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ON THE M-SOLUTION OF
THE FIRST KIND EQUATIONS

DonG IL RiM, JAE HEON YUN AND SEOK JONG LEE

1. Introduction

Let K be a bounded linear operator from Hilbert space H; into Hilbert
space Hz. When numerically solving the first kind equation K f = ¢, one
usually picks n orthonormal functions ¢y, ¢, . . . » ¢n in Hq which depend
on the numerical method and on the problem, see Varah [12] for more
details. Then one finds the unique minimum norm element fm € M that
satisfies ||[K fi —g|| = inf{ ||[Kf—g| : fe M}, where M is the linear
span of ¢1, ¢2,... ,¢n. Such a solution fas € M is called the M-solution
of Kf = g. Some methods for finding the M-solution of K f = ¢ were
proposed by Banks [2] and Marti [9, 10]. See [5, 6, 8] for convergence
results comparing the M-solution of K f = g with fo, the least squares
solution of minimum norm (LSSMN) of K f = 4.

Throughout this paper, it is assumed that H, and H; are Hilbert
spaces and M is a finite dimensional subspace of H,. Let B(H,, H,)
denote the space of all bounded linear operators from H; to Hs, and for
K € B(Hy,Ha) let Ky denote the restriction of K to a subspace N of
Hy,ie, Ky = K|y : N > H, is an operator such that Kyz = Kz
forallz € N. For K ¢ B(H,, H;), K* denotes the adjoint operator in
B(Hz, Hy) and K': R(K) + R(K)* — Hy denotes the Moore-Penrose
generalized inverse of K [4], where R(K) refers to the range space of
K and R(K)* refers to the orthogonal complement of R(K). Let (-, )
denote an inner product and || - || denote a corresponding norm, and let
(¢1,02,...,6,) denote the closed linear span of ¢1,¢a,..., ¢,.
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It is well-known that the problem of solving the first kind equation
K f = g is ill-posed in that arbitrarily small perturbations in the data
g or K may cause an arbitrarily large perturbation in the solution f
[1, 11]. A typical example of such an ill-posed problem is the Fredholm
integral equation of the first kind. The purpose of this paper is to develop
a new method producing the M-solution to K f = g which is well- posed
under perturbations in both K and g.

This paper is organized as follows. First, it is shown that the M-
solution of Kf = g is well-posed under perturbation in g, but is not
well-posed under perturbations in both K and g. Then, a generalized
Gram-Schmidt (GGS) method for finding the M-solution of Kf = g is
proposed, and it is shown that a modified version of the GGS method,
called the GGS(8), provides the M-solution to K f = g which is well-
posed under perturbations in both K and g. Lastly, numerical imple-
mentation of the GGS(6) method is described in detail, and then some
numerical results obtained by applying this method to the first kind
Fredholm integral equations are reported.

2. Numerical method and its well-posedness

We begin this section by giving a precise definition for the well-
posedness of the M-solution to K f = g.

DEFINITION 2.1. Let K € B(Hi, H;). The M-solution of the first
kind equation K f = g is well-posed under perturbations in both K and
g if for each ¢ > 0, there exist 6, > 0 and 6, > 0 such that for all
g€ Hyand K € B(H1,H2) with |lg — gl < & and ||[K — K| < 52,
| fae — fm| < e where far and fur are the M-solutions of K f =
and K f = §, respectively. That is, if the M-solution of Kf = ¢ depends
continuously on the data K and g, then the M-solution is said to be
well-posed under perturbations in both K and g.

In the above definition, if K is fixed and only g is allowed to vary, then
the M-solution of Kf = g is said to be well-posed under perturbation
in ¢. Similarly, the well-posedness of the M-solution to Kf = ¢ under
perturbation in i’ can be defined.
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THEOREM 2.2. The M-solution of K f = g is well-posed under per-
turbation in g, but it is not well-posed under perturbation in K, where

K € B(Hy, Hy).

Proof. Since M is finite dimensional, K has closed range. Thus K ztw

is a bounded linear operator. For an element § in H,, let fys and fM
denote the M-solutions of K f = ¢ and K f = §, respectively. Then

1fse = fall = I1K}6 = Klggll < 1K 11§ - gl

Therefore, the M-solution is well-posed under perturbation in g.

To see that the M-solution is not well-posed under perturbation in
K,let Hy = Hj, ¢, and ¢, be orthonormal vectors in Hy, M = (¢1, $2),
and let P; be the orthogonal projection of Hy onto (¢;) for : = 1,2. Then
define K = Py and K™ = P, + %Pz, where n is a natural number. For
g = a1¢1 + azg with az # 0, let far and fz(v'[l) denote the M-solutions
of Kf = g and K™ f = g, respectively. Then, we have

£ = fall = 1K) g = Kol
= |[(a1¢1 + naage) — ar ||
= nlay|.

Since |k — K™ = L K™ converges to K as n — oco. However,

from the above equality, f1(\;) does not converge to fas as n — oo. This
completes the proof.

The above theorem implies that the M-solution of the first kind equa-
tion K f = g is not well-posed under perturbations in both K and g. We
now introduce a generalized Gram-Schmidt (GGS) method for calculat-
ing the M-solution of K f = ¢ which is based on the Gram-Schmidt
orthogonalization procedure, where K € B(H;, H,). From now on, [
denotes an index set {1,2,...,n}. Let {¢;}ics be an orthonormal basis
for M. The GGS method on K relative to M consists of two steps. The
first step of the GGS method is as follows:

Compute y; = K¢,

4
Let ¢ = { Il ff v #0
0 ify; =0
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Fori:=2,...,n
i—1
yi=K¢i — > (Koi,;)¥;
j=1
Let 4; :{ T fyi#0
0 ify; =0
) ] . 1 ify; 20
From this step, it can be easily seen that ||y;] = i ,
0 ify; =0

(i) = O for ¢ # j, and (¢1,...,¢;) = (Ké1....,K¢;) for each
1€ 1.

To describe the second step of the GGS, we need the following theorem
which underlies this step. Define the n x n matrix A = (a;;), where
a;; = (K¢;,v;), and the vector b = (b;) € R", where b; = (g,%,). Note
that a;; = 0 for ¢ > j and a;; = (K¢i,%:) = (vi, ¥i) = |lyi||. Recall that
the elements of M can be written as ) 7_, 8;¢;-

THEOREM 2.3. E?:l B;¢; is the M-solution of K f = ¢ if and only
if the vector z = (f;) € R™ is the minimum 2-norm solution of Az = b,
ie., z = A, where A" is the Moore-Penrose generalized inverse of the
matrix A [7)].

Proof. Let P denote the orthogonal projection of Hy onto R(K ).
Suppose that f = Z?:l Bjé; is a solution to K f = Pg. Since (g —Pg) €

(Ké1,...,K¢,)t, by the construction of {th;} (¢9—Pg) € (31,... , %)t
Thus, for each 1 € I

0 :(g'—Pg7¢l) = (g—I{j:alpl) = (ga¢i)— (Kfawz)

It follows that for each 1 € I

n

b= (g,%) = > Bi(Kgj,00:) =D ai;By.
=

Jj=1

Hence the vector z = (5;) is a solution of Az = b.
Suppose that z = (f3;) is a solution to Az = b. Let f = E?___l Bid;.
Since Az = b, for each i € I b; = 3.7_, a;;B; and so (g,%:) = (K f,¢:).
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Thus, (¢—K f, ¥;) = 0for each i € I. This implies that (g—Kf, K¢i)=0
for each i € I and hence (¢~ K f) € R(Ks)*. Therefore, f= > =1 Bid;
is a solution to Kf = Pg. R

Note that for f = S°7_, ;¢ and = = (8;), IFII* = S0y 1852 = l<]
Since the M-solution of Kf = ¢ is the minimum norm element in M
satisfying K f = Pg, from the above arguments the theorem holds.

From this theorem, we can see that the second step of the GGS
method is to find the minimum norm solution z = (B;) of Az = b and
then form the M-solution E;‘:l Bjé;. Notice that the GGS method does
not require the linear independence of K¢, ... , K ¢,, whereas the Banks
method [2] does require the linear independence of K 61,... , K¢,.

When one implements the GGS method on a computer with finite
precision arithmetic, it is very unlikely to have an exact zero for yi- This
fact is a main motivation for developing a modified version of the GGS
method which is called the GGS(6) method from now on, where § > 0
is a fixed small constant. The choice of a suitable constant § is dis-
cussed later. The GGS(6) method on K relative to M also consists of
two steps. The first step of the GGS(8) method is as follows:

Compute y; = K¢,

o f > 6
Let oy = { Wl lyall >

0 ifflll <6
FOI‘Z.—_—2’“. ,n

-1
yi=Kéi — > (Koi, i)

i=1

Let g = 4 Tl Elwll 28
0 if flull <6

1 if flysf] 26

0 if lyif] <&’
(¢i,¥j) =0for i # j, and (41,... Wi) C(K¢y,... ,Ké;) foreachi € I
which is not the same as the corresponding one of the GGS. The second
step of the GGS(6) is to compute Atb and then form the approzimate

From the above step, it is easy to see that l¥i]] = {
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M -solution Z;___I(A*b)jq&j to Kf = g, where A and b are defined the
same as in the GGS method. From now on, p refers to the positive real
number min{ |Jyi|| : ||yl >0, ¢ € I}.

If & is chosen so that 0 < é < y, then ||y;|] < ¢ is equivalent to y; =0,
and hence the GGS(§) method is mathematically the same as the GGS
method. For this §, it is clear that (¢1,...,%:) = (Ké1,... ,K¢;) for
each 7 € I. Therefore, if 0 < é§ < g, then by Theorem 2.3 the approxi-
mate M-solution Z;’zl(A*b)jgbj obtained from the GGS(8) becomes the
(exact) M-solution to K f = g (it is of course assumed that all operations
are carried out using infinite precision arithmetic). When using finite pre-
cision arithmetic, choosing a constant é a priori so that E;’zl(/ﬁb) ib;
is the M-solution to K f = g is not an easy problem, but numerical
experiments show that such a § may be chosen as a real number which
is slightly greater than the unit roundoff for the specific computer to be
used (see Section 3).

THEOREM 2.4. Let K € B(H,,H2). If § > 0 is a fixed constant cho-
sen sufficiently small, then the GGS(6) method provides the M-solution
of K f = ¢ which is well-posed under perturbations in both K and g. Ac-
tually, the assumption of this theorem means that ¢ may be chosen to
be any real number such that 0 < § < p.

For the proof of this theorem, we will use the following notations. Let
K¢ € B(Hy, H,) and g¢ € Hy such that |[K — K¢|| <eand |lg—g°| <
€. Let {¢:}icsr be an orthonormal basis for M C H;. Let yi’s and ;’s be
generated from the GGS(6) on K relative M, and let y{’s and 9{’s be gen-
erated from the GGS(é) on K* relative to M. The symbols a;;, b;, A, and
b are defined the same as before. Similarly, we define af; = (K*é;,%;),
b = (9%, ¢5), A° = (aj;), and b* = (b;). From the construction of the
GGS(6), the following Lemma 2.5 can be easily shown.

lyall - if [lysl] > &

0 ifflyll <6
I. Moreover, if 0 < 6 < p, then a;; =0 for: > j.

LEMMA 2.5. Ifé > 0, then a;; = { for each 1 €

LEMMA 2.6. Suppose § > 0 is chosen so that § # |lyi| for all : €
I. Then, for each i € I, lim._,0 y{ = y; and lim._o ¢, = ;.

Proof. We proceed by mathematical induction on the index :. For
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t=1,y1 = K¢y and y§ = K¢;. Then
(1) lyi —wll = K¢ — Kou|| < |K* = K|} <e.

From the inequality (1), im0 y{ = y1. If ||ys]] < 6, then |ly{|] < ¢
for sufficiently small € and so 9§ = ¢; = 0. Clearly, im0 ¥{ = 91
for ||ly1]] < 6. Since § # ||y1||, we consider the case ||y1]| > é. Since
lin;le_.o y$ = y1, |lyf]l > 6 for sufficiently small ¢ and hence ¥ =

ﬁ%—”. Note that ||¢o; — ¥§]| < WQI””yl — y§|l. Therefore, lim,_o ¥ = ¢

for the case of ||y1|| > 6. Next, we suppose that lim..oy{ = y; and
lime_o ¥{ = 9, for all ¢+ < k. Then,

k—1 k—1
lye — yill =K éx — > (K k. i) — K<k + Y (K e, v5)¥5]l
j=1 1=1

(2) k-1
SIS = K[+ (K e, $5)05 — (K ok, ¥5)51].
=1

On the other hand, for each ;7 < &,

(K Bk, b5)9b5 — (K ¢x, 5)¢5]]
SNE Br Y i)lllb5 — 5l + (K Gr,15) — (Kb, )|l1%5]]
< KN 95 — il + 1(n, (K) 95 = K™9;))
< RN N5 = 5l + ICKS) 5 — K9
< RN N5 = il + NCE) I N5 — o5l + (RS — Kl
= 2| K| II¥5 — sl + 1K = K.

(3)

Combining the inequalities (2) and (3), one obtains

k-1
lyk = yill < KNE = K||+ 2K 15 — o]
4 =t
(4) k-1
<ke+2(|Kll+ €)Yl — w5l

i=1
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By the induction hypothesis and the inequality (4), lime_oy§ = yi. If
llyell < &, then |lyf|l < & for sufficiently small ¢ and hence vy =
i = 0. If |lyx|| > 6, then |lyg]] > 6 for sufficiently small € and hence

Yy = ﬁﬁ Since lime_,oyf = yi, lim._p Yy = v for the case of
llyxll > 6.

LEMMA 2.7. If 6 > 0 is chosen so that § # ||yi|| for all i € I, then
lim,_q [|A¢ — 4]z = 0.

Proof. Notice that 4 = (ai;) and A€ = (af;), where a;; = (K ¢;, i)
and af; = (K*¢;, ). Then,

|ai; — af;| = (K ¢j, i) — (Kb, %5)]
= |(¢j, K*vi — (K)*95)]
< IR — (K|
< K = K€Y+ 1B s - 5l
<e+ (1K + )l — ¥l

Since [|[A — Affloc = maxXigi<n )iy |@i; — a;|, from the inequality (5)
|4 - Ao < ”lfgﬁsxn(f + (1K1 + e)llws — {]1)-

Since lim,—.o 9§ = ¢; from Lemma 2.6 and n < oo, limc_o ||4 - A¢||co
0. Note that ||A—-A‘|l; < \/n||A— A . Therefore, lim,_q ||A— A%||2
0.

(I

LEMMA 2.8. If B is an n X n matrix and |E|z < m, then
rank(B) < rank(B + E). (See [7, Theorem 8.15] for the proof.)

LEMMA 2.9. If 0 < § < u, rank(A) = rank(A¢) for sufficiently small
€.

Proof. By Lemma 2.7, lim_ ||A—A¢|]> = 0. Therefore, from Lemma
2.8, rank(A4) < rank(A®) for sufficiently small e. Hence, if rank(A) = n,
then rank(A€) = n for sufficiently small e.

Suppose that rank(A) < n. It is easy to show that a;; = (K¢, v;) =
(yi, i) = 0 if and only if ¢ € Iy, where Iy = {i € I |||ys]| < 6}. Since
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0 < 6 < p, rank(A) equals the cardinality of I — I;. From Lemma 2.6,
we have lim, .o yf = y; for all : € I. Hence, for each i € I, lly§]l < é
when e is sufficiently small. If we let I§ = {s € I ||jyf]] < 6}, we see
that Io C I§ for sufficiently small e. If ¢ € I§, then a5; = (K¢¢;,9f) =0
for all j € I. Hence, rank(A¢) is not greater than the cardinality of I —
I§. Since I —I§ C I — I, for sufficiently small e, we must have rank(A¢) <
rank(A). Therefore, rank(A¢) = rank(A) for sufficiently small e.

LEMMA 2.10. Let B and B¢ be n x n matrices, and let ¢ and c¢ be

vectors in R". Suppose that w = BYc and w® = (B*)t¢*. If ||B— B, <
TBLHT; and rank(B¢) < rank(B), then rank(B¢) = rank(B) and

|B — B|l2 [lw]lz 4 llc = ‘||z
1—||B— B2 ||B|2

|B = Bll2 |B]l2 |lc = Bwl}s
1—||B = B¢||2 || BY|2

o — s < B!

+ + 1B = Bz [lwlz|.

(See [7, Theorem 9.7] for the proof.)

Proof of Theorem 2./. Without the loss of generality, we can assume
that 0 < 6 < p. Let z = A%b = (B;) and 2¢ = (A°)Tbc = (B¢). Then,
fv =377, Bisi is the M-solution to K f = ¢ and fir = o1, Bédiis the
approximate M-solution to K¢f = g¢¢. Since {¢;}ics is an orthonomal
set, [[fsr—figll = |lz—2¢||2. By Lemmas 2.7 and 2.9, lim,_., |A—Af2 =
0 and rank(A4) = rank(A€) for sufficiently small e. Therefore, applying
Lemma 2.10, one obtains

A — Az flz]l2 + 11 — 52
”fM fM” = ” ”2 1— “A _ A(Ilz ”Atllg

14— Alls JAM]2 [|b — Azl2

+ + |4 — A2 ||z]|2
oA=&, ”
for sufficiently small e. Since lim ¢ ||A — A¢|l, = 0 and lim._ |o —
bllz = 0, we see that lim._o | far — f§;]| = 0. Hence, the GGS($)

method provides the M-solution to K f = g which is well-posed under
perturbations in both K and g.
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EXAMPLE 2.11. Let H; = Hj, ¢; and ¢2 be orthonormal vectors in
Hy, M = (¢1,¢2), and let P; be the orthogonal projection of H; onto
(¢i) for i = 1,2. Define K = P; and K¢ = P, +€P,. Let ¢ = a1¢1 +asé,
with @z # 0 and ¢ = a1¢1+(az+€)¢2. Then |[K~K¢|| = |lg—9¢°] =,
Koy =¢1, Koo =0, K¢ = ¢, and K¢2 = €¢. Choose § = % Then,
it is easy to see that both the GGS(é) and the GGS provide the exact
M-solution fyr = ay¢y) of Kf = g. We now consider the perturbed
problem K¢f = g¢. Using the GGS method, y§ = ¥f = é1, v5 = eda,
and 5 = ¢ are generated, and so f§; = a1¢1 + (1 + -‘5}) ¢2. When ¢
converges to 0, fj; never converges to far even if K* and ¢* converge to
K and g respectively.

On the other hand, when using the GGS(8) method, y§{ = ¥ = ¢4,
ys = €¢2, and Y5 = @2 (if € > ) or 0 (if € < §) are generated. Hence, f§,
is equal to far for every e which is less than §. Therefore, the approxi-
mate M-solution f}, for K°f = ¢¢ obtained from the GGS(§) method
converges to the M-solution far of K f = g when e converges to 0.

3. Numerical implementation of the GGS(¥)

In this section, it is assumed that K : Ly[a,b] — Ls[e,d] is an integral
operator defined by (K f)(s) = f k(s,t)f(t)dt with the kernel function
k(s,t) € La([e,d] x [a,b]). The numerlcal method commonly used for
integration of the form f_ll f(z)dz is the Gauss-Legendre quadrature
method. To this end, it is convenient to change variables so that we can
work on Lz[—1,1] instead of Ls{a,b] and Li[e,d]. First, we show how
the change of variables should be handled for the problem of finding the
M-solution of (K f)(s) = g(s) for all s € [c,d], where g € Ls[c, d].

Let s = hy(z) = -C—%—‘!—k%m andt = hy(y) = 2%'—11 - b;“y, where —1 <
at,y < 1. Put ko(z,y) = k(h1(2), h2(y)), G(z) = g(A1(z)), and F(y) =

f(h2(y)). Define an integral operator Ko : La[—1,1] — Lo[—1,1] by
(KoF)(z) = f ko(z,y)F(y)dy for F € Ly[—-1,1] and z € [—1,1]. Then,
(K f)(s) = g(s) is equivalent to (Ko F)(z) = $2-G(z). Suppose that N is
a closed subspace of Ls[a, b] with orthonormal basis {¢;(t)};cs, where J
1s an index set which is at most countable. Define ¥;(y) = ¢,(h2(y)) for
each 7 € J. Let Ny be a subspace of La[~1, 1] which is the closed linear
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span of {¢;(y)}jes. It is clear that (¢:, ¢j)a g = 6ij = 9;—“(2/1,",1,!)]‘)[_1’1],
where 6;; represents the Kronecker delta, and (-, -)(4,5) and (-, -){=1 1) refer
to the inner products on Lj[a,b] and Lp[—1,1! respectively. Using the
above notations, we obtain the following.

LEMMA 3.1. g € K(N) if and only if G € Ko(Ny). Moreover, g €
K(N) if and only if G € Ro(Ny), where the bars denote the closure of
the given subspaces.

Let P be the orthogonal projection of L;[c,d] onto K(N). Define
Py 1 Lo[-1,1] — L,[-1,1] by (PyG)(z) = (Pg)(hi(z)), where g =
G o hi' € Ljlc,d). Then, it is easy to show that P, is the orthogonal
projection of Ly[—1,1] onto Ko(Np). Since K f = Pg is equivalent to
KoF = PO(E‘ETIG) and (f, a4 = é-g—q(F, F)_1,1), the following theorem

1s immediately obtained.

THEOREM 3.2. fn(t) is the N-solution of Kf = g if and only if
Fny(y) = (fn 0 ha)(y) is the No-solution of KoF = £2-G.

By taking N = Lj[a.b] in Theorem 3.2, we obtain the following.

COROLLARY 3.3. fo(t) is the LSSMN of K f == ¢ if and only if Fy(y) =
(fo o h2)(y) is the LSSMN of KoF = $2-G.

Let’s now consider the numerical implementation of the GGS(§) for
approximating the M-solution of the form

(Kf)(s)= /0 k(s,t)f(t)dt = g(s), 0<s<1.

First, we will transform it to the equivalent problem

1

(RoF)(z) = /lko(:c,y)F(y)dy =2G(z), —-1<z<1,

by using the change of variables s = 1% and t = %1, where ko(z,y) =

k(32,38 Py) = f(l:zt.’!.)’ and G(z) = g(1$%£). Next, we will choose

an n dimensional subspace (My),, of L,[—1,1] so that (M), = (¥1(y),
- »¥n(y)), where {t;(y)}, is an appropriate orthonormal set in
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La[—1,1]. As a typical example for such an orthonormal set in L2[—1, 1],
the normalized Legendre polynomials can be chosen. Then, the (Mp),-
solution F,(y) of the transformed problem K¢F = 2G is approximated
using the GGS(4) method. Let ﬁ’n(y) denote the approximate (Mo)n-
solution to KoF = 2G obtained from the GGS(§). Note that from The-
orem 3.2, fn(t) = Fp(2t — 1) is the M, -solution of the given problem
Kf = g, where M, = (¢1(t),... ,¢.(t)) and ¢;(¢t) = ¢;(2¢t — 1). Thus,
the approximate My-solution to K f = g computed from the GGS($) is
given by fn(t) = E,(2t — 1).

All computings were done in Fortran using double precision arith-
metic which means about fifteen decimal digits of accuracy. The number
6 for the GGS(8) method was taken to be 107!3. The second step of
the GGS(6) requires the computation of the minimum norm solution of
Az = b. If A has full rank, then A is an upper triangular matrix and so
the minimum norm solution of Az = b is solved by the Linpack subrou-
tine DTRSL [3, Chapter 6] which solves a linear system with triangular
matrix. If A does not have full rank, then the minimum norm solution
of Az = b is solved using the Linpack subroutine DSVDC [3, Chapter
11} which carrys out the singular value decomposition of a matrix. The
decision of whether or not A has full rank was made in the following
way: If ||yi]] < & for an 7 € I, then all elements of the i-th row of A
consist of zeros and hence A does not have full rank. If ||y;|]] > 6 for
every 1 € I, then A has full rank.

The DSVDC supplies {o1,...,0,}, the singular values of A. In or-
der to decide which of o;’s are nonzero, the same tolerance § mentioned
above is used. In other words, if o; < §, then o; is sct to zero. All inner
products required during the GGS(é) were done using the repeated 4-
point Gauss-Legendre quadrature method. The examples tested in this
paper are described below. For each example, fo denotes the LSSMN to
Kf=g,and (Mo)n = (¥1(y),... ,¥n(y)) is chosen as an n-dimensional
subspace of Ly[—1,1], where ¥,(y) is the normalized Legendre polyno-
mial of degree (¢ —1). The exact M,-solution f,, is also provided in each
of the examples below if possible.

EXAMPLE 3.4. Let k(s,t) = s+t and g(s) = s. Then fo(t) = 4 — 6¢,
and f,(t) = fo(t) for n > 2.
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EXAMPLE 3.5. Let k(s,t) = cos(st) and g(s) = 82 4 cos =1 Then
fo(t) =t, and f,(t) = fo(t) for n > 2.

EXAMPLE 3.6. Let k(s,t) = (s — ¢)? and g¢(s) = s? — 25+ 1. Then
fo(t) = 15¢> — 17t + 2, fo(t) = & — 2¢, and fo(t) = fo(t) for n > 3.

EXAMPLE 3.7. Let k(s,t) =sin2(s+¢—1) and g(s) = 5sin(2s — 1) +
3cos(2s — 1). Then fo(t) = (-2-—4_1;?) cos(2t — 1) + (5=2—) sin(2t — 1),
fz(t) = 25?111 + 2(sin 13—cosl)(2t - 1)’ and so on.

The numerical results for the above examples are summarized in Table
1| fa— fa || is computed to see how close the approximate M,-solution fn
obtained from the GGS(6) is to the exact M,-solution f,, and || fo — .||
is computed to see how well the f, approximates fo. Since the exact M-
solution f, for Example 3.7 is not available by hand calculation if n > 3,
the value of ||f, — f,|| is not listed in Table 1 for n = 4 and 5. The
numbers in Table 1 under the column ||f, — f.|| range from 1016 to
10713, which shows numerically that the GGS(é) is a well-posed method
for finding the M-solution to K f = ¢g. As can be seen from Table 1, for
Examples 3.4 to 3.6 fn converges very fast to fo, whereas for Example 3.7
fn converges very slowly to fy. This is because we cannot approximate
siny and cosy very accurately using low-degree Legendre polynomials.

If we choose (M), = (siny,cosy) for Example 3.7, then it is easy
to see that fa(t) equals fo(t). For this choice of (Mp)2, the computed
value of ||fo — f2|| = ||fz — fg” is about 107! i.e., the computed M,-
solution ng is a good approximation to fy as well as f;. Hence, in order
for the computed M, -solution fn to approximate fp well, it is natural
to choose M,, to reflect a priori knowledge of the fo. Since the goal of
this paper is to develop a well-posed method for finding the M-solution
to Kf = g, the problem of choosing a suitable subspace M, so that f,
can approximate fy well is not considered herein and it will be studied
in the future work.
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Table 1. Numerical results for the GGS(6)

Example n Ifn ~ fall Ifo = fall
2 5.10 x 10~1° 5.10 x 10—1°
3.4 3 5.89 x 10—1% 5.89 x 10~1%
4 5.89 x 1015 5.89 x 1015
2 1.09 x 10-13 1.09 » 10-13
3.5 3 1.09 x 10—13 1.09 x 10-13
4 1.09 x 10-18 1.09 x 1015
2 3.74 x 10—1¢ 1.1932
3.6 3 1.96 x 10—13 1.96 » 1015
4 1.96 x 1015 1.96 x 10-15
2 6.53 x 10—114 7.08 x 10!
3.7 3 1.98 x 1013 5.75 x 10~!
4 5.54 x 101
5 5.53 x 101!
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