let

e = e2 =


0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 0


and

c = c2 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .
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Then eT ∩ cT is nilpotent. Hence eT ∩ cT is not a direct summand of T . It follows
that T does not have SIP. However it is a right SIP-extending ring.

It is well known that every direct summand of SIP-modules is an SIP-module
and every direct summand of extending modules is an extending module. This
result led us to the following question.

Question: Let M be an SIP-extending module and N be a direct summand of
M . Is N an SIP-extending module?

In [9] we have provided a positive answer to the direct summand question un-
der the condition that the summand is the unique closure of each of its essential
submodules.

Proposition 3([9, Lemma 6]). Let M be an SIP-extending module, and let N be
a direct summand of M . Suppose that N is the unique closure in M of any of its
essential submodules. Then N is also an SIP-extending module.

Definition 4([14]). Let M be a module. If every submodule has a unique closure
in M then M is called UC-module.

Proposition 5. Let M be a UC-module. Then M has SIP if and only if M is
SIP-extending.

Proof. It is clear that if M has SIP then M is SIP-extending. Conversely, let S1 and
S2 be direct summands of M . Then by hypothesis S1 ∩S2 ≤e P for some P ≤d M .
By the main theorem in [14], intersection of two closed submodules is closed hence
S1 ∩ S2 = P . Thus M has SIP. �

The following lemma is proved in [9, Theorem 8].

Lemma 6. Let M be a C11-module and E be a submodule of M . If for every
direct summand D of M , E ∩D is essential in a direct summand of E then E is a
C11-module.

Lemma 7. Let M be a C11-module. If M is SIP-extending then every direct
summand of M is C11 (i.e., M has C+

11).

Proof. By Lemma 6 and the definition of SIP-extending. �

Recall that R is said to Abelian if every idempotent of R is central. Note that
every finite dimension module has an Abelian endomorphism ring by [11]. We have
the following result for SIP-extending Abelian rings.

Proposition 8. Let R be an Abelian ring then
i) R is SIP-extending (SIP) if and only if R[x] is SIP-extending (SIP).
ii)R is SIP-extending (SIP) if and only if R[[x]] is SIP-extending (SIP).

Proof. Since R is an Abelian ring, the result follows by [10, Lemma 8]. �

Next, we provide an answer to the direct summand question for an SIP-
extending module under another special condition. The result shows that a fully
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invariant direct summand of an SIP-extending module inherits the property. It also
completes the sufficiency part of [9, Theorem 11] in which only the necessity was
established.

Theorem 9. Let M = ⊕i∈IMi be a direct sum of fully invariant submodules Mi of
M where I is an index set. Then M is an SIP-extending module if and only if Mi,
∀i ∈ I is an SIP-extending module.

Proof. Let M be an SIP-extending module and Mi be a fully invariant direct sum-
mand of M . If L and K are direct summand of Mi then there exist P ≤d M
(M = P ⊕Q, for some Q ≤M) such that L∩K ≤e P . Since Mi is a fully invariant
direct summand of M and M = P ⊕Q then Mi = (Mi ∩ P )⊕ (Mi ∩Q). Therefore
L ∩ K ≤e Mi ∩ P ≤d Mi. So Mi is an SIP-extending module. Converse follows
from [9, Theorem 11]. We include a brief outline for the convenience of the reader.
Let S be any direct summand of M . So S = ⊕(S ∩Mi). Now let S, T be direct
summands of M . Hence, S ∩ T = ⊕[(S ∩Mi) ∩ (T ∩Mi)]. Therefore, there exists
a direct summand Ki of Mi which contains (S ∩Mi) ∩ (T ∩Mi) as an essential
submodule. �

Corollary 10. MR is an SIP-extending module such that End(MR) is Abelian.
Then every direct summand of M is SIP-extending.

Proof. Let M be an SIP-extending module and M1 be a direct summand of M .
Since End(MR) is Abelian M1 is a fully invariant submodule of M . By Theorem
9, M1 is an SIP-extending module. �

Definition 11. Let M be a R-module. M is said to be multiplication module if
for each X ≤M there exists AR ≤ RR such that X = MA

Corollary 12. Let M be an SIP-extending module, then any direct summand of
M is SIP-extending if M satisfies any of the following conditions.

(i) MR = RR and R is Abelian.
(ii) M is a multiplication module and R is commutative.

Proof. (i) Immediate by Corollary 10.
(ii) Assume that M is multiplication module and R is commutative. Note that every
submodule of a multiplication module is fully invariant. Now Theorem 9 yields the
result. �

Recall that a module M satisfies the C3 condition whenever K, L are direct
summand of M with K ∩ L = 0 then K ⊕ L ≤d M (see [11]). Note that the Z-
module (Z ⊕ Z) is an SIP-extending which does not satisfy the C3 condition (see,
for example [3]). Now we provide an example which shows that a module satisfying
the C3 property does not have to be SIP-extending either.

Example 13. Let F be a field and R =

(
F F
0 F

)
be the ring of upper triangular

matrices over F , N =

(
0 F
0 F

)
and L =

(
F F
0 0

)
left ideals of R and M =
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R/L. Let U = N ⊕M . Then RU satisfies the C3 condition and is a UC-module but
does not have the SIP as a left R-module. By Proposition 5 , U is not SIP-extending
as a left R-module.

We conclude this paper with some results for C11-modules. Recall that a module
M is said to satisfy the full (finite) exchange property if for any module G and any
two direct sum decompositions G = M ′⊕N = ⊕i∈IAi where M ′ ∼= M and I is any
(finite) index set, there are submodules Bi of Ai, i ∈ I, such that G = M ′⊕(⊕i∈IBi).

It was shown in [12] that every quasi-continuous module (i.e., an extending
module with C3 condition) satisfies the full exchange property whenever it satisfies
the finite exchange property. We can weaken the extending condition (C1) to C11

under an additional chain condition.

Theorem 14. Let MR be a C11-module which satisfies C3 condition. If M has
ACC on r(m), m ∈ M then the finite exchange property of M implies the full ex-
change property.

Proof. By [15, Lemma 4.6 (a)] and [11, Theorem 2.17] M has a decomposition into
indecomposable submodules. This yields the full exchange property. �

Corollary 15. Let R be a right Noetherian ring and MR be a C11-module which
has C3 then the finite exchange property implies the full exchange property for M .

Proof. It follows from Theorem 14. �
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