
Commun. Korean Math. Soc. 24 (2009), No. 3, pp. 367–379
DOI 10.4134/CKMS.2009.24.3.367

Lq-ESTIMATES OF MAXIMAL OPERATORS
ON THE p-ADIC VECTOR SPACE

Yong-Cheol Kim

Abstract. For a prime number p, let Qp denote the p-adic field and let

Qd
p denote a vector space over Qp which consists of all d-tuples of Qp.

For a function f ∈ L1
loc(Qd

p), we define the Hardy-Littlewood maximal

function of f on Qd
p by

Mp f(x) = sup
γ∈Z

1

|Bγ(x)|H

Z

Bγ(x)
|f(y)| dy,

where |E|H denotes the Haar measure of a measurable subset E of Qd
p

and Bγ(x) denotes the p-adic ball with center x ∈ Qd
p and radius pγ . If

1 < q ≤ ∞, then we prove that Mp is a bounded operator of Lq(Qd
p) into

Lq(Qd
p); moreover, Mp is of weak type (1, 1) on L1(Qd

p), that is to say,

|{x ∈ Qd
p : |Mp f(x)| > λ}|H ≤ pd

λ
‖f‖L1(Qd

p), λ > 0

for any f ∈ L1(Qd
p).

1. Introduction

For a prime number p, let Qp denote the p-adic field. From the standard
p-adic analysis [8], we see that any non-zero element x ∈ Qp has a unique
representation like

x = pγ
∞∑

j=0

xj pj , γ = γ(x) ∈ Z,

where 0 ≤ xj ≤ p − 1 and x0 6= 0. Here we call γ = γ(x) the p-adic valuation
of x and we write γ = ordp(x) with convention ordp(0) = ∞. Then it is well-
known [1, 8] that the nonnegative function | · |p on Qp given by |x|p = p−ordp(x)

becomes a non-Archimedean norm on Qp and Qp is defined as the completion
of Q with respect to the norm | · |p. For d ∈ N, let Qd

p denotes a vector space
over Qp which consists of all points x = (x1, x2, . . . , xd), x1, x2, . . . , xd ∈ Qp.
If we define |x|p = max1≤j≤d |xj |p for x = (x1, x2, . . . , xd) ∈ Qd

p, then it is easy
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to see that | · |p is a non-Archimedean norm on Qd
p and moreover Qd

p is a locally
compact Hausdorff and totally disconnected Banach space with respect to the
norm | · |p. For γ ∈ Z, we denote the ball Bγ(a) with center a ∈ Qd

p and radius
pγ and its boundary Sγ(a) by

Bγ(a) = {x ∈ Qd
p : |x− a|p ≤ pγ} and Sγ(a) = {x ∈ Qd

p : |x− a|p = pγ},
respectively. Since Qd

p is a locally compact commutative group under addition,
it follows from the standard analysis that there exists a unique Haar measure
dx on Qd

p (up to positive constant multiple) which is translation invariant, i.e.,
d(x + a) = dx. We normalize the measure dx so that

(1.1)
∫

B0(0)

dx ; |B0(0)|H = 1,

where |E|H denotes the Haar measure of a measurable subset E of Qd
p. From

this integration theory, it is easy to obtain that |Bγ(a)|H = pγd and |Sγ(a)|H =
pγd(1− p−d) for any a ∈ Qd

p.
In what follows, we say that a (real-valued) measurable function f defined

on Qd
p is in Lq(Qd

p), 1 ≤ q ≤ ∞, if it satisfies

(1.2)
‖f‖Lq(Qd

p) ;
(∫

Qd
p

|f(x)|q dx
)1/q

< ∞, 1 ≤ q < ∞,

‖f‖L∞(Qd
p) ; inf{α : |{x ∈ Qd

p : |f(x)| > α}|H = 0}} < ∞.

Here the integral in (1.2) is defined as
(1.3)∫

Qd
p

|f(x)|q dx = lim
n→∞

∫

Bn(0)

|f(x)|q dx = lim
n→∞

∑

−∞<γ≤n

∫

Sγ(0)

|f(x)|q dx,

if the limit exists. We now mention some of the previous works on harmonic
analysis on the p-adic field Qp as follows; Haran [2, 3] obtained the explicit
formula of Riesz potentials on Qp and developed an analytical potential theory
on the p-adic field Qp.

For a function f ∈ L1
loc(Qd

p), we define the Hardy-Littlewood maximal func-
tion of f on Qd

p by

Mp f(x) = sup
γ∈Z

1
|Bγ(x)|H

∫

Bγ(x)

|f(y)| dy.

The reader can refer to [6] for the definition on the Euclidean case. Then we
prove the following theorem.

Theorem 1.1. If 1 < q ≤ ∞, then Mp is a bounded operator of Lq(Qd
p) into

Lq(Qd
p). Moreover Mp is of weak type (1, 1) on L1(Qd

p); that is to say,

|{x ∈ Qd
p : |Mp f(x)| > λ}|H ≤ pd

λ
‖f‖L1(Qd

p), λ > 0
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for any f ∈ L1(Qd
p).

Corollary 1.2. If f ∈ Lq(Qd
p) for 1 ≤ q < ∞, then we have that

(a) lim
γ→−∞

∥∥∥∥
1

|Bγ(·)|H

∫

Bγ(·)
f(y) dy − f

∥∥∥∥
Lq(Qd

p)

= 0,

(b)
∣∣∣∣
{
x ∈ Qd

p : lim
γ→−∞

∣∣∣∣
1

|Bγ(x)|H

∫

Bγ(x)

f(y) dy − f(x)
∣∣∣∣ 6= 0

}∣∣∣∣
H

= 0.

Let M(Qd
p) denote the set of all measurable functions on Qd

p. For f, g ∈
M(Qd

p), we define the convolution f ∗ g of f and g by

f ∗ g(x) =
∫

Qd
p

f(x− y)g(y) dy, x ∈ Qd
p.

Theorem 1.3. Let K(x) be a nonnegative measurable function on Qd
p such

that
K(x) = Φ(|x|p),

where Φ(t) is a monotone decreasing function on (0,∞) satisfying

c(p, Φ) ; lim
n→∞

∑

−∞<γ≤n

pγdΦ(pγ) < ∞.

If we set

Mp f(x) = sup
γ∈Z

|Kγ ∗ f(x)|, f ∈ Lq(Qd
p), 1 < q ≤ ∞,

where Kγ(x) = p−γdK(pγx) for γ ∈ Z, then Mp is a bounded operator of
Lq(Qd

p) into Lq(Qd
p) for 1 < q ≤ ∞; moreover, Mp is of weak type (1, 1) on

L1(Qd
p).

Corollary 1.4. Let K(x) be a nonnegative measurable function on Qd
p such

that
K(x) = Φ(|x|p),

where Φ(t) is a monotone decreasing function on (0,∞) satisfying

(1.4) c(p, Φ) ; lim
n→∞

∑

−∞<γ≤n

pγdΦ(pγ) < ∞.

If f ∈ Lq(Qd
p) for 1 ≤ q < ∞, then we have that

(a) lim
γ→−∞

∥∥Kγ ∗ f − β f
∥∥

Lq(Qd
p)

= 0,

(b)
∣∣{x ∈ Qd

p : lim
γ→−∞

∣∣Kγ ∗ f(x)− β f(x)
∣∣ 6= 0

}∣∣
H

= 0,

where
∫
Qd

P
K(x) dx ; β and Kγ(x) = p−γdK(pγx) for γ ∈ Z.

Remark. We observe that (1.4) and (3.8) imply that 0 ≤ β = (1−p−d) c(p, Φ) <
∞.
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Examples. (a) If K(x) = 1
(1+|x|p)α , x ∈ Qd

p for α > d, then we have Φ(t) =
1

(1+t)α , and thus we obtain that

c(p, Φ) = lim
n→∞

∑

−∞<γ≤n

pγd

(1 + pγ)α
≤

∞∑
γ=0

p−γd +
∞∑

γ=1

p−γ(α−d) < ∞.

(b) If K(x) = lnk(|x|−1
p )χB0(0)(x), x ∈ Qd

p for k ∈ N, then we have that

Φ(t) = lnk(t−1)χ(0,1](t).

In order to obtain the finiteness of c(p, Φ), we observe the following inequalities;

(1.5)
k!

(1− t)k+1
=

∞∑
γ=0

(γ + 1)(γ + 2) · · · (γ + k) tγ ≥
∞∑

γ=0

γktγ , 0 < t < 1.

If we set t = p−d in (1.5), then we have that

c(p, Φ) =
∑

−∞<γ≤0

pγd lnk(p−γ) =
∞∑

γ=0

p−γd lnk(pγ)

= (ln p)k
∞∑

γ=0

γkp−γd ≤ k! (ln p)k

(1− p−d)k+1
< ∞.

(c) If K(x) = e−|x|p for x ∈ Qd
p, then we see that Φ(t) = e−t. We also

observe that there exists some constant cp > 0 depending on p such that

t2d ≤ cp et

whenever t ≥ p . Thus this implies that

c(p,Φ) = lim
n→∞

∑

−∞<γ≤n

pγde−pγ

=
∞∑

γ=0

p−γde−p−γ

+ lim
n→∞

n∑
γ=1

pγde−pγ

≤
∞∑

γ=0

p−γd + cp

∞∑
γ=1

p−γd < ∞.

2. The p-adic version of the Marcinkiewicz interpolation theorem

First of all, we shall obtain the relation between Riemann-Stieltjes integrals
and Haar integrals which we mentioned in (1.3). Let f be a measurable function
on Qd

p satisfying f ∈ L1(Qd
p). For α > 0, we denote the distribution function

ωH(α) of |f | on Qd
p by

ωH(α) = |{x ∈ Qd
p : |f(x)| > α}|H .

Then we easily obtain the following proposition as in the Euclidean case.
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Proposition 2.1 (Chebyshev’s inequality). If f ∈ Lq(Qd
p) for q > 0, then we

have that

ωH(α) ≤ 1
αq

∫

{x∈Qd
p: |f(x)|>α}

|f(x)|q dx, α > 0.

Lemma 2.2. If f ∈ L1(Qd
p), then we have that

∫

Eab

|f(x)| dx = −
∫ b

a

α dω(α),

where Eab = {x ∈ Qd
p : a < |f(x)| ≤ b} for a, b ∈ R with 0 < a < b < ∞.

Proof. Since f ∈ L1(Qd
p), the distribution function ωH is of bounded variation

on [a, b]. So the Riemann-Stieltjes integral on the right exists. Let P = {a =
α0 < α1 < · · · < αk = b} be a partition of [a, b] and let Ej = {x ∈ Qd

p : αj−1 <

|f(x)| ≤ αj} for j = 1, 2, . . . , k. Then we see that Eab = ∪k
j=1Ej is the disjoint

union of measurable sets. Thus we have that
∫

Eab

|f(x)| dx =
k∑

j=1

∫

Ej

|f(x)| dx

and |Ej |H = −[ωH(αj)− ωH(αj−1)], and so we obtain that

−
k∑

j=1

αj−1[ωH(αj)−ωH(αj−1)] ≤
∫

Eab

|f(x)| dx ≤ −
k∑

j=1

αj [ωH(αj)−ωH(αj−1)].

Hence we complete the proof by taking ‖P‖ ; max1≤j≤k(αj − αj−1) → 0. ¤

Proposition 2.3. If f ∈ L1(Qd
p), then we have that

∫

Qd
p

|f(x)| dx = −
∫ ∞

0

α dωH(α).

Proof. It easily follows from Lemma 2.2 and the p-adic version [5, 8] of Lebes-
gue’s dominated convergence theorem. ¤

Lemma 2.4. If f ∈ Lq(Qd
p) for q > 0, then we have that

∫

Qd
p

|f(x)|q dx = −
∫ ∞

0

αq dωH(α) = q

∫ ∞

0

αq−1 ωH(α) dα.

Proof. It easily follows from the integration by parts on the Riemann-Stieltjes
integral, Proposition 2.1 (Chebyshev’s inequality), and the p-adic version of
Lebesgue’s dominated convergence theorem. ¤

Next we need the p-adic version of the Marcinkiewicz interpolation theorem
[3] which is one of powerful tools for Lq(Qd

p)-estimates of sublinear operators
like maximal operators. Indeed its proof can be obtained as in that of the
Euclidean case by applying Lemma 2.4.
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Theorem 2.5. For 1 < r ≤ ∞, let a mapping T : L1(Qd
p)+Lr(Qd

p) →M(Qd
p)

satisfy

|T (f + g)(x)| ≤ |T f(x)|+ |T g(x)|, x ∈ Qd
p.

Suppose that T is both of weak type (1, 1) and of weak type (r, r); that is, there
exist some constants c1 > 0 and cr > 0 such that

|{x ∈ Qd
p : |T f(x)| > λ}|H ≤ c1

λ
‖f‖L1(Qd

p), λ > 0,

|{x ∈ Qd
p : |T f(x)| > λ}|H ≤ cr

r

λr
‖f‖r

Lr(Qd
p), λ > 0.

Then there exists a constant C = C(q, r, c1, cr) > 0 such that ‖T f‖Lq(Qd
p) ≤

C ‖f‖Lq(Qd
p) for any f ∈ Lq(Qd

p), 1 < q < r.

Sketch of the proof. For λ > 0, we define a function f1 by

f1(x) =

{
f(x), if |f(x)| ≥ λ/2,
0, if |f(x)| < λ/2.

In case that r = ∞, we may assume that ‖T f‖L∞(Qd
p) ≤ ‖f‖L∞(Qd

p) by
dividing T by the constant c∞. From the assumption we can easily obtain that

|{x ∈ Qd
p : |T f(x)| > λ}|H ≤ |{x ∈ Qd

p : |T f1(x)| > λ/2}|H
≤ 2c1

λ

∫

|f |>λ/2

|f(x)| dx.

Applying Lemma 2.4 and changing the order of integration, try to derive that
∫

Qd
p

|T f(x)|q dx ≤ 2qq c1

q − 1

∫

Qd
p

|f(x)|q dx.

We now consider the case 1 < r < ∞. If we set f2 = f − f1, then it easily
follow from the above assumptions that

|{x ∈ Qd
p : |T f(x)| > λ}|H

≤ |{x ∈ Qd
p : |T f1(x)| > λ}|H + |{x ∈ Qd

p : |T f2(x)| > λ}|H
≤ 2c1

λ

∫

|f |>λ/2

|f(x)| dx +
2rcr

r

λr

∫

|f |≤λ/2

|f(x)|r dx.

Then apply Lemma 2.4 and changing the order of integration to obtain that
∫

Qd
p

|T f(x)|q dx ≤ 2qq

(
c1

q − 1
+

cr
r

r − q

) ∫

Qd
p

|f(x)|q dx.

Therefore we complete the proof. ¤
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3. Lq(Qd
p)-estimates of maximal operators

First of all we observe several interesting properties on the family

Fp = {Bγ(x) : γ ∈ Z, x ∈ Qd
p }

of all the p-adic balls, which differ from those of the Euclidean case.

Lemma 3.1. The family Fp has the following properties:
(a) If γ ≤ γ′, then either Bγ(x) ∩Bγ′(y) = φ or Bγ(x) ⊂ Bγ′(y) .
(b) Bγ(x) = Bγ(y) if and only if y ∈ Bγ(x).

Proof. The first part (a) can easily be derived from the non-Archimedean prop-
erty of the p-adic norm | · |p. Also the second part (b) is a natural by-product
of (a). ¤

Lemma 3.2. Let C = {Bα}α∈A be a subfamily of Fp with supα∈A r(Bα) =
c0 < ∞, where r(Bα) denotes the radius of such p-adic ball Bα. If there exists
some ball B0 ∈ C with r(B0) ≥ c0/p such that

C0 ; {Bα ∈ C : Bα ∩B0 = φ } = φ,

then the subfamily C is a partially ordered set by inclusion which has a unique
maximal element.

Proof. By Lemma 3.1, it is trivial that C is a partially ordered set by inclusion.
From the uniform boundedness of the radii of balls in C, we see that every
linearly ordered subset of C has an upper bound. Thus the subfamily C has
a maximal element by Zorn’s lemma. So it suffices to show the uniqueness of
maximal element. To see this, we have only to show that if Bα, Bα′ ∈ C with
Bα ⊃ B0 and Bα′ ⊃ B0, then either Bα ⊂ Bα′ or Bα′ ⊂ Bα. Indeed, this can
easily be derived from Lemma 3.1. Hence we complete the proof. ¤

We now state a covering lemma which will be useful in proving Theorem 1.1.

Lemma 3.3 (Covering Lemma). Let E be a measurable subset of Qd
p and let

C = {Bα}α∈A be a covering of E which consists of p-adic balls with

sup
α∈A

r(Bα) < ∞.

Then there exists a pairwise disjoint countable subcovering C0 = {Bk}∞k=1 of C
such that

|E|H ≤ pd
∞∑

k=1

|Bk|H .

Proof. We see that supα∈A r(Bα) = pγ0 for some γ0 ∈ Z. First we choose a
ball B1 ∈ C with r(B1) ≥ pγ0−1. We set C1 = {Bα ∈ C : Bα ∩ B1 = φ }. If
C1 = φ, then by Lemma 3.2 the covering C of E must be a partially ordered set
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by inclusion whose unique maximal element with radius pγ0 contains E, and so
we are done. So we may assume that C1 6= φ. Then we choose B2 ∈ C1 so that

p r(B2) ≥ sup
Bα∈C1

r(Bα).

We set C2 = {Bα ∈ C : Bα∩ (B1∪B2) = φ }. If C2 = φ, then by Lemma 3.2 the
covering C must be the union of two disjoint partially ordered sets by inclusion
the union of whose two distinct unique maximal elements with radius less than
pγ0 contains E, and thus we are done. Thus we may assume that C2 6= φ. Next
we choose B3 ∈ C2 so that

p r(B3) ≥ sup
Bα∈C2

r(Bα).

Assume that B1, B2, . . . , Bk have been selected likewise. We now set

Ck = {Bα ∈ C : Bα ∩ (∪k
i=1Bi) = φ }.

If Ck = φ, then applying Lemma 3.2 again the covering C should be the union
of k pairwise disjoint partially ordered sets by inclusion the union of whose k
distinct unique maximal elements with radius less than pγ0 contains E, and so
we are done. Thus we may assume that Ck 6= φ. Next we choose Bk+1 ∈ Ck so
that

(3.1) p r(Bk+1) ≥ sup
Bα∈Ck

r(Bα).

Continuing this process, we obtain a countable collection C0 = {Bk}∞k=1 of
pairwise disjoint p-adic balls. If

∑∞
k=1 |Bk|H = ∞, then there is nothing to

prove. So we may assume that

(3.2)
∞∑

k=1

|Bk|H < ∞.

If B∗
k denotes the p-adic concentric ball of Bk with r(B∗

k) = p r(Bk), then we
claim that

(3.3) E ⊂
∞⋃

k=1

B∗
k .

To show the claim (3.3), it suffices to prove that Bα ⊂ ∪∞k=1B
∗
k for any

Bα ∈ C. If Bα ∈ C0, then we are done. So we assume that Bα 6∈ C0. Since
limk→∞ |Bk|H = 0 by (3.2), the number k0 ∈ N given by

(3.4) k0 = min{k ∈ N : p r(Bk+1) < r(Bα) }
is well-defined. Then the ball Bα must intersect one of the balls B1, B2, . . . , Bk0 ;
which otherwise contradicts (3.1). If Bα∩Bi0 6= φ for some i0 with 1 ≤ i0 ≤ k0,
then it follows from Lemma 3.1 that Bα ⊂ B∗

i0
because r(B∗

i0
) = p r(Bi0) ≥

r(Bα) by (3.4). Therefore the claim (3.3) implies that

|E|H ≤
∞∑

k=1

|B∗
k |H = pd

∞∑

k=1

|Bk|H .
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Hence we complete the proof. ¤

Proof of Theorem 1.1. Since it is easy to see that Mp is bounded on L∞(Qd
p),

by Theorem 2.5 it suffices to show that Mp is of weak type (1, 1) on L1(Qd
p).

For λ > 0, we set Eλ = {x ∈ Qd
p : Mp f(x) > λ}. We take any x ∈ Eλ. Then

there exists a p-adic ball Bγx(x) such that

(3.5)
∫

Bγx (x)

|f(y)| dy > λ |Bγx(x)|H .

By Lemma 3.3, we may choose a sequence {xk}∞k=1 ⊂ Eλ such that the collec-
tion {Bγxk

(xk)}∞k=1 of such p-adic balls is pairwise disjoint and

|Eλ|H ≤ pd
∞∑

k=1

|Bγxk
(xk)|H .

Hence by (3.5) we conclude that

|Eλ|H ≤ pd
∞∑

k=1

|Bγxk
(xk)|H ≤ pd

λ

∫

∪∞k=1Bγxk
(xk)

|f(y)| dy ≤ pd

λ
‖f‖L1(Qd

p).

Therefore we complete the proof. ¤

Proof of Theorem 1.3. From Theorem 1.1, it suffices to prove that

Mp f(x) ≤ (1− p−d) c(p,Φ)Mp f(x), x ∈ Qd
p

for any f ∈ Lq(Qd
p), 1 < q ≤ ∞. For γ ∈ Z, we set B = { (y, t) ∈ Qd

p × R+ :
Kγ(y) > t }. We observe that

Kγ(y) =
∫ Kγ(y)

0

dt =
∫ ∞

0

χB(y, t) dt.

Then it follows from the translation invariance of the Haar measure and chang-
ing the order of integration that

|Kγ ∗ f(x)| =
∣∣∣∣
∫

Qd
p

f(x− y)Kγ(y) dy
∣∣∣∣(3.6)

≤
∫

Qd
p

|f(x− y)|
(∫ ∞

0

χB(y, t) dt

)
dy

=
∫ ∞

0

(∫

Qd
p

|f(x− y)|χB(y, t) dy
)

dt

=
∫ ∞

0

(∫

Bt

|f(x− y)| dy
)

dt,

where Bt = {y ∈ Qd
p : Kγ(y) > t } for t > 0. Here we note that Bt is a p-adic

ball because K(y) = Φ(|y|p) and Φ(t) is a nonnegative monotone decreasing
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function on (0,∞). Thus by (3.6) we have that

(3.7)
|Kγ ∗ f(x)| ≤

∫ ∞

0

|Bt|H
(

1
|Bt|H

∫

Bt

|f(x− y)| dy
)

dt

≤
(∫ ∞

0

|Bt|H dt

)
Mp f(x), x ∈ Qd

p

for any γ ∈ Z. It also follows from Lemma 2.4 and simple calculation on the
integration on Qd

p that

(3.8)

∫ ∞

0

|Bt|H dt = ‖Kγ‖L1(Qd
p) = ‖K‖L1(Qd

p)

= lim
n→∞

∑

−∞<γ≤n

∫

Sγ(0)

Φ(|x|p) dx

= lim
n→∞

∑

−∞<γ≤n

Φ(pγ) |Sγ(0)|H = (1− p−d) c(p, Φ).

Therefore by (3.7) and (3.8) we conclude that

Mp f(x) ≤ (1− p−d) c(p,Φ)Mp f(x), x ∈ Qd
p

for any f ∈ Lq(Qd
p), 1 < q ≤ ∞. Hence this complete the proof by Theorem 1.1.

¤

4. Several convergence of convolution means with kernel integrable
on Qd

p

In this section, we prove Corollary 1.2 and Corollary 1.4. Since Corollary 1.2
is a special case of Corollary 1.4 with kernel K(x) = 1

|Bγ(0)|H χBγ(0)(x), it
suffices to show Corollary 1.4.

Lemma 4.1. If K ∈ L1(Qd
p) and Kγ(x) = p−γdK(pγx) for γ ∈ Z, then we

have the following properties:

(a)
∫

Qd
p

|Kγ(x)| dx =
∫

Qd
p

|K(x)| dx for all γ ∈ Z.

(b) lim
γ→−∞

∫

{x∈Qd
p: |x|p>δ}

|Kγ(x)| dx = 0 for any fixed δ > 0.

Proof. (a) It easily follows from the change of variable and the fact that d(xx) =
|x|dp dx for any x ∈ Qp \ {0}.

(b) By the change of variable and the p-adic version of Lebesgue dominated
convergence theorem, we obtain that

∫

{x∈Qd
p: |x|p>δ}

|Kγ(x)| dx =
∫

{x∈Qd
p: |x|p>δp−γ}

|K(x)| dx → 0

as γ → −∞. Hence we complete the proof. ¤
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Lemma 4.2. For y ∈ Qd
p and f ∈ Lq(Qd

p), 1 ≤ q < ∞, we define the translation
operator τy by τyf(x) = f(x − y). Then the mapping y 7→ τyf is a (vector-
valued ) uniformly continuous function of Qd

p into Lq(Qd
p) for 1 ≤ q < ∞.

Proof. We observe that the space Cc(Qd
p) is dense in Lq(Qd

p), because Qd
p is a

locally compact Hausdorff space. It thus follows from the uniform continuity
of a function in Cc(Qd

p) on its compact support. ¤

Lemma 4.3. For γ ∈ Z and K ∈ L1(Qd
p) with

∫
Qd

p
K(x) dx ; β, we set

Kγ(x) = p−γdK(pγx). If f ∈ Cc(Qd
p), then the convolution means Kγ ∗ f

converge to βf uniformly on Qd
p as γ → −∞.

Proof. Fix any ε > 0. Since K ∈ L1(Qd
p), there is some constant c1 > 0 such

that ‖K‖L1(Qd
p) ≤ c1. By the uniform continuity of f , there exists some δ > 0

such that

(4.1) sup
x∈Qd

p

|f(x− y)− f(x)| < ε

2 c1

whenever y ∈ Qd
p and |y|p ≤ δ. Since f is uniformly bounded on Qd

p, there is
some constant c0 > 0 such that

(4.2) sup
x∈Qd

p

|f(x)| ≤ c0.

From (b) of Lemma 4.1, we see that there is some constant M > 0 so large
that

(4.3)
∫

{x∈Qd
p: |x|p>δp−γ}

|K(x)| dx <
ε

2 c0

whenever γ < −M and γ ∈ Z. Then it follows from (4.1), (4.2), and (4.3) that

sup
x∈Qd

p

|Kγ ∗ f(x)− βf(x)|

≤
∫

{y∈Qd
p:|y|p≤δ}

(
sup
x∈Qd

p

|f(x− y)− f(x)|
)
|Kγ(y)| dy

+
∫

{y∈Qd
p:|y|p>δ}

(
sup
x∈Qd

p

|f(x− y)− f(x)|
)
|Kγ(y)| dy

≤ 1
2

ε +
1
2

ε = ε,

whenever γ < −M and γ ∈ Z. Hence we complete the proof. ¤

Proof of Corollary 1.4. (a) Take any f ∈ Lq(Qd
p) for 1 ≤ q < ∞. Then there is

some constant c2 > 0 such that ‖f‖Lq(Qd
p) ≤ c2. Since we see that K ∈ L1(Qd

p)
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from (1.4), there exists some constant c1 > 0 such that ‖K‖L1(Qd
p) ≤ c1. Fix

any ε > 0. By Lemma 4.2, there exists some δ > 0 such that

(4.4) ‖τyf − f‖Lq(Qd
p) <

ε

2 c1

whenever y ∈ Qd
p and |y|p ≤ δ. From (b) of Lemma 4.1, we see that there is

some constant M > 0 so large that

(4.5)
∫

{x∈Qd
p: |x|p>δ}

|Kγ(x)| dx <
ε

4 c2

whenever γ < −M and γ ∈ Z. Then it follows from the p-adic version of the
integral Minkowski’s inequality and Minkowski’s inequality, (4.4), and (4.5)
that

‖Kγ ∗ f − βf‖Lq(Qd
p) ≤

∫

Qd
p

‖τyf − f‖Lq(Qd
p) |Kγ(y)| dy

=
∫

{y∈Qd
p: |y|p≤δ}

‖τyf − f‖Lq(Qd
p) |Kγ(y)| dy

+ 2 ‖f‖Lq(Qd
p)

∫

{y∈Qd
p: |y|p>δ}

|Kγ(y)| dy

≤ 1
2

ε +
1
2

ε = ε,

whenever γ < −M and γ ∈ Z.
(b) Take any f ∈ Lq(Qd

p) for 1 ≤ q < ∞ and fix any ε > 0. Since the space
Cc(Qd

p) is dense in Lq(Qd
p) for each n ∈ N there exists some gn ∈ Cc(Qd

p) such
that

(4.6) ‖f − gn‖Lq(Qd
p) <

ε1/q

2 c3 n
,

where c3 > 0 is some constant with c3 > cpq for the operator norm cpq of Mp

in Theorem 1.3 which is given by

cpq =

{
‖Mp‖Lq(Qd

p)→Lq(Qd
p), 1 < q < ∞,

‖Mp‖L1(Qd
p)→L1,∞(Qd

p), q = 1.

Here, we note that L1,∞(Qd
p) denotes the weak L1(Qd

p) space. For x ∈ Qd
p and

h ∈ Lq(Qd
p), 1 ≤ q < ∞, we define the operator Ω by

Ω(h)(x) = lim sup
γ→−∞

Kγ ∗ h(x)− lim inf
γ→−∞

Kγ ∗ h(x) ≥ 0.

Then we see that Ω(h)(x) ≤ 2 Mp h(x) for any x ∈ Qd
p, and also Ω(gn) = 0 for

all n ∈ N by Lemma 4.3. Since Ω(f) ≤ Ω(f−gn) for all n ∈ N, by Theorem 1.3
and (4.6) we obtain the following estimate
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|{x ∈ Qd
p : Ω(f)(x) > 0}|H = lim

n→∞
|{x ∈ Qd

p : Ω(f)(x) > 1/n}|H
= lim

n→∞
|{x ∈ Qd

p : Ω(f − gn)(x) > 1/n}|H
≤ lim

n→∞
|{x ∈ Qd

p : 2 Mp(f − gn)(x) > 1/n}|H
≤ lim

n→∞
2q nq cq

3 ‖f − gn‖q
Lq(Qd

p)
< ε.

Taking ε ↓ 0, we have that |{x ∈ Qd
p : Ω(f)(x) > 0}|H = 0. This implies the

required result. Hence we complete the proof. ¤
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