DOI QR코드

DOI QR Code

On Strongly Extending Modules

  • Atani, S. Ebrahimi (Department of Mathematics, University of Guilan) ;
  • Khoramdel, M. (Department of Mathematics, University of Guilan) ;
  • Hesari, S. Dolati Pish (Department of Mathematics, University of Guilan)
  • Received : 2012.07.15
  • Accepted : 2013.06.17
  • Published : 2014.06.23

Abstract

The purpose of this paper is to introduce the concept of strongly extending modules which are particular subclass of the class of extending modules, and study some basic properties of this new class of modules. A module M is called strongly extending if each submodule of M is essential in a fully invariant direct summand of M. In this paper we examine the behavior of the class of strongly extending modules with respect to the preservation of this property in direct summands and direct sums and give some properties of these modules, for instance, strongly summand intersection property and weakly co-Hopfian property. Also such modules are characterized over commutative Dedekind domains.

Keywords

References

  1. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Generalized triangular matrix rings and the fully invariant extending property, Rocky Mountain J. Math., 32(2002), 1299-1319. https://doi.org/10.1216/rmjm/1181070024
  2. G. F. Birkenmeier, J. K. Park and S. T. Rizvi, Modules with fully invariant submodules essential in fully invariant summands. Comm. Algebra, 30(4)(2002), 1833-1852. https://doi.org/10.1081/AGB-120013220
  3. G. F. Birkenmeier, B. J. Muller and S. T. Rizvi, Modules in which every fully invariant submodule is essential in a direct summands. Comm. Algebra, 30(3)(2002), 1395-1415. https://doi.org/10.1080/00927870209342387
  4. G. F. Birkenmeier, G. Calugareanu, L. Fuchs and H. P. Goeters, The fully invariant extending property for Abelian groups. Comm. Algebra, 29(2)(2001), 673-685. https://doi.org/10.1081/AGB-100001532
  5. N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, Extending Modules, Pitman, Research Notes in Mathematics 313. Harlow: Longman (1994).
  6. A. Haghany, M. R. Vedadi, Modules whose injective endomorphisms are essential, J. Algebra, 243(2001), 765-779. https://doi.org/10.1006/jabr.2001.8851
  7. A. Harmanci, P. F. Smith, Finite direct sums of CS modules, Houston J. Math., 19(4)(1993), 523-532.
  8. M. Harada, On modules with extending property, Osaka J. Math 19 (1982), 203-215.
  9. M. Kamal, B. J. Muller, Extending modules over commutative domains, Osaka J. Math., 25(3)(1988), 531-538.
  10. T. Y. Lam, Lectures on Modules and Rings, Springer-Varlag, New York, (1999).
  11. G. Lee, S. T. Rizvi and C. S. Roman, Rickart Modules. Comm in Algebra, 38(2010), 4005-4027. https://doi.org/10.1080/00927872.2010.507232
  12. Z. Liu, Direct Sums of Extending Modules, Kyungpook Math. J., 43(2003), 157-162.
  13. A. C. Ozcan, A. Harmanci and P. F. Smith, Duo modules. Glasg. Math. J., 48(2006), 533-545. https://doi.org/10.1017/S0017089506003260
  14. S. T. Rizvi, C. S. Roman, Baer and quasi-Baer modules. Comm. Algebra, 32(1)(2004), 103-123. https://doi.org/10.1081/AGB-120027854
  15. S. T. Rizvi, C. S. Roman, On K-nonsingular modules and applications. Comm. Alge-bra, 35(2007), 2960-2982. https://doi.org/10.1080/00927870701404374

Cited by

  1. Strongly lifting modules and strongly dual Rickart modules vol.12, pp.1, 2017, https://doi.org/10.1007/s11464-016-0599-7
  2. Modules having Baer summands vol.45, pp.11, 2017, https://doi.org/10.1080/00927872.2016.1273360
  3. Strongly Rickart objects in abelian categories vol.46, pp.10, 2018, https://doi.org/10.1080/00927872.2018.1439046
  4. Strongly Rickart objects in abelian categories: Applications to strongly regular and strongly Baer objects vol.46, pp.10, 2018, https://doi.org/10.1080/00927872.2018.1444171