• Title/Summary/Keyword: drain-induced barrier lowering (DIBL)

Search Result 53, Processing Time 0.033 seconds

Drain Induced Barrier Lowering of Asymmetric Double Gate MOSFET for Channel Doping Profile (비대칭 DGMOSFET의 도핑분포함수에 따른 DIBL)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2643-2648
    • /
    • 2015
  • This paper analyzes the phenomenon of drain induced barrier lowering(DIBL) for doping profiles in channel of asymmetric double gate(DG) MOSFET. The DIBL, the important short channel effect, is described as lowering of source barrier height by drain voltage. The analytical potential distribution is derived from Poisson's equation to analyze the DIBL, and the DIBL is observed according to the change of doping profile to influence on potential distribution. As a results, the DIBL is significantly influenced by projected range and standard projected deviation, the variables of channel doping profiles. The change of DIBL shows greatly in the range of high doping concentration such as $10^{18}/cm^3$. The DIBL increases with decrease of channel length and increase of channel thickness, and with increase of bottom gate voltage and top/bottom gate oxide film thickness.

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Concentration (채널도핑강도에 대한 이중게이트 MOSFET의 DIBL분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.579-584
    • /
    • 2012
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET. The DIBL is very important short channel effects as phenomenon that barrier height becomes lower since drain voltage influences on potential barrier of source in short channel. The analytical potential distribution of Poisson equation, validated in previous papers, has been used to analyze DIBL. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. The change of DIBL has been investigated for device parameters such as channel thickness, oxide thickness and channel doping concentration.

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET According to Channel Doping Intensity (채널도핑강도에 대한 DGMOSFET의 DIBL분석)

  • Jung, Hak-Kee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.888-891
    • /
    • 2011
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET. The DIBL is very important short channel effects as phenomenon that barrier height becomes lower since drain voltage influences on potential barrier of source in short channel. The analytical potential distribution of Poisson equation, validated in previous papers, has been used to analyze DIBL. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. The change of DIBL has been investigated for device parameters such as channel thickness, oxide thickness and channel doping intensity.

  • PDF

Impact of Energy Relaxation of Channel Electrons on Drain-Induced Barrier Lowering in Nano-Scale Si-Based MOSFETs

  • Mao, Ling-Feng
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.284-291
    • /
    • 2017
  • Drain-induced barrier lowering (DIBL) is one of the main parameters employed to indicate the short-channel effect for nano metal-oxide semiconductor field-effect transistors (MOSFETs). We propose a new physical model of the DIBL effect under two-dimensional approximations based on the energy-conservation equation for channel electrons in FETs, which is different from the former field-penetration model. The DIBL is caused by lowering of the effective potential barrier height seen by the channel electrons because a lateral channel electric field results in an increase in the average kinetic energy of the channel electrons. The channel length, temperature, and doping concentration-dependent DIBL effects predicted by the proposed physical model agree well with the experimental data and simulation results reported in Nature and other journals.

Comparison of Drain-Induced-Barrier-Lowering (DIBL) Effect by Different Drain Engineering

  • Choi, Byoung-Seon;Choi, Pyung-Ho;Choi, Byoung-Deog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.342-343
    • /
    • 2012
  • We studied the Drain-Induced-Barrier-Lowering (DIBL) effect by different drain engineering. One other drain engineering is symmetric source-drain n-channel MOSFETs (SSD NMOSs), the other drain engineering is asymmetric source-drain n-channel MOSFETs (ASD NMOSs). Devices were fabricated using state of art 40 nm dynamic-random-access-memory (DRAM) technology. These devices have different modes which are deep drain junction mode in SSD NMOSs and shallow drain junction mode in ASD NMOSs. The shallow drain junction mode means that drain is only Lightly-Doped-Drain (LDD). The deep drain junction mode means that drain have same process with source. The threshold voltage gap between low drain voltage ($V_D$=0.05V) and high drain voltage ($V_D$=3V) is 0.088V in shallow drain junction mode and 0.615V in deep drain junction mode at $0.16{\mu}m$ of gate length. The DIBL coefficients are 26.5 mV/V in shallow drain junction mode and 205.7 mV/V in deep drain junction mode. These experimental results present that DIBL effect is higher in deep drain junction mode than shallow drain junction mode. These results are caused that ASD NMOSs have low drain doping level and low lateral electric field.

  • PDF

A New Two-Dimensional Model for the Drain-Induced Barrier Lowering of Fully Depleted Short-Channel SOI-MESFET's

  • Jit, S.;Pandey, Prashant;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2003
  • A new two-dimensional analytical model for the potential distribution and drain-induced barrier lowering (DIBL) effect of fully depleted short-channel Silicon-on-insulator (SOI)-MESFET's has been presented in this paper. The two dimensional potential distribution functions in the active layer of the device is approximated as a simple parabolic function and the two-dimensional Poisson's equation has been solved with suitable boundary conditions to obtain the bottom potential at the Si/oxide layer interface. It is observed that for the SOI-MESFET's, as the gate-length is decreased below a certain limit, the bottom potential is increased and thus the channel barrier between the drain and source is reduced. The similar effect may also be observed by increasing the drain-source voltage if the device is operated in the near threshold or sub-threshold region. This is an electrostatic effect known as the drain-induced barrier lowering (DIBL) in the short-gate SOI-MESFET's. The model has been verified by comparing the results with that of the simulated one obtained by solving the 2-D Poisson's equation numerically by using the pde toolbox of the widely used software MATLAB.

Dependence of Channel Doping Concentration on Drain Induced Barrier Lowering for Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET에 대한 DIBL의 채널도핑농도 의존성)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.805-810
    • /
    • 2016
  • The dependence of drain induced barrier lowering(DIBL) is analyzed for doping concentration in channel of asymmetric double gate(DG) MOSFET. The DIBL, the important short channel effect, is described as lowering of source barrier height by drain voltage. The analytical potential distribution is derived from Poisson's equation to analyze the DIBL, and the DIBL is observed according to top/bottom gate oxide thickness and bottom gate voltage as well as channel doping concentration. As a results, the DIBL is significantly influenced by channel doping concentration. DIBL is significantly increased by doping concentration if channel length becomes under 25 nm. The deviation of DIBL is increasing with increase of oxide thickness. Top and bottom gate oxide thicknesses have relation of an inverse proportion to sustain constant DIBL regardless channel doping concentration. We also know the deviation of DIBL for doping concentration is changed according to bottom gate voltage.

Dependence of Drain Induced Barrier Lowering for Doping Profile of Channel in Double Gate MOSFET (이중게이트 MOSFET에서 채널내 도핑분포에 대한 드레인유기장벽감소 의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.2000-2006
    • /
    • 2011
  • In this paper, the drain induced barrier lowering(DIBL) for doping distribution in the channel has been analyzed for double gate MOSFET(DGMOSFET). The DGMOSFET is extensively been studing because of adventages to be able to reduce the short channel effects(SCEs) to occur in convensional MOSFET. DIBL is SCE known as reduction of threshold voltage due to variation of energy band by high drain voltage. This DIBL has been analyzed for structural parameter and variation of channel doping profile for DGMOSFET. For this object, The analytical model of Poisson equation has been derived from Gaussian doping distribution for DGMOSFET. To verify potential and DIBL models based on this analytical Poisson's equation, the results have been compared with those of the numerical Poisson's equation, and DIBL for DGMOSFET has been investigated using this models.

Analysis of Drain Induced Barrier Lowering of Asymmetric Double Gate MOSFET for Channel Doping Profile (비대칭 DGMOSFET의 채널도핑분포함수에 따른 드레인 유도 장벽 감소현상 분석)

  • Jung, Hakkee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.863-865
    • /
    • 2015
  • 본 연구에서는 비대칭 이중게이트 MOSFET의 채널 내 도핑농도분포에 대한 드레인유도장벽감소(Drain Induced Barrier Lowering; DIBL)에 대하여 분석하고자한다. DIBL은 드레인 전압에 의하여 소스 측 전위장벽이 낮아지는 효과로서 중요한 단채널 효과이다. 이를 분석하기 위하여 포아송방정식을 이용하여 해석학적 전위분포를 구하였으며 전위분포에 영향을 미치는 채널도핑농도의 분포함수변화에 대하여 DIBL을 관찰하였다. 채널길이, 채널두께, 상하단 게이트 산화막 두께, 하단 게이트 전압 등을 파라미터로 하여 DIBL을 관찰하였다. 결과적으로 DIBL은 채널도핑농도분포함수의 변수인 이온주입범위 및 분포편차에 변화를 나타냈다. 특히 두 변수에 대한 DIBL의 변화는 최대채널도핑농도가 $10^{18}/cm^3$ 정도로 고도핑 되었을 경우 더욱 현저히 나타나고 있었다. 채널길이가 감소할수록 그리고 채널두께가 증가할수록 DIBL은 증가하였으며 하단 게이트 전압과 상하단 게이트 산화막 두께가 증가할수록 DIBL은 증가하였다.

  • PDF

Dependence of Drain Induced Barrier Lowering for Ratio of Channel Length vs. Thickness of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET에서 채널길이와 두께 비에 따른 DIBL 의존성 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1399-1404
    • /
    • 2015
  • This paper analyzed the phenomenon of drain induced barrier lowering(DIBL) for the ratio of channel length vs. thickness of asymmetric double gate(DG) MOSFET. DIBL, the important secondary effect, is occurred for short channel MOSFET in which drain voltage influences on potential barrier height of source, and significantly affects on transistor characteristics such as threshold voltage movement. The series potential distribution is derived from Poisson's equation to analyze DIBL, and threshold voltage is defined by top gate voltage of asymmetric DGMOSFET in case the off current is 10-7 A/m. Since asymmetric DGMOSFET has the advantage that channel length and channel thickness can significantly minimize, and short channel effects reduce, DIBL is investigated for the ratio of channel length vs. thickness in this study. As a results, DIBL is greatly influenced by the ratio of channel length vs. thickness. We also know DIBL is greatly changed for bottom gate voltage, top/bottom gate oxide thickness and channel doping concentration.