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LI-ESTIMATES OF MAXIMAL OPERATORS
ON THE p-ADIC VECTOR SPACE

YoNG-CHEOL KiMm

ABSTRACT. For a prime number p, let Q, denote the p-adic field and let
Qg denote a vector space over Qp which consists of all d-tuples of Qp.
For a function f € Lj . (Qg), we define the Hardy-Littlewood maximal

function of f on Qg by
My fG) =sup == [ | (y)ldy,
vez |By(X)|u J B, (x)
where |E|g denotes the Haar measure of a measurable subset E of Qg
and B, (x) denotes the p-adic ball with center x € Qg and radius p7. If
1 < g < o0, then we prove that M, is a bounded operator of L9 (Qg) into
L (Qg); moreover, M, is of weak type (1,1) on LI(QZ)7 that is to say,

d
p
[ € @+ 1My FG91 > A < 2 11l gy, A > 0

for any f € Ll(@g).

1. Introduction

For a prime number p, let Q, denote the p-adic field. From the standard
p-adic analysis [8], we see that any non-zero element z € Q, has a unique
representation like

(oo}
r=p Y z;p), v=1(z) €,

§=0
where 0 < z; < p—1 and zy # 0. Here we call v = y(x) the p-adic valuation
of z and we write v = ord,(x) with convention ord,(0) = co. Then it is well-
known [1, 8] that the nonnegative function |- |, on Q, given by |z, = p~°*dr()
becomes a non-Archimedean norm on Q, and Q, is defined as the completion
of Q with respect to the norm |- |,. For d € N, let Qg denotes a vector space
over Q, which consists of all points x = (z1,%2,...,%q), T1,%2,...,24 € Qp.
If we define |x|, = maxi<j<a |z, for x = (21,22,...,24) € QF, then it is easy
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to see that ||, is a non-Archimedean norm on Q¢ and moreover QY is a locally
compact Hausdorff and totally disconnected Banach space with respect to the
norm |- |,. For v € Z, we denote the ball B,(a) with center a € Qg and radius
p? and its boundary S, (a) by

By(a)={x¢€ Qg tlx—al, <p'} and S,(a) ={x¢€ Qg tx—al, =p"},

respectively. Since Qg is a locally compact commutative group under addition,
it follows from the standard analysis that there exists a unique Haar measure
dx on (@g (up to positive constant multiple) which is translation invariant, i.e.,
d(x 4+ a) = dx. We normalize the measure dx so that

(1.1) / dx = [Bo(0)|m =1,
By (0)

where |E|g denotes the Haar measure of a measurable subset E of Qg. From
this integration theory, it is easy to obtain that |B,(a)|x = p?¢ and |S,(a)|y =
p¥4(1 —p~9) for any a € Qg.

In what follows, we say that a (real-valued) measurable function f defined
on Qf is in LY(Qf),1 < g < oo, if it satisfies

1/q
Ilinag = ([ 15601ax) <0010,

11l = (oa) = inf{a: [{x € Q) : |f(x)| > a}|y = 0}} < co.

Here the integral in (1.2) is defined as
(1.3)

F(x)[7dx = lim Fe)ftdx = tm Y /S o e

Q¢ "= /B, (0) nmee

(1.2)

—oco<y<n

if the limit exists. We now mention some of the previous works on harmonic
analysis on the p-adic field Q, as follows; Haran [2, 3] obtained the explicit
formula of Riesz potentials on @, and developed an analytical potential theory
on the p-adic field Q.
For a function f € L
tion of f on (@g by

1

zoc(QZ), we define the Hardy-Littlewood maximal func-

1
x) = —_— dy.
My ) = sup /B ey

The reader can refer to [6] for the definition on the Euclidean case. Then we
prove the following theorem.

Theorem 1.1. If 1 < ¢ < oo, then M, is a bounded operator of Lq(Qg) into
L1(QY). Moreover M, is of weak type (1,1) on L'(Q%); that is to say,

d
p
{x € Q) : M, f(x)] > AHm < ~ IF 1l ey, A >0
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Jor any f € L*(QY).
Corollary 1.2. If f € Lq((@g) for 1 < q < oo, then we have that
Le(@2)

@ i o | I
|B(1)|H/Bv(x)f(Y)de(x) HH o

(b) {x €Qf: lim
y——00
Let M(Qg) denote the set of all measurable functions on Qg. For f,g €
M(@g), we define the convolution f * g of f and g by

:07

frg(x /fx y)g(y)dy, x € Q.

Theorem 1.3. Let K(x) be a nonnegative measurable function on Qg such
that

K(x) = ®(|x[p),
where ®(t) is a monotone decreasing function on (0,00) satisfying
c(p, @) = hm Z prie(pY
—oo<'y<n

If we set
M, f(x) = sup |Ky + f(x)], fe LUQy), 1 < g < oo,
yE
where K. (x) = p K (p'x) for v € Z, then M, is a bounded operator of

L9(QY) into LI(Qf) for 1 < q < oo; moreover, M, is of weak type (1,1) on
LY(Qp)-

Corollary 1.4. Let K(x) be a nonnegative measurable function on Qg such
that

K(x) = o(|x[p),
where ®(t) is a monotone decreasing function on (0,00) satisfying
(1.4) c(p,®) = lim Y prep”
" OO—<><><'y<n

If fe Lq((@g) for 1 < g < oo, then we have that
(@) WEI_HOOHKW *f = ﬂf“m(@;): 0,
) [{xeqq: tim [Kyxf(x) =8 f(x)[#0},; =0,
where f@;é K(x)dx = and K (x) = p " K (p'x) for ~ € Z.

Remark. We observe that (1.4) and (3.8) imply that 0 < 8= (1—p~%) c(p, ®) <
00.
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Examples. (a) If K(x) =, x € Qf for v > d, then we have ®(t) =

_ 1
T (Hxlp)

ﬁ, and thus we obtain that
SRR Ve I SRS WP
—oo<y<n y=0 =

(b) If K(x) = lnk(\x|;1) XBo(0)(X), X € Qg for k € N, then we have that
(1) = In"(t71) x (0,11 (1)-
In order to obtain the finiteness of ¢(p, @), we observe the following inequalities;

k!
(1 —t)F+1

oo

=Y (D +2) - (y+ R =D A 0<t <L
~=0 ~=0

(1.5)

If we set ¢t = p~% in (1.5), then we have that

Z pre ln Zp_'yd ln

—00<y<0

> k! (Inp)*
k —vd
= (lnp) Z'}/p K SW<OO.

c(p, @)

(c) If K(x) = e l» for x € Q, then we see that ®(t) = e~!. We also
observe that there exists some Constant ¢p > 0 depending on p such that

t2d é Cp et
whenever ¢ > p. Thus this implies that
c(p,®) = lim Z pre P

n—oo
—oco<y<n

o0 n
—~d —p 7 li ~d _—p”
dope T+ lim Yy prte
v=0 =1
o0 oo
< Zp_ﬂyd +cp Zp_vd < 0.
¥=0 ~y=1

2. The p-adic version of the Marcinkiewicz interpolation theorem

First of all, we shall obtain the relation between Riemann-Stieltjes integrals
and Haar integrals which we mentioned in (1.3). Let f be a measurable function
on Qg satisfying f € Ll((@g). For a > 0, we denote the distribution function

wi (@) of |f] on Qf by
n(a) = {xeQp:|f(x)| > a}ln.

Then we easily obtain the following proposition as in the Euclidean case.
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Proposition 2.1 (Chebyshev’s inequality). If f € Lq(Qg) for g > 0, then we

have that

wh(a) < i

q/ |f(x)]|?dx, a>0.
A J{xeQg:|f(x)[>a}

Lemma 2.2. If f € LY(Q%), then we have that

/| RCEES /  ediofa).

where Eqp = {x € Q¢ : a < |f(x)| < b} for a,b e R with 0 <a <b < oco.

Proof. Since f € L*(Q¢), the distribution function wy is of bounded variation
on [a,b]. So the Riemann-Stieltjes integral on the right exists. Let P = {a =
ap <y < --- < ag = b} be a partition of [a,b] and let E; = {x € Q¢ : a;_1 <
|f(x)| < a;} for j =1,2,... k. Then we see that E,, = Us_, Ej is the disjoint
union of measurable sets. Thus we have that

/Eab (0 dx = ;/E ()l dx

and |E;|g = —[wn(a;) —wm(ej—1)], and so we obtain that
k k
_Z ajfl[wH(aj)—wH(aj,l)} g/E |f(X)| dx < —Z aj[wH(aj)—wH(aj,l)].
j=1 ab j=1

Hence we complete the proof by taking ||P| = maxi<;<p(e; —j_1) — 0. O

Proposition 2.3. If f € L'(QY), then we have that

/Qd 1 60)] i = —/Omadma).

Proof. Tt easily follows from Lemma 2.2 and the p-adic version [5, 8] of Lebes-
gue’s dominated convergence theorem. O

Lemma 2.4. If f € Lq((@g) for ¢ > 0, then we have that
/ |f(x)|qu:—/ 0 dwp (@) :q/ a1 wy (@) da.
Qg 0 0

Proof. Tt easily follows from the integration by parts on the Riemann-Stieltjes
integral, Proposition 2.1 (Chebyshev’s inequality), and the p-adic version of
Lebesgue’s dominated convergence theorem. O

Next we need the p-adic version of the Marcinkiewicz interpolation theorem
[3] which is one of powerful tools for L?(Qg)-estimates of sublinear operators
like maximal operators. Indeed its proof can be obtained as in that of the
Euclidean case by applying Lemma 2.4.
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Theorem 2.5. For 1 <r < oo, let a mapping T : L*(Q%)+ L"(Q%) — M(QY)
satisfy

IT(f +9)(®)| <|Tf)|+[Tg(x)], x € Q.
Suppose that T is both of weak type (1,1) and of weak type (r,r); that is, there

exist some constants ¢1 > 0 and ¢, > 0 such that

c
e QL 1100 > Ml < L ey, A>0,
Cr g
[ €@ ITF) > M < 37 1 lne gy A >0
Then there exists a constant C' = C(q,7,c1,¢r) > 0 such that || T f|[reqg) <
C | fllsacag) for any f € LIQE), 1< q<r.

Sketch of the proof. For A > 0, we define a function f; by

o= LG F)I = A2,
ro={I S

In case that r = oo, we may assume that |7 f|[r=qs < [fllz=(@z) by
dividing 7 by the constant c.,. From the assumption we can easily obtain that

[{x € Q) |ITf(x)| > M < {x€Qq: |TAH(x) >N 2}n

<2a 1£(x)] dx.

T A g
Applying Lemma 2.4 and changing the order of integration, try to derive that
29q ¢y

[ oo 215 [ o ax

We now consider the case 1 < r < co. If we set fo = f — f1, then it easily
follow from the above assumptions that

{x € Qp: |Tf(x) > Mu
[{x € @Z T fi(x)| > MHe + [{x € Q;i T f2(x)[ > At

T AT

2"c
dx + —~F "dx.
B e L

IN

2C1

A

A Jigisar
Then apply Lemma 2.4 and changing the order of integration to obtain that

q q €1 cr q
/Qng(X) dx <2 Q(q_lﬂ_q)/@ )] dx.

d
P

Therefore we complete the proof. O
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3. L9 (QZ)-estimates of maximal operators
First of all we observe several interesting properties on the family
8y = {B,(x): v €2, x€Q}
of all the p-adic balls, which differ from those of the Euclidean case.

Lemma 3.1. The family §, has the following properties:
(a) If v <4/, then either B (x) N By(y) =¢ or B,(x) C By(y).
(b) By(x) = By(y) if and only if y € B(x).

Proof. The first part (a) can easily be derived from the non-Archimedean prop-
erty of the p-adic norm |- |,. Also the second part (b) is a natural by-product
of (a). O

Lemma 3.2. Let C = {Ba}aca be a subfamily of §, with sup,e4t(Ba) =
cp < 00, where t(B,,) denotes the radius of such p-adic ball B,. If there exists
some ball By € C with t(By) > co/p such that

Co={Bo,€C:B,NBy=¢}=0¢,

then the subfamily C is a partially ordered set by inclusion which has a unique
mazimal element.

Proof. By Lemma 3.1, it is trivial that C is a partially ordered set by inclusion.
From the uniform boundedness of the radii of balls in C, we see that every
linearly ordered subset of C has an upper bound. Thus the subfamily C has
a maximal element by Zorn’s lemma. So it suffices to show the uniqueness of
maximal element. To see this, we have only to show that if B,, B, € C with
B, D By and B, D By, then either B, C B, or B, C B,. Indeed, this can
easily be derived from Lemma 3.1. Hence we complete the proof. (]

We now state a covering lemma which will be useful in proving Theorem 1.1.

Lemma 3.3 (Covering Lemma). Let E be a measurable subset of Qg and let
C = {Ba}aca be a covering of E which consists of p-adic balls with

sup t(B,) < o0.
acA

Then there exists a pairwise disjoint countable subcovering Co = {By}72, of C
such that

oo
|Elp <p° Z |B|n-
k=1

Proof. We see that sup,¢ 4 t(Ba) = p?° for some vy € Z. First we choose a
ball By € C with v(By) > p~!. Weset C; = {B, € C: B,NB; = ¢}. If
C1 = ¢, then by Lemma 3.2 the covering C of F must be a partially ordered set
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by inclusion whose unique maximal element with radius p”° contains F, and so
we are done. So we may assume that C; # ¢. Then we choose By € C; so that
pt(B2) > sup t(B,).
Ba€Cy
Weset Co = {B, € C: BoN(B1UBy) = ¢ }. If Cy = ¢, then by Lemma 3.2 the
covering C must be the union of two disjoint partially ordered sets by inclusion
the union of whose two distinct unique maximal elements with radius less than
p?° contains F, and thus we are done. Thus we may assume that Co # ¢. Next
we choose Bz € Cy so that
pe(Bs) > sup v(Ba).
Boc €C2
Assume that By, Bs,..., By have been selected likewise. We now set

Ch={Bn€C:B,N (U B)=09}.

If Cr, = ¢, then applying Lemma 3.2 again the covering C should be the union
of k pairwise disjoint partially ordered sets by inclusion the union of whose k
distinct unique maximal elements with radius less than p contains E, and so
we are done. Thus we may assume that Ci # ¢. Next we choose Byy1 € Ci, so
that

(3.1) p t(Biy1) > sup t(Bg).
B, €Cy
Continuing this process, we obtain a countable collection Cy = {Bj}?2; of

pairwise disjoint p-adic balls. If 377 |By|g = oo, then there is nothing to
prove. So we may assume that

0o
(3.2) Z |Bk|H < Q.
k=1

If B} denotes the p-adic concentric ball of By, with ¢(B}) = p t(Bg), then we
claim that

(3.3) Ec|JB;.

k=1
To show the claim (3.3), it suffices to prove that B, C Up2,B; for any
B, € C. If B, € Cy, then we are done. So we assume that B, ¢ Cy. Since
limg 00 | Bi|m = 0 by (3.2), the number kg € N given by

(3.4) ko = min{k € N: p v(Byy1) < t(B) }
is well-defined. Then the ball B, must intersect one of the balls By, Ba, ..., By;
which otherwise contradicts (3.1). If B,NB;, # ¢ for some iy with 1 < iy < ko,

then it follows from Lemma 3.1 that B, C B} because t(B} ) = p v(B;,) >
t(Bg) by (3.4). Therefore the claim (3.3) implies that

[e.e] oo
Ela <) 1Bila =p" Y |Bilu
k=1 k=1
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Hence we complete the proof. ([

Proof of Theorem 1.1. Since it is easy to see that M, is bounded on L*° ((@g),
by Theorem 2.5 it suffices to show that M,, is of weak type (1,1) on L*(Qf).
For A > 0, we set E\ = {x € Q% : M,, f(x) > A}. We take any x € Ey. Then
there exists a p-adic ball B,_(x) such that

(3.5) /B )y > 1B, (9l

By Lemma 3.3, we may choose a sequence {x;}72, C E\ such that the collec-

tion {B,, (xx)}7Z; of such p-adic balls is pairwise disjoint and

|Exle <p*> 1By, (x6)a-
k=1
Hence by (3.5) we conclude that

U

e d
p p
Bl < '3 B, (ol < 5 [ )y < E £l
URZ By, (<)

k=1

Therefore we complete the proof. ([

Proof of Theorem 1.3. From Theorem 1.1, it suffices to prove that
M, f(x) < (1 —p ) elp, @) M, f(x), x€Qf

for any f € Lq((@;'f)7 1< q<oco. Forvy€Z, weset B=/{(y,t) EQgXRJF :
K,(y) >t }. We observe that

K’Y(Y) oS}
K= [ [

Then it follows from the translation invariance of the Haar measure and chang-
ing the order of integration that

@0) g6l = || sy ) ay]

S/@ZU(X—}’”(/OOOXB(YJ)(#) dy
:/Ooo</Qz f(X_y)|XB(y,t)dy> di
- [7(], 1rec=yiay) ar

where By = {y € Q¢ : K,(y) >t} for t > 0. Here we note that B, is a p-adic
ball because K(y) = ®(]y|,) and ®(¢) is a nonnegative monotone decreasing
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function on (0,00). Thus by (3.6) we have that

|wa<x>\s/0 |BtH(|BilH/B f(x—y)ldy)dt

< (/m Biln dt) M, f(x), x € Q!
0

for any v € Z. It also follows from Lemma 2.4 and simple calculation on the
integration on Qg that

(3.7)

o0
/0 Bl dt = 1Koy = 1K o)

= lim / d(|x|,) dx
(3.8) dim ) 5.0 (Ix[»)

—oo<y<n

=lim Y @E")[S,(0)|r=1-p e, ®).

Therefore by (3.7) and (3.8) we conclude that
My, f(x) < (1—p~ ) c(p, @) M, f(x), x € Q)

for any f € Lq(Qg), 1 < g < 0. Hence this complete the proof by Theorem 1.1.
O

4. Several convergence of convolution means with kernel integrable
d
on Qp
In this section, we prove Corollary 1.2 and Corollary 1.4. Since Corollary 1.2
is a special case of Corollary 1.4 with kernel K(x) = mXBw(O)(X)’ it
suffices to show Corollary 1.4.
Lemma 4.1. If K € L'(Q}) and K,(x) = p K (p"x) for v € Z, then we
have the following properties:
(a) / | K, (x)| dx :/ |K(x)| dx for all v € Z.
Q; @
(b) lim |K(x)|dx =0 for any fized § > 0.
Yoo {x€Qd: |x|,>d}
Proof. (a) It easily follows from the change of variable and the fact that d(axx) =
|z|¢ dx for any x € Q, \ {0}.
(b) By the change of variable and the p-adic version of Lebesgue dominated
convergence theorem, we obtain that

/ K9l dx = [ K ()] dx — 0
{xEQZ: |x|p>d} {erg: |x|p>dp~7}

as v — —oo. Hence we complete the proof. O
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Lemma 4.2. Fory € Qg and f € Lq((@;f)7 1 < g < o0, we define the translation
operator 7y by Ty f(x) = f(x —y). Then the mappingy — Ty f is a (vector-
valued ) uniformly continuous function of Qg into Lq((@g) for1<gq < .

Proof. We observe that the space C.(Qf) is dense in LY(Qf), because QY is a
locally compact Hausdorff space. It thus follows from the uniform continuity
of a function in C’C(Qg) on its compact support. O

Lemma 4.3. For v € Z and K € L'(Q)) with [, K(x)dx = 3, we set
P
K, (x) = p7 " K(p'x). If f € Ce(QY), then the convolution means K x f

converge to Bf uniformly on Q;l as y — —o0.

Proof. Fix any € > 0. Since K € LI(QZ)7 there is some constant ¢; > 0 such
that ||K||L1(Qg) < ¢1. By the uniform continuity of f, there exists some § > 0
such that

(4.1) sup [f(x —y) = f(®)] < 5—

x€Qd 2a

whenever y € QZ and |y|, < 0. Since f is uniformly bounded on Qg, there is

some constant ¢y > 0 such that

(4.2) sup |f(x)[ < co.
xEQZ

From (b) of Lemma 4.1, we see that there is some constant M > 0 so large
that

K (x)|dx < ——

(4.3) /
{erg: |x|p>dp~7} 2C0

whenever v < —M and v € Z. Then it follows from (4.1), (4.2), and (4.3) that

sup |Ky « f(x) = Bf(x)]

xEQg

< | (sup f(xy)f(X))lKv(y)ldy
{yeQe:Iyl, <5} \ xeQd

s/ ((sup 176~ v) = 7001 16, ()]
{yeQzlyly>5} \ xeQs

< 1 L r
< getgze=e
whenever v < —M and v € Z. Hence we complete the proof. (I

Proof of Corollary 1.4. (a) Take any f € Lq((@g) for 1 < g < oo. Then there is
some constant ¢z > 0 such that || f||ra(q¢) < c2. Since we see that K € LY(Q)
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from (1.4), there exists some constant ¢; > 0 such that ||K||L1(QZ) < ¢;. Fix
any ¢ > 0. By Lemma 4.2, there exists some § > 0 such that

3
(44) Irof = fllzeey < 5

whenever y € Q¢ and |y[, < 6. From (b) of Lemma 4.1, we see that there is
some constant M > 0 so large that

(4.5) / K (x)] dx < ——
{x€Q: |x|,>8} deo

whenever v < —M and v € Z. Then it follows from the p-adic version of the
integral Minkowski’s inequality and Minkowski’s inequality, (4.4), and (4.5)
that

Ky * f = BfllLaa) < /Qd 17y f = fllza@a) KA (y)| dy
-/ Iy S = Sllzncagy 1K 3 dy
{yeQg: lylp<d}

+20flp [ 1K (y)| dy
{yeQd: |y|p>d}

L1
< getge=e
whenever v < —M and v € Z.
(b) Take any f € Lq(@g) for 1 < ¢ < oo and fix any € > 0. Since the space

Ce(QY) is dense in L9(QY) for each n € N there exists some g, € C(Q%) such
that

El/q

(4.6) If = gnllLag@e) < Sean

where c3 > 0 is some constant with c3 > ¢, for the operator norm c,, of 9,
in Theorem 1.3 which is given by

_ {||mp||m<@gw(@g>7 1< q< oo,
g —

19l 21 @)Lt (@ey, @ =1

Here, we note that Ll"x’((@g) denotes the weak Ll((@g) space. For x € Qg and
h e Lq(Qg), 1 < g < o0, we define the operator € by

Q(h)(x) = limsup K, * h(x) — liminf K, * h(x) > 0.
y——00 Y=o
Then we see that Q(h)(x) <29, h(x) for any x € Qg, and also Q(g,) = 0 for
all n € N by Lemma 4.3. Since Q(f) < Q(f —gy,) for all n € N, by Theorem 1.3
and (4.6) we obtain the following estimate
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[{x € Qp: Q(f)(x) > 0}z = lim [{xeQy:Qf)(x)>1/n}n
= lim |{x € Q) : Q(f — gu)(x) > 1/n}|n
lim |{x € QY : 20, (f — gn)(x) > 1/n}n

Jim 290 e[ f = gnllTeqe) <e

IN

IN

Taking € | 0, we have that |{x € Q% : Q(f)(x) > 0}/g = 0. This implies the

required result. Hence we complete the proof. ([
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