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Abstract. In this paper we study modules with the WFI+-extending property. We

prove that if M satisfies the WFI+-extending, pseudo duo properties and M/(SocM) has

finite uniform dimension then M decompose into a direct sum of a semisimple submodule

and a submodule of finite uniform dimension. In particular, if M satisfies the WFI+-

extending, pseudo duo properties and ascending chain (respectively, descending chain)

condition on essential submodules then M = M1 ⊕ M2 for some semisimple submodule

M1 and Noetherian (respectively, Artinian) submodule M2. Moreover, we show that if M

is a WFI-extending module with pseudo duo, C2 and essential socle then the quotient

ring of its endomorphism ring with Jacobson radical is a (von Neumann) regular ring. We

provide several examples which illustrate our results.

1. Introduction

Assume that all rings are associative and have identity elements and all modules
are unital right modules. Let R be any ring and M a right R-module. Recall that
M is called CS-module ( or extending module, module with C1) if every submodule
of M is essential in a direct summand of M . Equivalently, every complement in
M is a direct summand of M (see [7, 10, 18]). The class of extending modules
contains injective, semisimple and uniform modules (i.e., every non-zero submodule
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is essential in the module). We say that the module M has finite uniform (Goldie)
dimension if M does not contain an infinite direct sum of non-zero submodules. It
is well-known that a module M has finite uniform dimension if and only if there
exists a positive integer n and uniform submodules Ui (1 ≤ i ≤ n) of M such that
U1 ⊕ U2 ⊕ · · · ⊕ Un is an essential submodule of M . In this case n is an invariant
of the module called the uniform dimension of M (see, [1, p.294 Example 2] or [18,
p.81]).

Armendariz [2, Proposition 1.1] proved that a module M satisfies DCC (de-
scending chain condition) on essential submodules if and only if M/(SocM) is an
Artinian module. On the other hand, Goodearl [8, Proposition 3.6] proved that the
module M satisfies ACC (ascending chain condition) on essential submodules if and
only if M/(SocM) is a Noetherian module. It is proved in [13, Theorem 2.1] that
the following statements are equivalent for a module M :

(i) M/N has finite uniform dimension for every essential submodule N of M ,

(ii) every homomorphic image of M/(SocM) has finite uniform dimension.

Camillo and Yousif [6, Corollary 3] proved that if M is a CS-module and
M/(SocM) has finite uniform dimension then M = M1 ⊕M2 for some semisimple
submodule M1 of M and submodule M2 with finite uniform dimension, and in this
case M is a direct sum of uniform modules. They deduced in [6, Proposition 5] that
if M is a CS-module then M has ACC (respectively, DCC) on essential submodules
if and only if M = M1 ⊕ M2 for some semisimple submodule M1 and Noetherian
(respectively, Artinian) submodule M2 of M .

A module M is called a weak CS-module if, for each semisimple submodule S
of M , there exists a direct summand K of M such that S is essential in K. Clearly,
CS-modules are weak CS-modules. Smith [12, Corollary 2.7, Theorem 2.8] showed
that the result of [6] mentioned above can be extended to weak CS-modules. A
module M is called C11-module if, every submodule of M has a complement which
is a direct summand of M . Smith and Tercan [14, Theorem 5.2, Corollary 5.3]
extended the result of [6] to modules with C+

11 (i.e., every direct summand of the
module satisfies C11 property).

A module M is called weak C11-module, denoted WC11, if each of its semisimple
submodules has a complement which is a direct summand. Tercan [16, Theorem
11, Corollary 12] showed that aforementioned results of [14] can be extended to
WC+

11-modules.
A module M is called FI-extending if every fully invariant submodule (i.e.,

every submodule such that the image under all endomorphisms contained in itself)
is essential in a direct summand of M (see [3, 4]). Recently, a weak version of FI-
extending was introduced and investigated. To this end, following [19], a module
is called Weak FI-extending (or, WFI-extending) if, each of its semisimple fully
invariant submodules is essential in a direct summand of M . If M is any module
andX is any simple submodule, the sum of all submodules ofM that are isomorphic
to X is a submodule called the homogeneous component of M generated by X. It
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is well known that the socle of M is the direct sum of the various homogeneous
components and any homogeneous component of socle is a fully invariant submodule
of the module M . Thus, if a module is WFI-extending then any homogeneous
component of socle is essential in a direct summand of the module. Note that the
following implications hold for a module M :

CS =⇒ C11 =⇒ FI-extending
⇓ ⇓ ⇓

WCS =⇒ WC11 =⇒ WFI-extending

No other implications can be added to this table in general. To see why this is
the case, please consult [19]. Note that it is an open problem to determine whether
the FI-extending (and also theWFI-extending, WC11, WCS) property is inherited
by direct summands or not?

The purpose of this paper is to try to extend the result of [16, Theorem 11,
Corollary 12] to WFI+-extending (and so also FI+-extending ) modules. To do
this, we need to add the pseudo duo condition on the class of fully invariant submod-
ules of the module. Moreover, we also extend a result on the endomorphism ring
of continuous modules to WFI-extending modules with the pseudo duo condition
which yields that the quotient ring of endomorphism ring with its Jacobson radical
is a (von Neumann) regular ring. For any unexplained terminology and definitions,
we refer to [1, 5, 10, 18].

2. Weak FI+-extending Modules

Let P be some module property of modules. Following [14], we shall say that
a module M satisfies P+ if every direct summand of M satisfies P . For example,
if a module has injective socle then it satisfies WC+

11 and hence also it satisfies
WFI+. Moreover, if R is a Dedekind domain then any R-module M with finite
uniform dimension is a WFI+-extending module (see [19]). Recall that every di-
rect summand of a non-zero C+

11-module with finite uniform dimension is a (finite)
direct sum of uniform modules [14, Proposition 4.4]. However, this is not true for
WFI+-extending modules, in general. The following example clarifies the situation:

Example 2.1. Let R be a principal ideal domain. If R is not a complete discrete
valuation ring then there exists an indecomposable torsion-free R-module M of rank
2 by [9, Theorem 19]. For M , SocM = 0. So that M satisfies WFI+ and MR has
finite uniform dimension, namely 2. But M is not a direct sum of uniform modules.

For more examples similar to Example 2.1 (see [17, Corollary 16]). Surprisingly,
Example 2.1 and [17, Corollary 16] also show that we can not replace WFI+ with
FI+ in the former case. Since WFI-extending modules are based on the semisim-
ple fully invariant submodules, the following companion condition works well with
WFI-extending property. To this end, M is said to have pseudo duo property pro-
vided that any semisimple submodule of M has at least one fully invariant (in M)
direct summand in its decomposition i.e., if N is a semisimple submodule of M
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whenever N = N1 ⊕ N2 then at least one of the Ni (i = 1, 2) is a fully invariant
submodule of M . Observe that any duo module clearly satisfies the pseudo duo
property. However, there are several modules with the pseudo duo property which
are not duo modules. In fact, any non duo module with zero socle would be an

example. In particular, let R =

[
Z Z
0 Z

]
. Then RR is not duo. But SocRR = 0.

Hence R satisfies the pseudo duo property. One might wonder whether WFI+-
extending with the pseudo duo condition implies FI+-extending ( or C+

11 ) or not.
However, [19, Example 2.4] makes it clear that the aforementioned implication is
not true, in general.

Theorem 2.2. Let M be a finitely generated WFI+-extending module with the
pseudo duo property. Let N be a semisimple submodule of M such that M/N has
finite uniform dimension. Then N is finitely generated.

Proof. Let n < ∞ be the uniform dimension of M/N . Suppose that N is not finitely
generated. Then there exist non-finitely generated submodules N1 and N2 such that
N = N1 ⊕N2. By hypothesis, at least one of the Ni (i = 1, 2) is fully invariant in
M , say N1. By WFI-extending, there exist submodules M1, M

′ of M such that
M = M1 ⊕ M ′ and N1 is essential in M1. Then SocM = SocM1 ⊕ SocM ′ =
N1 ⊕ SocM ′. Hence N = N1 ⊕ (N ∩ SocM ′) by the modular law.

Now N2
∼= N ∩ SocM ′ so the submodule N ∩ SocM ′ is not finitely generated.

Repeating this argument, there exist Ni ≤ Mi ≤ M (2 ≤ i ≤ n + 1) such that for
each 2 ≤ i ≤ n+ 1, Ni is not finitely generated, M = M1 ⊕M2 ⊕ · · · ⊕Mn+1. Let
L = N1⊕N2⊕· · ·⊕Nn+1. Then M/L ∼= (M1/N1)⊕(M2/N2)⊕· · ·⊕(Mn+1/Nn+1).
Since M/L has finite uniform dimension then there exists 1 ≤ i ≤ n+ 1 such that
Mi = Ni. But Mi is finitely generated and hence so is Ni, a contradiction. Thus N
is finitely generated. 2

The next example shows that WFI+-extending property is not superfluous in
Theorem 2.2.

Example 2.3. Let K be a field and V an infinite dimensional vector space over
K. Let R be the trivial extension K with V i.e.,

R =

K V
\

0 K

 =

{[
k v
0 k

]
| k ∈ K, v ∈ V

}
.

Then R is a commutative indecomposable ring with respect to the usual matrix
operations. Moreover, RR is not WFI+-extending with the pseudo duo property
and contains a semisimple submodule I such that R/I has finite uniform dimension
but I is not finitely generated.

Proof. Let I = SocR =

[
0 V
0 0

]
. It is straightforward to see that RR is not WFI-

extending with pseudo duo property. Define φ : R → K by φ(

[
k v
0 k

]
) = k where
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k ∈ K, v ∈ V . Then φ is an epimorphism with kernel I. Thus R/I has uniform
dimension 1. Since V is infinite dimensional, I is not finitely generated. 2

Corollary 2.4. Let M be a finitely generated FI+-extending module with the
pseudo duo property. If M/(SocM) has finite uniform dimension then SocM is
finitely generated.

Proof. Immediate by Theorem 2.2. 2

Now, let us think of general modules over arbitrary rings. Since we require both
the pseudo duo property and that M/(SocM) has finite uniform dimension in our
next results, it would be better to clarify these conditions are independent.

Example 2.5.

(i) LetM be the free Z-module of infinite rank i.e.,M =
∞⊕
i=1

Z. Then SocMZ = 0.

Hence M satisfies pseudo duo property. However, M/(SocM) ∼= MZ which
has infinite uniform dimension.

(ii) Let R be a prime ring and let MR = (R ⊕ R)R. Then, it is clear that
SocM = SocR ⊕ SocR which is essential in MR and hence M/SocM has
finite uniform dimension. Now, let N = SocR ⊕ SocR. Define f1 : M → M
by f1(x, y) = (y, 0) and f2 : M → M by f2(x, y) = (0, x). Obviously f1,
f2 ∈ End (MR). Let N1 = SocR⊕ 0, N2 = 0⊕ SocR. So, we have f1(N2) =
N1 ̸⊆ N2 and f2(N1) = N2 ̸⊆ N1. It follows that MR does not have pseudo
duo property.

The following is a key lemma for our main theorem in this section.

Lemma 2.6. Let M be a module such that M satisfies WFI+ and has pseudo
duo property, and such that M/SocM has finite uniform dimension. Suppose that
SocM is contained in a finitely generated submodule of M . Then M has finite
uniform dimension.

Proof. Suppose M does not have finite uniform dimension. Then SocM is not
finitely generated. Then there exist submodules S1, S2 of SocM such that Si is
not finitely generated for i = 1, 2, and SocM = S1 ⊕ S2. By the pseudo duo
assumption, without loss of generality, we may assume that S1 is fully invariant in
M . By hypothesis, there exist submodules K, K ′ of M such that M = K ⊕ K ′,
and S1 is essential in K. By [1, Proposition 9.7, 9.119], S1 ⊕ S2 = SocM =
S1 ⊕ SocK ′. Thus SocK ′ ∼= S2 and hence SocK ′ is not finitely generated. Also,
SocK ⊕ SocK ′ = SocM = S1 ⊕ SocK ′, so that SocK ∼= S1, and hence SocK is
not finitely generated. By hypothesis, there exists a finitely generated submodule
N of M such that SocM ≤ N . Suppose that K = SocK. Then SocK is a
direct summand of M and hence also a direct summand of N . It follows that
SocK is finitely generated which is a contradiction. Thus K ̸= SocK. Similarly,
K ′ ̸= SocK ′. Now, M/SocM ∼= [K/(SocK)] ⊕ [K ′/(SocK ′)]. It follows that the
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modules K/(SocK) and K ′/(SocK ′) each have smaller uniform dimension than
M/(SocM). By induction on the uniform dimension of M/(SocM), we conclude
that K and K ′ both have finite uniform dimension, and so does M = K ⊕ K ′, a
contradiction. Thus M has finite uniform dimension. 2

Now we have the following result which was pointed out in the introduction.

Theorem 2.7. Let M be a WFI+-extending module with the pseudo duo property
such that M/(SocM) has finite uniform dimension. Then M contains a semisimple
submodule M1 and a submodule M2 with finite uniform dimension such that M =
M1 ⊕M2.

Proof. If M = SocM then there is nothing to prove. Suppose that M ̸= SocM .
Let m ∈ M , m /∈ SocM . Then SocM = Soc (mR)⊕X for some module X of M .
Now, by the pseudo duo property one of the Soc (mR) or X is fully invariant in
M . First assume that Soc (mR) is fully invariant in M . By hypothesis, there exist
submodules K, K ′ of M such that M = K ⊕ K ′ and Soc (mR) is essential in K.
Hence SocK = Soc (mR) ≤ mR. By Lemma 2.6, K has finite uniform dimension.
Now K ̸= SocK. Otherwise, K ≤ mR and hence mR = K ⊕ (mR ∩ K ′), by the
modular law. Since mR ∩K ′ ∼= K +mR/mR, mR = K = SocK. It follows that
m ∈ SocK and so m ∈ SocM which is a contradiction.

Now assume that X is a fully invariant submodule of M . By hypothesis,
M = K ⊕ K ′ and X is essential in K ′ where K, K ′ are submodules of M . So
SocX = SocK ′ = X. Hence SocM = Soc (mR) ⊕ X = SocK ⊕ X. It follows
that Soc (mR) ∼= SocK i.e., there exists an isomorphism α : SocK → Soc (mR).
Note that Soc (mR) ≤ mR. So SocK ≤ α−1(m)R. By Lemma ??, K has fi-
nite uniform dimension. Observe that K ̸= SocK. If it were K = SocK then
α−1(m)R = K ⊕ (α−1(m)R ∩ K ′), by the modular law. Since α−1(m)R ∩ K ′ ∼=
K + α−1(m)R/α−1(m)R, α−1(m)R ∩K ′ = 0. Therefore α−1(m)R = K ′ = SocK ′.
Hence mR = α(SocK ′) = Soc (mR) which yields that m ∈ Soc (mR). So that m ∈
SocM , which is a contradiction. Now M/(SocM) ∼= K/(SocK)⊕K ′/(SocK ′) im-
plies that the module K/(SocK) has smaller uniform dimension than M/(SocM).
By induction on the uniform dimension of M/(SocM), there exist submodules K1,
K2 of K such that K = K1 ⊕ K2, K1 is semisimple and K2 has finite uniform
dimension. Then M is the direct sum of the semisimple submodule K1, and the
submodule K2 ⊕K ′, which has finite uniform dimension. 2

Next we apply the former result to WFI+-extending (and, also FI+-extending)
modules which satisfies ACC (respectively, DCC) on essential submodules.

Corollary 2.8. Let M be a WFI+-extending module with the pseudo duo property
which satisfies ACC (respectively, DCC) on essential submodules. Then M =
M1⊕M2 for some semisimple submodule M1 and Noetherian (respetively, Artinian)
submodule M2.

Proof. We prove the result in the ACC case, the DCC case is similar. Suppose
M satisfies ACC on essential submodules. By [8, Proposition 3.6], M/(SocM) is
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Noetherian. Hence by Theorem 2.7, M = M1⊕M2 for some semisimple submodule
M1 and submodule M2 with finite uniform dimension. Now SocM = M1⊕(SocM2)
by [1, Proposition 1.19] and hence M/(SocM) ∼= M2/(SocM2). Thus M2/(SocM2)
is Noetherian. But SocM2 is Noetherian, because M2 has finite uniform dimension.
Thus M2 is Noetherian. 2

Recall that a module M is said to have SIP if the intersection of every pair of
direct summands is also a direct summand (see, for example [18]). So, we have the
following corollaries:

Corollary 2.9. Let M be a WFI-extending module with the pseudo duo property
which has SIP . Assume M satisfies ACC (respectively, DCC) on essential sub-
modules. Then M = M1 ⊕M2 for some semisimple submodule M1 and Noetherian
(respectively, Artinian) submodule M2.

Proof. By [19, Theorem 3.12], M is WFI+-extending module. Now, Corollary 2.8
yields the result 2

Corollary 2.10. Let M be an FI-extending module with the pseudo duo property
which has SIP . Assume M satisfies ACC (respectively, DCC) on essential sub-
modules. Then M = M1 ⊕M2 for some semisimple submodule M1 and Noetherian
(respectively, Artinian) submodule M2.

Proof. Immediate by Corollary 2.9. 2

We close this section by giving an example which illustrates that the converse
of Theorem 2.7 is not true, in general.

Example 2.11. Let F be a field and T = F [x]
<x4> = {a1̄ + bx̄+ cx̄2 + dx̄3 | a, b, c, d ∈

F and x̄ = x+ < x4 >}. Put R = F+Fx̄2+Fx̄3 which is a subring of T . Note that
R is a commutative local ring and its ideals of are 0, R, F x̄2, F x̄3, F x̄2 ⊕Fx̄3 (see
[5, Exercise 8.1.10]). Observe that SocR = J (R) = Fx̄2 ⊕Fx̄3 which is essential in
R. Clearly R is not WFI-extending.

Now, let M = M1⊕M2 be the right R-module where M1 = SocR and M2 = R.
So, 0 ⊕ M2 is not WFI-extending which gives that M is not WFI+-extending.
Next, let us show that M does not satisfy the pseudo duo property. For, let N =
SocM = M1 ⊕ M1 and N1 = M1 ⊕ 0, N2 = 0 ⊕ M1. In a similar argument in
Example 2.5, we have that neither N1 nor N2 is fully invariant in M . Therefore M
does not satisfy the pseudo duo property.

3. Endomorphism Rings of Weak FI-extending Modules

In this section our concern is the endomorphism ring of weak FI-extending
modules. We will use S and J (S) to denote the endomorphism ring of a module
M and the Jacobson radical of S respectively. Further ∆ will stand for the ideal
{α ∈ S | kerα is essential in M}. Recall that a CS-module M is called continuous
if, for each direct summand N of M and each monomorphism α : N → M , the
submodule φ(N) is also a direct summand of M (see [10, 18]). It was proved in
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[10, Proposition 3.5] that if M is continuous, then S/∆ is a (von Neumann) regular
ring and ∆ = J (S). This nice result was generalized to modules with C11 and C2

in [15, Theorem 3.3] as well as weak C11 modules with C2 and essential socle in
[17, Theorem 12]. It is natural to expect that whether [10, Proposition 3.5] can
be generalized to weak FI-extending modules with C2. However, [17, Example 11]
eliminates this expectation. On the other side, let M be the Z-module (Z/Zp)⊕Q
where p is any prime integer. Then M is a WFI-extending module with C2 (see
[14]). Note that SocMZ = (Z/Zp) ⊕ 0 which is not essential in M . Observe that
MZ has the pseudo duo property. So, we have the following result.

Theorem 3.1. Let M be a WFI-extending module with the pseudo duo property,
C2 and essential socle. Then S/∆ is a (von Neumann) regular ring and ∆ = J (S).

Proof. Let α ∈ S. Let K = Soc (kerα). Then K is a direct summand of SocM .
Hence SocM = K ⊕X for some submodule X of M . By the pseudo duo property,
we think of submodules K and X seperately. First assume that K is fully invariant
in M . By hypothesis, there exists a complement L of K such that L is a direct
summand of M (see [19, Proposition 2.3]). Then M = L⊕ L′ for some submodule
L′ of M . Since SocM is essential in M , kerα ∩ L = 0. It follows that α|L is a
monomorphism. So, by C2, α(L) is a direct summand of M . Hence there exists
β ∈ S such that βα = 1L. Then (α − αβα)(K ⊕ L) = (α − αβα)(L) = 0, and so
K ⊕ L ≤ ker (α − αβα). Since K ⊕ L is essential in M , α − αβα ∈ ∆. Therefore
S/∆ is a (von Neumann) regular ring.

Next assume that X is a fully invariant submodule of M . By WFI-extending
property, there exist direct summands L, L′ of M such that M = L ⊕ L′ and X
is essential in L. Since SocM is essential in M , X ∩ K is essential in L ∩ kerα
which gives that L ∩ kerα = 0. Therefore α|L is a monomorphism. Thus α(L) is a
direct summand of M , by C2. Then there exists γ ∈ S such that γα = 1|L. It can
be easily seen that kerα ⊕ L is essential in M . Now, let W = kerα. So, we have
(α − αγα)(W ⊕ L) = (α − αγα)(L) = 0, and so W ⊕ L ≤ ker (α − αγα). Since
W ⊕ L is essential in M , α− αγα ∈ ∆. Thus S/∆ is a von Neumann regular ring.

In any case, we have that S/∆ is a regular ring. This also proves that J (S) ≤
∆. Now, let f ∈ ∆. Since ker f ∩ ker (1 − f) = 0 and ker f is essential in M ,
ker (1 − f) = 0. Hence (1 − f)M is a direct summand of M , by C2. However,
(1 − f)M is essential in M since ker f ≤ (1 − f)M . Thus (1 − f)M = M , and
therefore 1− f is a unit in S. It follows that f ∈ J (S), and hence ∆ = J (S). 2

Corollary 3.2. Let M be an FI-extending module with the pseudo duo property,
C2, and essential socle. Then S/∆ is a (von Neumann) regular ring and ∆ = J (S).

Proof. By Theorem 3.1. 2

Corollary 3.3. Let M be a right nonsingular module with the pseudo duo property
and essential socle. If M is WFI-extending (or FI-extending ) with C2, then S is
a regular ring.

Proof. Let f ∈ ∆ and W = ker f . Then, for any x ∈ M , N = {r ∈ R | xr ∈ W} is
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an essential right ideal of R. Now f(x)N = 0. Since M is nonsingular, f(x) = 0,
and since x was arbitrary f = 0 (see [20, Lemma 1.3]). It follows that ∆ = 0. Hence
the result follows by the Theorem 3.1. 2

Note that there are commutative, local rings R such that SocR = J 2 is simple
essential in R. These rings have all the stated properties in Theorem 3.1. For, such
rings, see [11, Example 2.6].

In the sense of construction certain examples, Corollary 3.3 is a useful tool.
For example, let R be any domain which satisfies C2 condition (i.e., division ring).
Let M be the right R-module R. Then, it is easy to see that M has all of the
assumptions of Corollary 3.3 except M has essential socle. However, S = End (MR)
is not (von Neumann) regular. Thus the condition essential socle in Theorem 3.1 is
not superfluous.

Furthermore, the next example shows that the pseudo duo assumption in The-
orem 3.1 is not unnecessary either.

Example 3.4. Let R be any local Kasch ring such that J (R) = SocR is simple and
essential in R (see [11, Example 2.5]). Now, let M be the right R-module R ⊕ R.
Observe that SocM = (SocR)⊕ (SocR) is essential in M . It is easy to check that
M does not have the pseudo duo property. Moreover, M is a WFI-extending (actu-
ally FI-extending) module by [19, Theorem 2.8]. Since R is a Kasch ring, it has C2

property [11, Proposition 1.46]. It is well-known that being right Kasch is Morita

invariant which yields that M2(R) =

[
R R
R R

]
has C2 condition. By [11, Theorem

7.16], MR satisfies C2 property. But S = End (MR) ∼= M2(R) and S/J (S) is not a
(von Neumann) regular ring.
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