References
- G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Generalized triangular matrix rings and the fully invariant extending property, Rocky Mountain J. Math., 32(2002), 1299-1319. https://doi.org/10.1216/rmjm/1181070024
- G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Modules with fully invariant submodules essential in fully invariant summands. Comm. Algebra, 30(4)(2002), 1833-1852. https://doi.org/10.1081/AGB-120013220
- G. F. Birkenmeier, B. J. Muller and S. T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summands. Comm. Algebra, 30(3)(2002), 1395-1415. https://doi.org/10.1080/00927870209342387
- G. F. Birkenmeier, G. Calugareanu, L. Fuchs and H. P. Goeters, The fully invariant extending property for Abelian groups. Comm. Algebra, 29(2)(2001), 673-685. https://doi.org/10.1081/AGB-100001532
- N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending Modules, Pitman, Research Notes in Mathematics 313. Harlow: Longman (1994).
- A. Haghany, M. R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243(2001), 765-779. https://doi.org/10.1006/jabr.2001.8851
- A. Harmanci, P. F. Smith, Finite direct sums of CS modules, Houston J. Math., 19(4)(1993), 523-532.
- M. Harada, On modules with extending property, Osaka J. Math 19 (1982), 203-215.
- M. Kamal, B. J. Muller, Extending modules over commutative domains, Osaka J. Math., 25(3)(1988), 531-538.
- T. Y. Lam, Lectures on Modules and Rings, Springer-Varlag, New York, (1999).
- G. Lee, S. T. Rizvi and C. S. Roman, Rickart Modules. Comm in Algebra, 38(2010), 4005-4027. https://doi.org/10.1080/00927872.2010.507232
- Z. Liu, Direct Sums of Extending Modules, Kyungpook Math. J., 43(2003), 157-162.
- A. C. Ozcan, A. Harmanci and P. F. Smith, Duo modules. Glasg. Math. J., 48(2006), 533-545. https://doi.org/10.1017/S0017089506003260
- S. T. Rizvi, C. S. Roman, Baer and quasi-Baer modules. Comm. Algebra, 32(1)(2004), 103-123. https://doi.org/10.1081/AGB-120027854
- S. T. Rizvi, C. S. Roman, On K-nonsingular modules and applications. Comm. Alge-bra, 35(2007), 2960-2982. https://doi.org/10.1080/00927870701404374
Cited by
- Strongly lifting modules and strongly dual Rickart modules vol.12, pp.1, 2017, https://doi.org/10.1007/s11464-016-0599-7
- Modules having Baer summands vol.45, pp.11, 2017, https://doi.org/10.1080/00927872.2016.1273360
- Strongly Rickart objects in abelian categories vol.46, pp.10, 2018, https://doi.org/10.1080/00927872.2018.1439046
- Strongly Rickart objects in abelian categories: Applications to strongly regular and strongly Baer objects vol.46, pp.10, 2018, https://doi.org/10.1080/00927872.2018.1444171