ON THE M-SOLUTION OF THE FIRST KIND EQUATIONS DONG IL RIM, JAE HEON YUN AND SEOK JONG LEE #### 1. Introduction Let K be a bounded linear operator from Hilbert space H_1 into Hilbert space H_2 . When numerically solving the first kind equation Kf = g, one usually picks n orthonormal functions $\phi_1, \phi_2, \ldots, \phi_n$ in H_1 which depend on the numerical method and on the problem, see Varah [12] for more details. Then one finds the unique minimum norm element $f_M \in M$ that satisfies $||Kf_M - g|| = \inf\{ ||Kf - g|| : f \in M \}$, where M is the linear span of $\phi_1, \phi_2, \ldots, \phi_n$. Such a solution $f_M \in M$ is called the M-solution of Kf = g. Some methods for finding the M-solution of Kf = g were proposed by Banks [2] and Marti [9, 10]. See [5, 6, 8] for convergence results comparing the M-solution of Kf = g with f_0 , the least squares solution of minimum norm (LSSMN) of Kf = g. Throughout this paper, it is assumed that H_1 and H_2 are Hilbert spaces and M is a finite dimensional subspace of H_1 . Let $B(H_1, H_2)$ denote the space of all bounded linear operators from H_1 to H_2 , and for $K \in B(H_1, H_2)$ let K_N denote the restriction of K to a subspace N of H_1 , i.e., $K_N = K|_N : N \to H_2$ is an operator such that $K_N x = K x$ for all $x \in N$. For $K \in B(H_1, H_2)$, K^* denotes the adjoint operator in $B(H_2, H_1)$ and $K^{\dagger} : R(K) + R(K)^{\perp} \to H_1$ denotes the Moore-Penrose generalized inverse of K [4], where R(K) refers to the range space of K and $R(K)^{\perp}$ refers to the orthogonal complement of R(K). Let (\cdot, \cdot) denote an inner product and $\|\cdot\|$ denote a corresponding norm, and let $\langle \phi_1, \phi_2, \ldots, \phi_n \rangle$ denote the closed linear span of $\phi_1, \phi_2, \ldots, \phi_n$. Received June 20, 1994. Revised November 7, 1994. AMS Classification: 65R20, 65J10, 45B45, 45L10. Key word: M-solution, first kind equation well-posed. This paper was supported (in part) by Chungbuk National University Research Foundation, 1993. It is well-known that the problem of solving the first kind equation Kf = g is ill-posed in that arbitrarily small perturbations in the data g or K may cause an arbitrarily large perturbation in the solution f [1, 11]. A typical example of such an ill-posed problem is the Fredholm integral equation of the first kind. The purpose of this paper is to develop a new method producing the M-solution to Kf = g which is well-posed under perturbations in both K and g. This paper is organized as follows. First, it is shown that the M-solution of Kf=g is well-posed under perturbation in g, but is not well-posed under perturbations in both K and g. Then, a generalized Gram-Schmidt (GGS) method for finding the M-solution of Kf=g is proposed, and it is shown that a modified version of the GGS method, called the $GGS(\delta)$, provides the M-solution to Kf=g which is well-posed under perturbations in both K and g. Lastly, numerical implementation of the $GGS(\delta)$ method is described in detail, and then some numerical results obtained by applying this method to the first kind Fredholm integral equations are reported. ## 2. Numerical method and its well-posedness We begin this section by giving a precise definition for the well-posedness of the M-solution to Kf = g. DEFINITION 2.1. Let $K \in B(H_1, H_2)$. The M-solution of the first kind equation Kf = g is well-posed under perturbations in both K and g if for each $\epsilon > 0$, there exist $\delta_1 > 0$ and $\delta_2 > 0$ such that for all $\hat{g} \in H_2$ and $\hat{K} \in B(H_1, H_2)$ with $\|g - \hat{g}\| < \delta_1$ and $\|K - \hat{K}\| < \delta_2$, $\|f_M - \hat{f}_M\| < \epsilon$, where f_M and \hat{f}_M are the M-solutions of Kf = g and $\hat{K}f = \hat{g}$, respectively. That is, if the M-solution of Kf = g depends continuously on the data K and g, then the M-solution is said to be well-posed under perturbations in both K and g. In the above definition, if K is fixed and only g is allowed to vary, then the M-solution of Kf = g is said to be well-posed under perturbation in g. Similarly, the well-posedness of the M-solution to Kf = g under perturbation in K can be defined. THEOREM 2.2. The M-solution of Kf = g is well-posed under perturbation in g, but it is not well-posed under perturbation in K, where $K \in B(H_1, H_2)$. *Proof.* Since M is finite dimensional, K_M has closed range. Thus K_M^{\dagger} is a bounded linear operator. For an element \hat{g} in H_2 , let f_M and \hat{f}_M denote the M-solutions of Kf = g and $Kf = \hat{g}$, respectively. Then $$\|\hat{f}_M - f_M\| = \|K_M^{\dagger} \hat{g} - K_M^{\dagger} g\| \le \|K_M^{\dagger}\| \|\hat{g} - g\|.$$ Therefore, the M-solution is well-posed under perturbation in g. To see that the M-solution is not well-posed under perturbation in K, let $H_1 = H_2$, ϕ_1 and ϕ_2 be orthonormal vectors in H_1 , $M = \langle \phi_1, \phi_2 \rangle$, and let P_i be the orthogonal projection of H_1 onto $\langle \phi_i \rangle$ for i = 1, 2. Then define $K = P_1$ and $K^{(n)} = P_1 + \frac{1}{n}P_2$, where n is a natural number. For $g = \alpha_1\phi_1 + \alpha_2\phi_2$ with $\alpha_2 \neq 0$, let f_M and $f_M^{(n)}$ denote the M-solutions of Kf = g and $K^{(n)}f = g$, respectively. Then, we have $$||f_M^{(n)} - f_M|| = ||(K_M^{(n)})^{\dagger} g - K_M^{\dagger} g||$$ $$= ||(\alpha_1 \phi_1 + n\alpha_2 \phi_2) - \alpha_1 \phi_1||$$ $$= n|\alpha_2|.$$ Since $||K - K^{(n)}|| = \frac{1}{n}$, $K^{(n)}$ converges to K as $n \to \infty$. However, from the above equality, $f_M^{(n)}$ does not converge to f_M as $n \to \infty$. This completes the proof. The above theorem implies that the M-solution of the first kind equation Kf=g is not well-posed under perturbations in both K and g. We now introduce a generalized Gram-Schmidt (GGS) method for calculating the M-solution of Kf=g which is based on the Gram-Schmidt orthogonalization procedure, where $K \in B(H_1, H_2)$. From now on, I denotes an index set $\{1, 2, \ldots, n\}$. Let $\{\phi_i\}_{i \in I}$ be an orthonormal basis for M. The GGS method on K relative to M consists of two steps. The first step of the GGS method is as follows: Compute $$y_1 = K\phi_1$$ Let $\psi_1 = \begin{cases} \frac{y_1}{\|y_1\|} & \text{if } y_1 \neq 0 \\ 0 & \text{if } y_1 = 0 \end{cases}$ For $$i = 2, \dots, n$$ $$y_i = K\phi_i - \sum_{j=1}^{i-1} (K\phi_i, \psi_j)\psi_j$$ Let $\psi_i = \begin{cases} \frac{y_i}{\|y_i\|} & \text{if } y_i \neq 0\\ 0 & \text{if } y_i = 0 \end{cases}$ From this step, it can be easily seen that $\|\psi_i\| = \begin{cases} 1 & \text{if } y_i \neq 0 \\ 0 & \text{if } y_i = 0 \end{cases}$, $(\psi_i, \psi_j) = 0$ for $i \neq j$, and $(\psi_1, \dots, \psi_i) = (K\phi_1, \dots, K\phi_i)$ for each $i \in I$. To describe the second step of the GGS, we need the following theorem which underlies this step. Define the $n \times n$ matrix $A = (a_{ij})$, where $a_{ij} = (K\phi_j, \psi_i)$, and the vector $b = (b_i) \in R^n$, where $b_i = (g, \psi_i)$. Note that $a_{ij} = 0$ for i > j and $a_{ii} = (K\phi_i, \psi_i) = (y_i, \psi_i) = ||y_i||$. Recall that the elements of M can be written as $\sum_{j=1}^n \beta_j \phi_j$. THEOREM 2.3. $\sum_{j=1}^{n} \beta_{j} \phi_{j}$ is the M-solution of Kf = g if and only if the vector $z = (\beta_{j}) \in R^{n}$ is the minimum 2-norm solution of Ax = b, i.e., $z = A^{\dagger}b$, where A^{\dagger} is the Moore-Penrose generalized inverse of the matrix A [7]. Proof. Let P denote the orthogonal projection of H_2 onto $R(K_M)$. Suppose that $\tilde{f} = \sum_{j=1}^n \beta_j \phi_j$ is a solution to Kf = Pg. Since $(g - Pg) \in \langle K\phi_1, \ldots, K\phi_n \rangle^{\perp}$, by the construction of $\{\psi_i\} (g - Pg) \in \langle \psi_1, \ldots, \psi_n \rangle^{\perp}$. Thus, for each $i \in I$ $$0 = (g - Pg, \psi_i) = (g - K\tilde{f}, \psi_i) = (g, \psi_i) - (K\tilde{f}, \psi_i).$$ It follows that for each $i \in I$ $$b_i = (g, \psi_i) = \sum_{j=1}^n \beta_j (K\phi_j, \psi_i) = \sum_{j=1}^n a_{ij}\beta_j.$$ Hence the vector $z = (\beta_j)$ is a solution of Ax = b. Suppose that $z = (\beta_j)$ is a solution to Ax = b. Let $\tilde{f} = \sum_{j=1}^n \beta_j \phi_j$. Since Az = b, for each $i \in I$ $b_i = \sum_{j=1}^n a_{ij}\beta_j$ and so $(g, \psi_i) = (K\tilde{f}, \psi_i)$. Thus, $(g-K\tilde{f}, \psi_i) = 0$ for each $i \in I$. This implies that $(g-K\tilde{f}, K\phi_i) = 0$ for each $i \in I$ and hence $(g-K\tilde{f}) \in R(K_M)^{\perp}$. Therefore, $\tilde{f} = \sum_{j=1}^{n} \beta_j \phi_j$ is a solution to Kf = Pg. Note that for $\tilde{f} = \sum_{j=1}^{n} \beta_j \phi_j$ and $z = (\beta_j)$, $\|\tilde{f}\|^2 = \sum_{j=1}^{n} |\beta_j|^2 = \|z\|_2^2$ Since the M-solution of Kf = g is the minimum norm element in M satisfying Kf = Pg, from the above arguments the theorem holds. From this theorem, we can see that the **second step** of the GGS method is to find the minimum norm solution $z = (\beta_j)$ of Ax = b and then form the M-solution $\sum_{j=1}^{n} \beta_j \phi_j$. Notice that the GGS method does not require the linear independence of $K\phi_1, \ldots, K\phi_n$, whereas the Banks method [2] does require the linear independence of $K\phi_1, \ldots, K\phi_n$. When one implements the GGS method on a computer with finite precision arithmetic, it is very unlikely to have an exact zero for y_i . This fact is a main motivation for developing a modified version of the GGS method which is called the $GGS(\delta)$ method from now on, where $\delta > 0$ is a fixed small constant. The choice of a suitable constant δ is discussed later. The $GGS(\delta)$ method on K relative to M also consists of two steps. The first step of the $GGS(\delta)$ method is as follows: Compute $$y_1 = K\phi_1$$ $$\text{Let } \psi_1 = \begin{cases} \frac{y_1}{\|y_1\|} & \text{if } \|y_1\| \ge \delta \\ 0 & \text{if } \|y_1\| < \delta \end{cases}$$ $$\text{For } i = 2, \dots, n$$ $$y_i = K\phi_i - \sum_{j=1}^{i-1} (K\phi_i, \psi_j)\psi_j$$ $$\text{Let } \psi_i = \begin{cases} \frac{y_i}{\|y_i\|} & \text{if } \|y_i\| \ge \delta \\ 0 & \text{if } \|y_i\| < \delta \end{cases}$$ From the above step, it is easy to see that $\|\psi_i\| = \begin{cases} 1 & \text{if } \|y_i\| \geq \delta \\ 0 & \text{if } \|y_i\| < \delta \end{cases}$, $(\psi_i, \psi_j) = 0$ for $i \neq j$, and $(\psi_1, \dots, \psi_i) \subset (K\phi_1, \dots, K\phi_i)$ for each $i \in I$ which is not the same as the corresponding one of the GGS. The **second step** of the GGS(δ) is to compute $A^{\dagger}b$ and then form the approximate M-solution $\sum_{j=1}^{n} (A^{\dagger}b)_{j}\phi_{j}$ to Kf = g, where A and b are defined the same as in the GGS method. From now on, μ refers to the positive real number min{ $||y_{i}|| : ||y_{i}|| > 0, i \in I$ }. If δ is chosen so that $0 < \delta < \mu$, then $||y_i|| < \delta$ is equivalent to $y_i = 0$, and hence the GGS(δ) method is mathematically the same as the GGS method. For this δ , it is clear that $\langle \psi_1, \ldots, \psi_i \rangle = \langle K\phi_1, \ldots, K\phi_i \rangle$ for each $i \in I$. Therefore, if $0 < \delta < \mu$, then by Theorem 2.3 the approximate M-solution $\sum_{j=1}^{n} (A^{\dagger}b)_j \phi_j$ obtained from the GGS(δ) becomes the (exact) M-solution to Kf = g (it is of course assumed that all operations are carried out using infinite precision arithmetic). When using finite precision arithmetic, choosing a constant δ a priori so that $\sum_{j=1}^{n} (A^{\dagger}b)_j \phi_j$ is the M-solution to Kf = g is not an easy problem, but numerical experiments show that such a δ may be chosen as a real number which is slightly greater than the unit roundoff for the specific computer to be used (see Section 3). THEOREM 2.4. Let $K \in B(H_1, H_2)$. If $\delta > 0$ is a fixed constant chosen sufficiently small, then the $GGS(\delta)$ method provides the M-solution of Kf = g which is well-posed under perturbations in both K and g. Actually, the assumption of this theorem means that δ may be chosen to be any real number such that $0 < \delta < \mu$. For the proof of this theorem, we will use the following notations. Let $K^{\epsilon} \in B(H_1, H_2)$ and $g^{\epsilon} \in H_2$ such that $||K - K^{\epsilon}|| \leq \epsilon$ and $||g - g^{\epsilon}|| \leq \epsilon$. Let $\{\phi_i\}_{i \in I}$ be an orthonormal basis for $M \subset H_1$. Let y_i 's and ψ_i 's be generated from the $GGS(\delta)$ on K relative M, and let y_i^{ϵ} 's and ψ_i^{ϵ} 's be generated from the $GGS(\delta)$ on K^{ϵ} relative to M. The symbols a_{ij} , b_i , A, and b are defined the same as before. Similarly, we define $a_{ij}^{\epsilon} = (K^{\epsilon}\phi_j, \psi_i^{\epsilon})$, $b_i^{\epsilon} = (g^{\epsilon}, \psi_i^{\epsilon})$, $A^{\epsilon} = (a_{ij}^{\epsilon})$, and $b^{\epsilon} = (b_i^{\epsilon})$. From the construction of the $GGS(\delta)$, the following Lemma 2.5 can be easily shown. LEMMA 2.5. If $\delta > 0$, then $a_{ii} = \begin{cases} ||y_i|| & \text{if } ||y_i|| \geq \delta \\ 0 & \text{if } ||y_i|| < \delta \end{cases}$ for each $i \in I$. Moreover, if $0 < \delta < \mu$, then $a_{ij} = 0$ for i > j. LEMMA 2.6. Suppose $\delta > 0$ is chosen so that $\delta \neq ||y_i||$ for all $i \in I$. Then, for each $i \in I$, $\lim_{\epsilon \to 0} y_i^{\epsilon} = y_i$ and $\lim_{\epsilon \to 0} \psi_i^{\epsilon} = \psi_i$. *Proof.* We proceed by mathematical induction on the index i. For $i=1, y_1=K\phi_1 \text{ and } y_1^{\epsilon}=K^{\epsilon}\phi_1.$ Then $$||y_1^{\epsilon} - y_1|| = ||K^{\epsilon} \phi_1 - K \phi_1|| \le ||K^{\epsilon} - K|| \le \epsilon.$$ From the inequality (1), $\lim_{\epsilon \to 0} y_1^{\epsilon} = y_1$. If $||y_1|| < \delta$, then $||y_1^{\epsilon}|| < \delta$ for sufficiently small ϵ and so $\psi_1^{\epsilon} = \psi_1 = 0$. Clearly, $\lim_{\epsilon \to 0} \psi_1^{\epsilon} = \psi_1$ for $||y_1|| < \delta$. Since $\delta \neq ||y_1||$, we consider the case $||y_1|| > \delta$. Since $\lim_{\epsilon \to 0} y_1^{\epsilon} = y_1$, $||y_1^{\epsilon}|| > \delta$ for sufficiently small ϵ and hence $\psi_1^{\epsilon} = \frac{y_1^{\epsilon}}{||y_1^{\epsilon}||}$. Note that $||\psi_1 - \psi_1^{\epsilon}|| \le \frac{2}{||y_1||} ||y_1 - y_1^{\epsilon}||$. Therefore, $\lim_{\epsilon \to 0} \psi_1^{\epsilon} = \psi_1$ for the case of $||y_1|| > \delta$. Next, we suppose that $\lim_{\epsilon \to 0} y_i^{\epsilon} = y_i$ and $\lim_{\epsilon \to 0} \psi_i^{\epsilon} = \psi_i$ for all i < k. Then, $$||y_{k} - y_{k}^{\epsilon}|| = ||K\phi_{k} - \sum_{j=1}^{k-1} (K\phi_{k}, \psi_{j})\psi_{j} - K^{\epsilon}\phi_{k} + \sum_{j=1}^{k-1} (K^{\epsilon}\phi_{k}, \psi_{j}^{\epsilon})\psi_{j}^{\epsilon}||$$ $$\leq ||K^{\epsilon} - K|| + \sum_{j=1}^{k-1} ||(K^{\epsilon}\phi_{k}, \psi_{j}^{\epsilon})\psi_{j}^{\epsilon} - (K\phi_{k}, \psi_{j})\psi_{j}||.$$ On the other hand, for each j < k, $$(3) \begin{aligned} & \| (K^{\epsilon}\phi_{k}, \psi_{j}^{\epsilon})\psi_{j}^{\epsilon} - (K\phi_{k}, \psi_{j})\psi_{j} \| \\ & \leq |(K^{\epsilon}\phi_{k}, \psi_{j}^{\epsilon})| \|\psi_{j}^{\epsilon} - \psi_{j}\| + \| (K^{\epsilon}\phi_{k}, \psi_{j}^{\epsilon}) - (K\phi_{k}, \psi_{j}) \| \|\psi_{j}\| \\ & \leq \|K^{\epsilon}\| \|\psi_{j}^{\epsilon} - \psi_{j}\| + \|(\phi_{k}, (K^{\epsilon})^{*}\psi_{j}^{\epsilon} - K^{*}\psi_{j}) \| \\ & \leq \|K^{\epsilon}\| \|\psi_{j}^{\epsilon} - \psi_{j}\| + \|(K^{\epsilon})^{*}\psi_{j}^{\epsilon} - K^{*}\psi_{j}\| \\ & \leq \|K^{\epsilon}\| \|\psi_{j}^{\epsilon} - \psi_{j}\| + \|(K^{\epsilon})^{*}\| \|\psi_{j}^{\epsilon} - \psi_{j}\| + \|(K^{\epsilon} - K)^{*}\| \\ & = 2\|K^{\epsilon}\| \|\psi_{j}^{\epsilon} - \psi_{j}\| + \|K^{\epsilon} - K\|. \end{aligned}$$ Combining the inequalities (2) and (3), one obtains (4) $$||y_{k} - y_{k}^{\epsilon}|| \leq k||K^{\epsilon} - K|| + 2||K^{\epsilon}|| \sum_{j=1}^{k-1} ||\psi_{j}^{\epsilon} - \psi_{j}||$$ $$\leq k\epsilon + 2(||K|| + \epsilon) \sum_{j=1}^{k-1} ||\psi_{j}^{\epsilon} - \psi_{j}||.$$ By the induction hypothesis and the inequality (4), $\lim_{\epsilon \to 0} y_k^{\epsilon} = y_k$. If $||y_k|| < \delta$, then $||y_k^{\epsilon}|| < \delta$ for sufficiently small ϵ and hence $\psi_k = \psi_k^{\epsilon} = 0$. If $||y_k|| > \delta$, then $||y_k^{\epsilon}|| > \delta$ for sufficiently small ϵ and hence $\psi_k^{\epsilon} = \frac{y_k^{\epsilon}}{||y_k^{\epsilon}||}$. Since $\lim_{\epsilon \to 0} y_k^{\epsilon} = y_k$, $\lim_{\epsilon \to 0} \psi_k^{\epsilon} = \psi_k$ for the case of $||y_k|| > \delta$. LEMMA 2.7. If $\delta > 0$ is chosen so that $\delta \neq ||y_i||$ for all $i \in I$, then $\lim_{\epsilon \to 0} ||A^{\epsilon} - A||_2 = 0$. *Proof.* Notice that $A = (a_{ij})$ and $A^{\epsilon} = (a_{ij}^{\epsilon})$, where $a_{ij} = (K\phi_j, \psi_i)$ and $a_{ij}^{\epsilon} = (K^{\epsilon}\phi_j, \psi_i^{\epsilon})$. Then, $$|a_{ij} - a_{ij}^{\epsilon}| = |(K\phi_{j}, \psi_{i}) - (K^{\epsilon}\phi_{j}, \psi_{i}^{\epsilon})|$$ $$= |(\phi_{j}, K^{*}\psi_{i} - (K^{\epsilon})^{*}\psi_{i}^{\epsilon})|$$ $$\leq ||K^{*}\psi_{i} - (K^{\epsilon})^{*}\psi_{i}^{\epsilon}||$$ $$\leq ||K - K^{\epsilon}|| + ||K^{\epsilon}|| ||\psi_{i} - \psi_{i}^{\epsilon}||$$ $$\leq \epsilon + (||K|| + \epsilon)||\psi_{i} - \psi_{i}^{\epsilon}||.$$ Since $||A - A^{\epsilon}||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij} - a_{ij}^{\epsilon}|$, from the inequality (5) $$\|A - A^{\epsilon}\|_{\infty} \leq n \max_{1 \leq i \leq n} \left(\epsilon + (\|K\| + \epsilon)\|\psi_i - \psi_i^{\epsilon}\|\right).$$ Since $\lim_{\epsilon \to 0} \psi_i^{\epsilon} = \psi_i$ from Lemma 2.6 and $n < \infty$, $\lim_{\epsilon \to 0} \|A - A^{\epsilon}\|_{\infty} = 0$. Note that $\|A - A^{\epsilon}\|_{2} \le \sqrt{n} \|A - A^{\epsilon}\|_{\infty}$. Therefore, $\lim_{\epsilon \to 0} \|A - A^{\epsilon}\|_{2} = 0$. LEMMA 2.8. If B is an $n \times n$ matrix and $||E||_2 < \frac{1}{||B^{\dagger}||_2}$, then $rank(B) \leq rank(B+E)$. (See [7, Theorem 8.15] for the proof.) LEMMA 2.9. If $0 < \delta < \mu$, $rank(A) = rank(A^{\epsilon})$ for sufficiently small ϵ . *Proof.* By Lemma 2.7, $\lim_{\epsilon \to 0} \|A - A^{\epsilon}\|_{2} = 0$. Therefore, from Lemma 2.8, $\operatorname{rank}(A) \leq \operatorname{rank}(A^{\epsilon})$ for sufficiently small ϵ . Hence, if $\operatorname{rank}(A) = n$, then $\operatorname{rank}(A^{\epsilon}) = n$ for sufficiently small ϵ . Suppose that rank(A) < n. It is easy to show that $a_{ii} = (K\phi_i, \psi_i) = (y_i, \psi_i) = 0$ if and only if $i \in I_0$, where $I_0 = \{i \in I | ||y_i|| < \delta\}$. Since $0 < \delta < \mu$, rank(A) equals the cardinality of $I - I_0$. From Lemma 2.6, we have $\lim_{\epsilon \to 0} y_i^{\epsilon} = y_i$ for all $i \in I$. Hence, for each $i \in I_0$, $||y_i^{\epsilon}|| < \delta$ when ϵ is sufficiently small. If we let $I_0^{\epsilon} = \{i \in I \mid ||y_i^{\epsilon}|| < \delta\}$, we see that $I_0 \subset I_0^{\epsilon}$ for sufficiently small ϵ . If $i \in I_0^{\epsilon}$, then $a_{ij}^{\epsilon} = (K^{\epsilon}\phi_j, \psi_i^{\epsilon}) = 0$ for all $j \in I$. Hence, rank(A^{ϵ}) is not greater than the cardinality of $I - I_0^{\epsilon}$. Since $I - I_0^{\epsilon} \subset I - I_0$ for sufficiently small ϵ , we must have rank(A^{ϵ}) $\leq \operatorname{rank}(A)$. Therefore, rank(A^{ϵ}) $= \operatorname{rank}(A)$ for sufficiently small ϵ . LEMMA 2.10. Let B and B^{ϵ} be $n \times n$ matrices, and let c and c^{ϵ} be vectors in R^n . Suppose that $w = B^{\dagger}c$ and $w^{\epsilon} = (B^{\epsilon})^{\dagger}c^{\epsilon}$. If $\|B - B^{\epsilon}\|_2 < \frac{1}{\|B^{\dagger}\|_2}$ and $\operatorname{rank}(B^{\epsilon}) \leq \operatorname{rank}(B)$, then $\operatorname{rank}(B^{\epsilon}) = \operatorname{rank}(B)$ and $$\begin{split} \|w - w^{\epsilon}\|_{2} &\leq \|B^{\dagger}\|_{2} \left[\frac{\|B - B^{\epsilon}\|_{2} \|w\|_{2} + \|c - c^{\epsilon}\|_{2}}{1 - \|B - B^{\epsilon}\|_{2} \|B^{\dagger}\|_{2}} \right. \\ &+ \frac{\|B - B^{\epsilon}\|_{2} \|B^{\dagger}\|_{2} \|c - Bw\|_{2}}{1 - \|B - B^{\epsilon}\|_{2} \|B^{\dagger}\|_{2}} + \|B - B^{\epsilon}\|_{2} \|w\|_{2} \right]. \end{split}$$ (See [7, Theorem 9.7] for the proof.) Proof of Theorem 2.4. Without the loss of generality, we can assume that $0 < \delta < \mu$. Let $z = A^{\dagger}b = (\beta_i)$ and $z^{\epsilon} = (A^{\epsilon})^{\dagger}b^{\epsilon} = (\beta_i^{\epsilon})$. Then, $f_M = \sum_{i=1}^n \beta_i \phi_i$ is the M-solution to Kf = g and $f_M^{\epsilon} = \sum_{i=1}^n \beta_i^{\epsilon} \phi_i$ is the approximate M-solution to $K^{\epsilon}f = g^{\epsilon}$. Since $\{\phi_i\}_{i \in I}$ is an orthonomal set, $\|f_M - f_M^{\epsilon}\| = \|z - z^{\epsilon}\|_2$. By Lemmas 2.7 and 2.9, $\lim_{\epsilon \to 0} \|A - A^{\epsilon}\|_2 = 0$ and rank $(A) = \operatorname{rank}(A^{\epsilon})$ for sufficiently small ϵ . Therefore, applying Lemma 2.10, one obtains $$||f_{M} - f_{M}^{\epsilon}|| \leq ||A^{\dagger}||_{2} \left[\frac{||A - A^{\epsilon}||_{2} ||z||_{2} + ||b - b^{\epsilon}||_{2}}{1 - ||A - A^{\epsilon}||_{2} ||A^{\dagger}||_{2}} + \frac{||A - A^{\epsilon}||_{2} ||A^{\dagger}||_{2} ||b - Az||_{2}}{1 - ||A - A^{\epsilon}||_{2} ||A^{\dagger}||_{2}} + ||A - A^{\epsilon}||_{2} ||z||_{2} \right]$$ for sufficiently small ϵ . Since $\lim_{\epsilon \to 0} \|A - A^{\epsilon}\|_2 = 0$ and $\lim_{\epsilon \to 0} \|b - b^{\epsilon}\|_2 = 0$, we see that $\lim_{\epsilon \to 0} \|f_M - f_M^{\epsilon}\| = 0$. Hence, the $GGS(\delta)$ method provides the M-solution to Kf = g which is well-posed under perturbations in both K and g. EXAMPLE 2.11. Let $H_1 = H_2$, ϕ_1 and ϕ_2 be orthonormal vectors in H_1 , $M = \langle \phi_1, \phi_2 \rangle$, and let P_i be the orthogonal projection of H_1 onto $\langle \phi_i \rangle$ for i = 1, 2. Define $K = P_1$ and $K^{\epsilon} = P_1 + \epsilon P_2$. Let $g = \alpha_1 \phi_1 + \alpha_2 \phi_2$ with $\alpha_2 \neq 0$ and $g^{\epsilon} = \alpha_1 \phi_1 + (\alpha_2 + \epsilon) \phi_2$. Then $||K - K^{\epsilon}|| = ||g - g^{\epsilon}|| = \epsilon$, $K\phi_1 = \phi_1$, $K\phi_2 = 0$, $K^{\epsilon}\phi_1 = \phi_1$, and $K^{\epsilon}\phi_2 = \epsilon\phi_2$. Choose $\delta = \frac{1}{2}$. Then, it is easy to see that both the GGS(δ) and the GGS provide the exact M-solution $f_M = \alpha_1 \phi_1$ of Kf = g. We now consider the perturbed problem $K^{\epsilon}f = g^{\epsilon}$. Using the GGS method, $y_1^{\epsilon} = \psi_1^{\epsilon} = \phi_1$, $y_2^{\epsilon} = \epsilon\phi_2$, and $\psi_2^{\epsilon} = \phi_2$ are generated, and so $f_M^{\epsilon} = \alpha_1 \phi_1 + (1 + \frac{\alpha_2}{\epsilon}) \phi_2$. When ϵ converges to 0, f_M^{ϵ} never converges to f_M even if K^{ϵ} and g^{ϵ} converge to K and g respectively. On the other hand, when using the $GGS(\delta)$ method, $y_1^{\epsilon} = \psi_1^{\epsilon} = \phi_1$, $y_2^{\epsilon} = \epsilon \phi_2$, and $\psi_2^{\epsilon} = \phi_2$ (if $\epsilon \geq \delta$) or 0 (if $\epsilon < \delta$) are generated. Hence, f_M^{ϵ} is equal to f_M for every ϵ which is less than δ . Therefore, the approximate M-solution f_M^{ϵ} for $K^{\epsilon}f = g^{\epsilon}$ obtained from the $GGS(\delta)$ method converges to the M-solution f_M of Kf = g when ϵ converges to 0. ## 3. Numerical implementation of the $GGS(\delta)$ In this section, it is assumed that $K: L_2[a,b] \to L_2[c,d]$ is an integral operator defined by $(Kf)(s) = \int_a^b k(s,t)f(t)dt$ with the kernel function $k(s,t) \in L_2([c,d] \times [a,b])$. The numerical method commonly used for integration of the form $\int_{-1}^1 f(x)dx$ is the Gauss-Legendre quadrature method. To this end, it is convenient to change variables so that we can work on $L_2[-1,1]$ instead of $L_2[a,b]$ and $L_2[c,d]$. First, we show how the change of variables should be handled for the problem of finding the M-solution of (Kf)(s) = g(s) for all $s \in [c,d]$, where $g \in L_2[c,d]$. M-solution of (Kf)(s) = g(s) for all $s \in [c,d]$, where $g \in L_2[c,d]$. Let $s = h_1(x) = \frac{c+d}{2} + \frac{d-c}{2}x$ and $t = h_2(y) = \frac{a+b}{2} + \frac{b-a}{2}y$, where $-1 \le x, y \le 1$. Put $k_0(x,y) = k(h_1(x),h_2(y))$, $G(x) = g(h_1(x))$, and $F(y) = f(h_2(y))$. Define an integral operator $K_0 : L_2[-1,1] \to L_2[-1,1]$ by $(K_0F)(x) = \int_{-1}^1 k_0(x,y)F(y)dy$ for $F \in L_2[-1,1]$ and $x \in [-1,1]$. Then, (Kf)(s) = g(s) is equivalent to $(K_0F)(x) = \frac{2}{b-a}G(x)$. Suppose that N is a closed subspace of $L_2[a,b]$ with orthonormal basis $\{\phi_j(t)\}_{j \in J}$, where J is an index set which is at most countable. Define $\psi_J(y) = \phi_J(h_2(y))$ for each $j \in J$. Let N_0 be a subspace of $L_2[-1,1]$ which is the closed linear span of $\{\psi_j(y)\}_{j\in J}$. It is clear that $(\phi_i, \phi_j)_{[a,b]} = \delta_{ij} = \frac{b-a}{2}(\psi_i, \psi_j)_{[-1,1]}$, where δ_{ij} represents the Kronecker delta, and $(\cdot, \cdot)_{[a,b]}$ and $(\cdot, \cdot)_{[-1,1]}$ refer to the inner products on $L_2[a,b]$ and $L_2[-1,1]$ respectively. Using the above notations, we obtain the following. LEMMA 3.1. $g \in K(N)$ if and only if $G \in K_0(N_0)$. Moreover, $g \in \overline{K(N)}$ if and only if $G \in \overline{K_0(N_0)}$, where the bars denote the closure of the given subspaces. Let P be the orthogonal projection of $L_2[c,d]$ onto $\overline{K(N)}$. Define $P_0: L_2[-1,1] \to L_2[-1,1]$ by $(P_0G)(x) = (Pg)(h_1(x))$, where $g = G \circ h_1^{-1} \in L_2[c,d]$. Then, it is easy to show that P_0 is the orthogonal projection of $L_2[-1,1]$ onto $\overline{K_0(N_0)}$. Since Kf = Pg is equivalent to $K_0F = P_0(\frac{2}{b-a}G)$ and $(f,f)_{[a,b]} = \frac{b-a}{2}(F,F)_{[-1,1]}$, the following theorem is immediately obtained. THEOREM 3.2. $f_N(t)$ is the N-solution of Kf=g if and only if $F_{N_0}(y)=(f_N\circ h_2)(y)$ is the N_0 -solution of $K_0F=\frac{2}{b-a}G$. By taking $N = L_2[a.b]$ in Theorem 3.2, we obtain the following. COROLLARY 3.3. $f_0(t)$ is the LSSMN of Kf = g if and only if $F_0(y) = (f_0 \circ h_2)(y)$ is the LSSMN of $K_0F = \frac{2}{b-a}G$. Let's now consider the numerical implementation of the $GGS(\delta)$ for approximating the M-solution of the form $$(Kf)(s) = \int_0^1 k(s,t)f(t)dt = g(s), \quad 0 \le s \le 1.$$ First, we will transform it to the equivalent problem $$(K_0F)(x) = \int_{-1}^1 k_0(x, y) F(y) dy = 2G(x), \quad -1 \le x \le 1,$$ by using the change of variables $s = \frac{1+x}{2}$ and $t = \frac{1+y}{2}$, where $k_0(x,y) = k(\frac{1+x}{2}, \frac{1+y}{2})$, $F(y) = f(\frac{1+y}{2})$, and $G(x) = g(\frac{1+x}{2})$. Next, we will choose an n dimensional subspace $(M_0)_n$ of $L_2[-1,1]$ so that $(M_0)_n = \langle \psi_1(y), \dots, \psi_n(y) \rangle$, where $\{\psi_i(y)\}_{i=1}^n$ is an appropriate orthonormal set in $L_2[-1,1]$. As a typical example for such an orthonormal set in $L_2[-1,1]$, the normalized Legendre polynomials can be chosen. Then, the $(M_0)_n$ -solution $F_n(y)$ of the transformed problem $K_0F = 2G$ is approximated using the $GGS(\delta)$ method. Let $\hat{F}_n(y)$ denote the approximate $(M_0)_n$ -solution to $K_0F = 2G$ obtained from the $GGS(\delta)$. Note that from Theorem 3.2, $f_n(t) = F_n(2t-1)$ is the M_n -solution of the given problem Kf = g, where $M_n = \langle \phi_1(t), \ldots, \phi_n(t) \rangle$ and $\phi_i(t) = \psi_i(2t-1)$. Thus, the approximate M_n -solution to Kf = g computed from the $GGS(\delta)$ is given by $\hat{f}_n(t) = \hat{F}_n(2t-1)$. All computings were done in Fortran using double precision arithmetic which means about fifteen decimal digits of accuracy. The number δ for the $GGS(\delta)$ method was taken to be 10^{-13} . The second step of the $GGS(\delta)$ requires the computation of the minimum norm solution of Ax = b. If A has full rank, then A is an upper triangular matrix and so the minimum norm solution of Ax = b is solved by the Linpack subroutine DTRSL [3, Chapter 6] which solves a linear system with triangular matrix. If A does not have full rank, then the minimum norm solution of Ax = b is solved using the Linpack subroutine DSVDC [3, Chapter 11] which carrys out the singular value decomposition of a matrix. The decision of whether or not A has full rank was made in the following way: If $||y_i|| < \delta$ for an $i \in I$, then all elements of the i-th row of A consist of zeros and hence A does not have full rank. If $||y_i|| \ge \delta$ for every $i \in I$, then A has full rank. The DSVDC supplies $\{\sigma_1, \ldots, \sigma_n\}$, the singular values of A. In order to decide which of σ_i 's are nonzero, the same tolerance δ mentioned above is used. In other words, if $\sigma_i < \delta$, then σ_i is set to zero. All inner products required during the $GGS(\delta)$ were done using the repeated 4-point Gauss-Legendre quadrature method. The examples tested in this paper are described below. For each example, f_0 denotes the LSSMN to Kf = g, and $(M_0)_n = \langle \psi_1(y), \ldots, \psi_n(y) \rangle$ is chosen as an n-dimensional subspace of $L_2[-1,1]$, where $\psi_i(y)$ is the normalized Legendre polynomial of degree (i-1). The exact M_n -solution f_n is also provided in each of the examples below if possible. EXAMPLE 3.4. Let k(s,t) = s + t and g(s) = s. Then $f_0(t) = 4 - 6t$, and $f_n(t) = f_0(t)$ for $n \ge 2$. EXAMPLE 3.5. Let $k(s,t) = \cos(st)$ and $g(s) = \frac{\sin s}{s} + \frac{\cos s - 1}{s^2}$. Then $f_0(t) = t$, and $f_n(t) = f_0(t)$ for $n \geq 2$. EXAMPLE 3.6. Let $k(s,t) = (s-t)^2$ and $g(s) = s^2 - \frac{2}{3}s + \frac{1}{4}$. Then $f_0(t) = 15t^2 - 17t + \frac{9}{2}$, $f_2(t) = \frac{29}{12} - 2t$, and $f_n(t) = f_0(t)$ for $n \ge 3$. EXAMPLE 3.7. Let $k(s,t) = \sin 2(s+t-1)$ and $g(s) = 5\sin(2s-1) + 3\cos(2s-1)$. Then $f_0(t) = \left(\frac{10}{2+\sin 2}\right)\cos(2t-1) + \left(\frac{6}{2-\sin 2}\right)\sin(2t-1)$, $f_2(t) = \frac{5}{2\sin 1} + \frac{3}{2(\sin 1 - \cos 1)}(2t-1)$, and so on. The numerical results for the above examples are summarized in Table 1. $||f_n - \hat{f}_n||$ is computed to see how close the approximate M_n -solution \hat{f}_n obtained from the $GGS(\delta)$ is to the exact M_n -solution f_n , and $||f_0 - \hat{f}_n||$ is computed to see how well the \hat{f}_n approximates f_0 . Since the exact M_n -solution f_n for Example 3.7 is not available by hand calculation if n > 3, the value of $||f_n - \hat{f}_n||$ is not listed in Table 1 for n = 4 and 5. The numbers in Table 1 under the column $||f_n - \hat{f}_n||$ range from 10^{-16} to 10^{-13} , which shows numerically that the $GGS(\delta)$ is a well-posed method for finding the M-solution to Kf = g. As can be seen from Table 1, for Examples 3.4 to 3.6 \hat{f}_n converges very fast to f_0 , whereas for Example 3.7 \hat{f}_n converges very slowly to f_0 . This is because we cannot approximate $\sin y$ and $\cos y$ very accurately using low-degree Legendre polynomials. If we choose $(M_0)_2 = \langle \sin y, \cos y \rangle$ for Example 3.7, then it is easy to see that $f_2(t)$ equals $f_0(t)$. For this choice of $(M_0)_2$, the computed value of $||f_0 - \hat{f}_2|| = ||f_2 - \hat{f}_2||$ is about 10^{-14} , i.e., the computed M_2 -solution \hat{f}_2 is a good approximation to f_0 as well as f_2 . Hence, in order for the computed M_n -solution \hat{f}_n to approximate f_0 well, it is natural to choose M_n to reflect a priori knowledge of the f_0 . Since the goal of this paper is to develop a well-posed method for finding the M-solution to Kf = g, the problem of choosing a suitable subspace M_n so that f_n can approximate f_0 well is not considered herein and it will be studied in the future work. | Example | n | $ f_n - \hat{f}_n $ | $ f_0 - \hat{f}_n $ | |---------|---|------------------------|------------------------| | | 2 | 5.10×10^{-15} | 5.10×10^{-15} | | 3.4 | 3 | 5.89×10^{-15} | $5.89 imes 10^{-15}$ | | | 4 | 5.89×10^{-15} | $5.89 imes 10^{-15}$ | | | 2 | 1.09×10^{-13} | 1.09×10^{-13} | | 3.5 | 3 | 1.09×10^{-13} | 1.09×10^{-13} | | | 4 | 1.09×10^{-15} | 1.09×10^{-15} | | | 2 | 3.74×10^{-16} | 1.1932 | | 3.6 | 3 | 1.96×10^{-15} | 1.96×10^{-15} | | | 4 | 1.96×10^{-15} | 1.96×10^{-15} | | | 2 | 6.53×10^{-14} | 7.08×10^{-1} | | 3.7 | 3 | 1.98×10^{-13} | 5.75×10^{-1} | | | 4 | | 5.54×10^{-1} | | • | 5 | | 5.53×10^{-1} | Table 1. Numerical results for the $GGS(\delta)$ ### References - 1. C. T. H. Baker, The numerical treatment of integral equations, Calrendon Press, 1977. - S. P. Banks, On the solution of Fredholm integral equations of the first kind in L², J. Inst. Math. Appl. 20 (1977), 143-150. - 3. J. J. Dongarra, C. B. Moler, C. B. Bunch and G. W. Stewart, *Linpack Users's Guide*, SIAM, 1979. - 4. C. W. Groetsch, Generalized inverses of linear operators, Marcel Dekke, 1977. - 5. C. W. Groetsch, The theory of Tikhonov regularization for Fredholm equations of the first kind, Pitman Publishing Limited, Boston, 1984. - 6. K. R. Hickey and G. R. Luecke, Remarks on Marti's method for solving first kind equations, SIAM J. Numer. Anal. 19 (1982), 623-628. - C. L. Lawson and R. J. Hanson, Solving least squares problems, Prentice Hall, 1974. - 8. G. R. Luecke and K. R. Hickey, Convergence of approximate solutions of an operator equation, Houston Journal of Mathematics 11 (1985), 345-353. - 9. J. T. Marti, An algorithm for computing minimum norm solutions of Fredholm integral equations of the first kind, SIAM J. Numer. Anal. 15 (1978), 1071-1076. - 10. J. T. Marti, On the convergence of an algorithm computing minimum norm solutions of ill-posed problems, Math. Comp. 34 (1980), 521-527. - 11. A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems, V. H. Winston and Sons, 1977. - 12. J. M. Varah, A practical examination of some numerical methods for linear discrete ill-posed problems, SIAM Review 21 (1979), 100-111. Department of Mathematics College of Natural Sciences Chungbuk National University Cheongju, 360-763, Korea