• Title/Summary/Keyword: design-for-testability

Search Result 60, Processing Time 0.024 seconds

A Non-Scan Design-For-Test Technique for RTL Controllers/Datapaths based on Testability Analysis (RTL 회로를 위한 테스트 용이도 기반 비주사 설계 기법)

  • Kim, Sung-Il;Yang, Sun-Woong;Kim, Moon-Joon;Park, Jae-Heung;Kim, Seok-Yoon;Chang, Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.2
    • /
    • pp.99-107
    • /
    • 2003
  • This paper proposes a design for testability (DFT) and testability analysis method for register-transfer level (RTL) circuits. The proposed method executes testability analysis - controllability and observability - on the RTL circuit and determines the insertion points to enhance the testability. Then with the associated priority based on the testability, we insert only a few of the test multiplexers resulting in minimized area overhead. Experimental results shows a higher fault coverage and a shorter test generation time than the scan method. Also, the proposed method takes a shorter test application time required.

Stepwise Refinement Data Path Synthesis Algorithm for Improved Testability (개선된 테스트 용이화를 위한 점진적 개선 방식의 데이타 경로 합성 알고리즘)

  • Kim, Tae-Hwan;Chung, Ki-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.6
    • /
    • pp.361-368
    • /
    • 2002
  • This paper presents a new data path synthesis algorithm which takes into account simultaneously three important design criteria: testability, design area, and total execution time. We define a goodness measure on the testability of a circuit based on three rules of thumb introduced in prior work on synthesis for testability. We then develop a stepwise refinement synthesis algorithm which carries out the scheduling and allocation tacks in an integrated fashion. Experimental results for benchmark and other circuit examples show that we are able to enhance the testability of circuits with very little overheads on design area and execution time.

A study on low power and design-for-testability technique of digital IC (저전력 소모와 테스트 용이성을 고려한 회로 설계)

  • 이종원;손윤식;정정화;임인칠
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.875-878
    • /
    • 1998
  • In this thesis, we present efficient techniques to reduce the switching activity in a CMOS combinational logic network based on local logic transforms. But this techniques is not appropriate in the view of testability because of deteriorating the random pattern testability of a circuit. This thesis proposes a circuit design method having two operation modes. For the sake of power dissipation(normal operation mode), a gate output switches as rarely as possible, implying highly skewed signal probabilities for 1 or 0. On the other hand, at test mode, signals have probabilities of being 1 or 0 approaching 0.5, so it is possible to exact both stuck-at faults on the wire. Therefore, the goals of synthesis for low power and random pattern testability are achieved. The hardware overhead sof proposed design method are only one primary input for mode selection and AND/OR gate for each redundant connection.

  • PDF

A New RF Test Circuit on a DFT Technique (DFT 방법을 위한 새로운 고주파 검사 회로)

  • Ryu Jee-Youl;Noh Seok-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.902-905
    • /
    • 2006
  • This paper presents a new RF testing scheme based on a design-for-testability (DFT) method for measuring functional specifications of RF integrated circuits (IC). The proposed method provides input impedance. gain, noise figure. input voltage standing wave ratio (VSWR) and output signal-to-noise ratio (SNR) of a low noise amplifier (LNA). The RF test scheme is based on theoretical expressions that produce the actual RF device specifications by output DC voltages from the DR chip.

  • PDF

ALU Design & Test for 32-bit DSP RISC Processors (32비트 DSP RISC 프로세서를 위한 ALU 설계 및 테스트)

  • 최대봉;문병인
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1169-1172
    • /
    • 1998
  • We designed an ALU(Airthmetic Logic Unit) with BIST(Built-In Self Test), which is suitable for 32-bit DSP RISC processors. We minimized the area of this ALU by allowing different operations to share several hardware blocks. Moreover, we applied DFT(Design for Testability) to ALU and offered Bist(Built-In Self-Test) function. BIST is composed of pattern generation and response analysis. We used the reseeding method and testability design for the high fault coverage. These techniques reduce the test length. Chip's reliability is improved by testing and the cost of testing system can be reduced.

  • PDF

Random Pattern Testability of AND/XOR Circuits

  • Lee, Gueesang
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.8-13
    • /
    • 1998
  • Often ESOP(Exclusive Sum of Products) expressions provide more compact representations of logic functions and implemented circuits are known to be highly testable. Motivated by the merits of using XOR(Exclusive-OR) gates in circuit design, ESOP(Exclusive Sum of Products) expressions are considered s the input to the logic synthesis for random pattern testability. The problem of interest in this paper is whether ESOP expressions provide better random testability than corresponding SOP expressions of the given function. Since XOR gates are used to collect product terms of ESOP expression, fault propagation is not affected by any other product terms in the ESOP expression. Therefore the test set for a fault in ESOP expressions becomes larger than that of SOP expressions, thereby providing better random testability. Experimental results show that in many cases, ESOP expressions require much less random patterns compared to SOP expressions.

  • PDF

On-Chip Design-for-Testability Circuit for RF System-On-Chip Applications (고주파 시스템 온 칩 응용을 위한 온 칩 검사 대응 설계 회로)

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.632-638
    • /
    • 2011
  • This paper presents on-chip Design-for-Testability (DFT) circuit for radio frequency System-on-Chip (SoC) applications. The proposed circuit measures functional specifications of RF integrated circuits such as input impedance, gain, noise figure, input voltage standing wave ratio (VSWRin) and output signal-to-noise ratio (SNRout) without any expensive external equipment. The RF DFT scheme is based on developed theoretical expressions that produce the actual RF device specifications by output DC voltages from the DFT chip. The proposed DFT showed deviation of less than 2% as compared to expensive external equipment measurement. It is expected that this circuit can save marginally failing chips in the production testing as well as in the RF system; hence, saving tremendous amount of revenue for unnecessary device replacements.

A New Design-for-Testability Circuit for Low Noise Amplifiers (저잡음 증폭기를 위한 새로운 구조의 검사용 설계회로)

  • Ryu Jee-Youl;Noh Seok-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.68-77
    • /
    • 2006
  • This paper presents a new Design-for-Testability (DfT) circuit for 4.5-5.5GHz low noise amplifiers (LNAs). The DfT circuit measures gain, noise figure, input impedance, input return loss, and output signal-to-noise ratio for the LNA without external expensive equipment. The DfT circuit is designed using 0.18m SiGe technology. The circuit utilizes input impedance matching and DC output voltage measurements. The technique is simple and inexpensive.

An Effective Multiple Transition Pattern Generation Method for Signal Integrity Test on Interconnections (Signal Integrity 연결선 테스트용 다중천이 패턴 생성방안)

  • Kim, Yong-Joon;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.39-44
    • /
    • 2008
  • Scan architecture is very effective design-for-testability technique that is widely used for high testability, however, it requires so much test time due to test vector shifting time. In this paper, an efficient scan test method is presented that is based on the Illinois scan architecture. The proposed method maximizes the common input effect via a scan chain selection scheme. Experimental results show the proposed method requires very short test time and small data volume by increasing the efficiency of common input effect.

A Design and Implementation of Wrapper for Improving Component Testability (컴포넌트의 테스트가능성 향상을 위한 래퍼 설계와 구현)

  • 송호진;최은만
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.340-342
    • /
    • 2003
  • 컴포넌트는 서드파티(third-party)소스코드 형태로 배포되지 않는 등 여러 가지 요인으로 인해 테스트가능성(testability)이 낮아지게 된다. 이렇게 낮은 테스트가능성으로 인하여 개발된 컴포넌트가 실제로 재사용되었을 때 테스트에 많은 어려움이 따르게 된다. 이러한 테스트가능성을 향상시키기 위한 방법으로서 컴포넌트에 테스트를 위한 래퍼(wrapper)를 적용할 수 있다. 본 연구에서는 테스트가능성을 향상시키기 위한 방법인 래퍼를 설계하고 구현하는 방법에 대한 연구를 수행하였다.

  • PDF