• Title/Summary/Keyword: bounded operator

Search Result 279, Processing Time 0.023 seconds

STRONG HYPERCYCLICITY OF BANACH SPACE OPERATORS

  • Ansari, Mohammad;Hedayatian, Karim;Khani-Robati, Bahram
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.91-107
    • /
    • 2021
  • A bounded linear operator T on a separable infinite dimensional Banach space X is called strongly hypercyclic if $$X{\backslash}\{0\}{\subseteq}{\bigcup_{n=0}^{\infty}}T^n(U)$$ for all nonempty open sets U ⊆ X. We show that if T is strongly hypercyclic, then so are Tn and cT for every n ≥ 2 and each unimodular complex number c. These results are similar to the well known Ansari and León-Müller theorems for hypercyclic operators. We give some results concerning multiplication operators and weighted composition operators. We also present a result about the invariant subset problem.

MORE PROPERTIES OF WEIGHTED BEREZIN TRANSFORM IN THE UNIT BALL OF ℂn

  • Lee, Jaesung
    • Korean Journal of Mathematics
    • /
    • v.30 no.3
    • /
    • pp.459-465
    • /
    • 2022
  • We exhibit various properties of the weighted Berezin operator Tα and its iteration Tkα on Lp(𝜏), where α > -1 and 𝜏 is the invariant measure on the complex unit ball Bn. Iterations of Tα on L1R(𝜏) the space of radial integrable functions have performed important roles in proving 𝓜-harmonicity of bounded functions with invariant mean value property. We show differences between the case of 1 < p < ∞ and p = 1, ∞ under the infinite iteration of Tα or the infinite summation of iterations, most of which are extensions or related assertions to the propositions of the previous results.

EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A CLASS OF HAMILTONIAN STRONGLY DEGENERATE ELLIPTIC SYSTEM

  • Nguyen Viet Tuan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.741-754
    • /
    • 2023
  • In this paper, we study the existence and nonexistence of solutions for a class of Hamiltonian strongly degenerate elliptic system with subcritical growth $$\left{\array{-{\Delta}_{\lambda}u-{\mu}v={\mid}v{\mid}^{p-1}v&&\text{in }{\Omega},\\-{\Delta}_{\lambda}v-{\mu}u={\mid}u{\mid}^{q-1}u&&\text{in }{\Omega},\\u=v=0&&\text{ on }{\partial}{\Omega},}$$ where p, q > 1 and Ω is a smooth bounded domain in ℝN, N ≥ 3. Here Δλ is the strongly degenerate elliptic operator. The existence of at least a nontrivial solution is obtained by variational methods while the nonexistence of positive solutions are proven by a contradiction argument.

EXISTENCE AND MULTIPLICITY OF SOLUTIONS OF p(x)-TRIHARMONIC PROBLEM

  • Belakhdar, Adnane;Belaouidel, Hassan;Filali, Mohammed;Tsouli, Najib
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.349-361
    • /
    • 2022
  • In this paper, we study the following nonlinear problem: $$\{-\Delta_{p}^{3}(x)u\;=\;{\lambda}V_{1}(x){\mid}u{\mid}^{q(x)-2}u\;in\;{\Omega},\\u\;=\;{\Delta}u\;{\Delta}^{2}u\;=\;0\;on\;{\partial}\Omega, $$ under adequate conditions on the exponent functions p, q and the weight function V1. We prove the existence and nonexistence of eigenvalues for p(x)-triharmonic problem with Navier boundary value conditions on a bounded domain in ℝN. Our technique is based on variational approaches and the theory of variable exponent Lebesgue spaces.

EQUALITY IN DEGREES OF COMPACTNESS: SCHAUDER'S THEOREM AND s-NUMBERS

  • Asuman Guven Aksoy;Daniel Akech Thiong
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1127-1139
    • /
    • 2023
  • We investigate an extension of Schauder's theorem by studying the relationship between various s-numbers of an operator T and its adjoint T*. We have three main results. First, we present a new proof that the approximation number of T and T* are equal for compact operators. Second, for non-compact, bounded linear operators from X to Y, we obtain a relationship between certain s-numbers of T and T* under natural conditions on X and Y . Lastly, for non-compact operators that are compact with respect to certain approximation schemes, we prove results for comparing the degree of compactness of T with that of its adjoint T*.

A Study on the Modified Construction Method far Sasaki Fuzzy Controller (Sasaki 퍼지제어기에 대한 개선된 구성방법에 관한 연구)

  • Byun, Gi-Young;Che, Wen-Zhe;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.30-39
    • /
    • 2002
  • In this paper, we proposed a new circuit construction method that reduces the number of circuit devices of fuzzy controller. Sasaki had defined a new operator to eliminate the divide circuit comparing with the center of gravity method which often using to design the fuzzy controller. In this paper we obtained the more compacted fuzzy controller's circuit by using the proposed definition of fuzzification and defuzzification than using the Sasaki's method and the fuzzification and defuzzification are reverse operation each other. Using these definitions we exhibit the new design method and circuit structure that can eliminate the bounded product(BP) circuit included in Sasaki's circuit. Using the proposed method to level controlling of the water tank, we verified the fuzzy controller's performance by using existent method and proposed method. As a result that are calculated by using the Proposed fuzzy controller to level controlling of the water tank, total numbers of blocks and devices were decreased. If the number of variables and antecedents are Be11ing larger, this method is more efficient.

  • PDF

Lq-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

  • Kim, Yong-Cheol
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.367-379
    • /
    • 2009
  • For a prime number p, let $\mathbb{Q}_p$ denote the p-adic field and let $\mathbb{Q}_p^d$ denote a vector space over $\mathbb{Q}_p$ which consists of all d-tuples of $\mathbb{Q}_p$. For a function f ${\in}L_{loc}^1(\mathbb{Q}_p^d)$, we define the Hardy-Littlewood maximal function of f on $\mathbb{Q}_p^d$ by $$M_pf(x)=sup\frac{1}{\gamma{\in}\mathbb{Z}|B_{\gamma}(x)|H}{\int}_{B\gamma(x)}|f(y)|dy$$, where |E|$_H$ denotes the Haar measure of a measurable subset E of $\mathbb{Q}_p^d$ and $B_\gamma(x)$ denotes the p-adic ball with center x ${\in}\;\mathbb{Q}_p^d$ and radius $p^\gamma$. If 1 < q $\leq\;\infty$, then we prove that $M_p$ is a bounded operator of $L^q(\mathbb{Q}_p^d)$ into $L^q(\mathbb{Q}_p^d)$; moreover, $M_p$ is of weak type (1, 1) on $L^1(\mathbb{Q}_p^d)$, that is to say, |{$x{\in}\mathbb{Q}_p^d:|M_pf(x)|$>$\lambda$}|$_H{\leq}\frac{p^d}{\lambda}||f||_{L^1(\mathbb{Q}_p^d)},\;\lambda$ > 0 for any f ${\in}L^1(\mathbb{Q}_p^d)$.

Singular Representation and Finite Element Methods

  • 김석찬
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.9-9
    • /
    • 2003
  • Let $\Omega$ be a bounded, open, and polygonal domain in $R^2$ with re-entrant corners. We consider the following Partial Differential Equations: $$(I-\nabla\nabla\cdot+\nabla^{\bot}\nabla\times)u\;=\;f\;in\;\Omega$$, $$n\cdotu\;0\;0\;on\;{\Gamma}_{N}$$, $${\nabla}{\times}u\;=\;0\;on\;{\Gamma}_{N}$$, $$\tau{\cdot}u\;=\;0\;on\;{\Gamma}_{D}$$, $$\nabla{\cdot}u\;=\;0\;on\;{\Gamma}_{D}$$ where the symbol $\nabla\cdot$ and $\nabla$ stand for the divergence and gradient operators, respectively; $f{\in}L^2(\Omega)^2$ is a given vector function, $\partial\Omega=\Gamma_{D}\cup\Gamma_{N}$ is the partition of the boundary of $\Omega$; nis the outward unit vector normal to the boundary and $\tau$represents the unit vector tangent to the boundary oriented counterclockwise. For simplicity, assume that both $\Gamma_{D}$ and $\Gamma_{N}$ are nonempty. Denote the curl operator in $R^2$ by $$\nabla\times\;=\;(-{\partial}_2,{\partial}_1$$ and its formal adjoint by $${\nabla}^{\bot}\;=\;({-{\partial}_1}^{{\partial}_2}$$ Consider a weak formulation(WF): Find $u\;\in\;V$ such that $$a(u,v):=(u,v)+(\nabla{\cdot}u,\nabla{\cdot}v)+(\nabla{\times}u,\nabla{\times}V)=(f,v),\;A\;v{\in}V$$. (2) We assume there is only one singular corner. There are many methods to deal with the domain singularities. We introduce them shortly and we suggest a new Finite Element Methods by using Singular representation for the solution.

  • PDF

COMPOSITION OPERATORS ON THE PRIVALOV SPACES OF THE UNIT BALL OF ℂn

  • UEKI SEI-ICHIRO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.111-127
    • /
    • 2005
  • Let B and S be the unit ball and the unit sphere in $\mathbb{C}^n$, respectively. Let ${\sigma}$ be the normalized Lebesgue measure on S. Define the Privalov spaces $N^P(B)\;(1\;<\;p\;<\;{\infty})$ by $$N^P(B)\;=\;\{\;f\;{\in}\;H(B) : \sup_{0 where H(B) is the space of all holomorphic functions in B. Let ${\varphi}$ be a holomorphic self-map of B. Let ${\mu}$ denote the pull-back measure ${\sigma}o({\varphi}^{\ast})^{-1}$. In this paper, we prove that the composition operator $C_{\varphi}$ is metrically bounded on $N^P$(B) if and only if ${\mu}(S(\zeta,\delta)){\le}C{\delta}^n$ for some constant C and $C_{\varphi}$ is metrically compact on $N^P(B)$ if and only if ${\mu}(S(\zeta,\delta))=o({\delta}^n)$ as ${\delta}\;{\downarrow}\;0$ uniformly in ${\zeta}\;\in\;S. Our results are an analogous results for Mac Cluer's Carleson-measure criterion for the boundedness or compactness of $C_{\varphi}$ on the Hardy spaces $H^P(B)$.

ON THE M-SOLUTION OF THE FIRST KIND EQUATIONS

  • Rim, Dong-Il;Yun, Jae-Heon;Lee, Seok-Jong
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.235-249
    • /
    • 1995
  • Let K be a bounded linear operator from Hilbert space $H_1$ into Hilbert space $H_2$. When numerically solving the first kind equation Kf = g, one usually picks n orthonormal functions $\phi_1, \phi_2,...,\phi_n$ in $H_1$ which depend on the numerical method and on the problem, see Varah [12] for more details. Then one findes the unique minimum norm element $f_M \in M$ that satisfies $\Vert K f_M - g \Vert = inf {\Vert K f - g \Vert : f \in M}$, where M is the linear span of $\phi_1, \phi_2,...,\phi_n$. Such a solution $f_M \in M$ is called the M-solution of K f = g. Some methods for finding the M-solution of K f = g were proposed by Banks [2] and Marti [9,10]. See [5,6,8] for convergence results comparing the M-solution of K f = g with $f_0$, the least squares solution of minimum norm (LSSMN) of K f = g.

  • PDF