L^{q}-ESTIMATES OF MAXIMAL OPERATORS ON THE p-ADIC VECTOR SPACE

Yong-Cheol Kim

Abstract. For a prime number p, let \mathbb{Q}_{p} denote the p-adic field and let \mathbb{Q}_{p}^{d} denote a vector space over \mathbb{Q}_{p} which consists of all d-tuples of \mathbb{Q}_{p}. For a function $f \in L_{l o c}^{1}\left(\mathbb{Q}_{p}^{d}\right)$, we define the Hardy-Littlewood maximal function of f on \mathbb{Q}_{p}^{d} by

$$
\mathcal{M}_{p} f(\mathbf{x})=\sup _{\gamma \in \mathbb{Z}} \frac{1}{\left|B_{\gamma}(\mathbf{x})\right|_{H}} \int_{B_{\gamma}(\mathbf{x})}|f(\mathbf{y})| d \mathbf{y}
$$

where $|E|_{H}$ denotes the Haar measure of a measurable subset E of \mathbb{Q}_{p}^{d} and $B_{\gamma}(\mathbf{x})$ denotes the p-adic ball with center $\mathbf{x} \in \mathbb{Q}_{p}^{d}$ and radius p^{γ}. If $1<q \leq \infty$, then we prove that \mathcal{M}_{p} is a bounded operator of $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ into $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$; moreover, \mathcal{M}_{p} is of weak type $(1,1)$ on $L^{1}\left(\mathbb{Q}_{p}^{d}\right)$, that is to say,

$$
\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:\left|\mathcal{M}_{p} f(\mathbf{x})\right|>\lambda\right\}\right|_{H} \leq \frac{p^{d}}{\lambda}\|f\|_{L^{1}\left(\mathbb{Q}_{p}^{d}\right)}, \lambda>0
$$

for any $f \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$.

1. Introduction

For a prime number p, let \mathbb{Q}_{p} denote the p-adic field. From the standard p-adic analysis [8], we see that any non-zero element $x \in \mathbb{Q}_{p}$ has a unique representation like

$$
x=p^{\gamma} \sum_{j=0}^{\infty} x_{j} p^{j}, \quad \gamma=\gamma(x) \in \mathbb{Z}
$$

where $0 \leq x_{j} \leq p-1$ and $x_{0} \neq 0$. Here we call $\gamma=\gamma(x)$ the p-adic valuation of x and we write $\gamma=\operatorname{ord}_{\mathrm{p}}(\mathrm{x})$ with convention $\operatorname{ord}_{\mathrm{p}}(0)=\infty$. Then it is wellknown $[1,8]$ that the nonnegative function $|\cdot|_{p}$ on \mathbb{Q}_{p} given by $|x|_{p}=p^{-\operatorname{ord}_{\mathrm{p}}(\mathrm{x})}$ becomes a non-Archimedean norm on \mathbb{Q}_{p} and \mathbb{Q}_{p} is defined as the completion of \mathbb{Q} with respect to the norm $|\cdot|_{p}$. For $d \in \mathbb{N}$, let \mathbb{Q}_{p}^{d} denotes a vector space over \mathbb{Q}_{p} which consists of all points $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right), x_{1}, x_{2}, \ldots, x_{d} \in \mathbb{Q}_{p}$. If we define $|\mathbf{x}|_{p}=\max _{1 \leq j \leq d}\left|x_{j}\right|_{p}$ for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{Q}_{p}^{d}$, then it is easy

Received January 15, 2009.
2000 Mathematics Subject Classification. 11S80, 11K70, 11E95.
Key words and phrases. p-adic vector space, the Hardy-Littlewood maximal function.
to see that $|\cdot|_{p}$ is a non-Archimedean norm on \mathbb{Q}_{p}^{d} and moreover \mathbb{Q}_{p}^{d} is a locally compact Hausdorff and totally disconnected Banach space with respect to the norm $|\cdot|_{p}$. For $\gamma \in \mathbb{Z}$, we denote the ball $B_{\gamma}(\mathbf{a})$ with center $\mathbf{a} \in \mathbb{Q}_{p}^{d}$ and radius p^{γ} and its boundary $S_{\gamma}(\mathbf{a})$ by

$$
B_{\gamma}(\mathbf{a})=\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathbf{x}-\mathbf{a}|_{p} \leq p^{\gamma}\right\} \quad \text { and } S_{\gamma}(\mathbf{a})=\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathbf{x}-\mathbf{a}|_{p}=p^{\gamma}\right\}
$$

respectively. Since \mathbb{Q}_{p}^{d} is a locally compact commutative group under addition, it follows from the standard analysis that there exists a unique Haar measure $d \mathbf{x}$ on \mathbb{Q}_{p}^{d} (up to positive constant multiple) which is translation invariant, i.e., $d(\mathbf{x}+\mathbf{a})=d \mathbf{x}$. We normalize the measure $d \mathbf{x}$ so that

$$
\begin{equation*}
\int_{B_{0}(\mathbf{0})} d \mathbf{x} \fallingdotseq\left|B_{0}(\mathbf{0})\right|_{H}=1 \tag{1.1}
\end{equation*}
$$

where $|E|_{H}$ denotes the Haar measure of a measurable subset E of \mathbb{Q}_{p}^{d}. From this integration theory, it is easy to obtain that $\left|B_{\gamma}(\mathbf{a})\right|_{H}=p^{\gamma d}$ and $\left|S_{\gamma}(\mathbf{a})\right|_{H}=$ $p^{\gamma d}\left(1-p^{-d}\right)$ for any $\mathbf{a} \in \mathbb{Q}_{p}^{d}$.

In what follows, we say that a (real-valued) measurable function f defined on \mathbb{Q}_{p}^{d} is in $L^{q}\left(\mathbb{Q}_{p}^{d}\right), 1 \leq q \leq \infty$, if it satisfies

$$
\begin{align*}
&\|f\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)} \fallingdotseq\left(\int_{\mathbb{Q}_{p}^{d}}|f(\mathbf{x})|^{q} d \mathbf{x}\right)^{1 / q}<\infty, 1 \leq q<\infty \tag{1.2}\\
&\left.\|f\|_{L^{\infty}\left(\mathbb{Q}_{p}^{d}\right)} \fallingdotseq \inf \left\{\alpha:\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|f(\mathbf{x})|>\alpha\right\}\right|_{H}=0\right\}\right\}<\infty .
\end{align*}
$$

Here the integral in (1.2) is defined as

$$
\begin{equation*}
\int_{\mathbb{Q}_{p}^{d}}|f(\mathbf{x})|^{q} d \mathbf{x}=\lim _{n \rightarrow \infty} \int_{B_{n}(\mathbf{0})}|f(\mathbf{x})|^{q} d \mathbf{x}=\lim _{n \rightarrow \infty} \sum_{-\infty<\gamma \leq n} \int_{S_{\gamma}(\mathbf{0})}|f(\mathbf{x})|^{q} d \mathbf{x} \tag{1.3}
\end{equation*}
$$

if the limit exists. We now mention some of the previous works on harmonic analysis on the p-adic field \mathbb{Q}_{p} as follows; Haran $[2,3]$ obtained the explicit formula of Riesz potentials on \mathbb{Q}_{p} and developed an analytical potential theory on the p-adic field \mathbb{Q}_{p}.

For a function $f \in L_{l o c}^{1}\left(\mathbb{Q}_{p}^{d}\right)$, we define the Hardy-Littlewood maximal function of f on \mathbb{Q}_{p}^{d} by

$$
\mathcal{M}_{p} f(\mathbf{x})=\sup _{\gamma \in \mathbb{Z}} \frac{1}{\left|B_{\gamma}(\mathbf{x})\right|_{H}} \int_{B_{\gamma}(\mathbf{x})}|f(\mathbf{y})| d \mathbf{y}
$$

The reader can refer to [6] for the definition on the Euclidean case. Then we prove the following theorem.

Theorem 1.1. If $1<q \leq \infty$, then \mathcal{M}_{p} is a bounded operator of $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ into $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$. Moreover \mathcal{M}_{p} is of weak type $(1,1)$ on $L^{1}\left(\mathbb{Q}_{p}^{d}\right)$; that is to say,

$$
\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:\left|\mathcal{M}_{p} f(\mathbf{x})\right|>\lambda\right\}\right|_{H} \leq \frac{p^{d}}{\lambda}\|f\|_{L^{1}\left(\mathbb{Q}_{p}^{d}\right)}, \lambda>0
$$

for any $f \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$.
Corollary 1.2. If $f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ for $1 \leq q<\infty$, then we have that
(a) $\lim _{\gamma \rightarrow-\infty}\left\|\frac{1}{\left|B_{\gamma}(\cdot)\right|_{H}} \int_{B_{\gamma}(\cdot)} f(\mathbf{y}) d \mathbf{y}-f\right\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)}=0$,
(b) $\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}: \lim _{\gamma \rightarrow-\infty}\left|\frac{1}{\left|B_{\gamma}(\mathbf{x})\right|_{H}} \int_{B_{\gamma}(\mathbf{x})} f(\mathbf{y}) d \mathbf{y}-f(\mathbf{x})\right| \neq 0\right\}\right|_{H}=0$.

Let $\mathcal{M}\left(\mathbb{Q}_{p}^{d}\right)$ denote the set of all measurable functions on \mathbb{Q}_{p}^{d}. For $f, g \in$ $\mathcal{M}\left(\mathbb{Q}_{p}^{d}\right)$, we define the convolution $f * g$ of f and g by

$$
f * g(\mathbf{x})=\int_{\mathbb{Q}_{p}^{d}} f(\mathbf{x}-\mathbf{y}) g(\mathbf{y}) d \mathbf{y}, \mathbf{x} \in \mathbb{Q}_{p}^{d}
$$

Theorem 1.3. Let $K(\mathbf{x})$ be a nonnegative measurable function on \mathbb{Q}_{p}^{d} such that

$$
K(\mathbf{x})=\Phi\left(|\mathbf{x}|_{p}\right)
$$

where $\Phi(t)$ is a monotone decreasing function on $(0, \infty)$ satisfying

$$
c(p, \Phi) \fallingdotseq \lim _{n \rightarrow \infty} \sum_{-\infty<\gamma \leq n} p^{\gamma d} \Phi\left(p^{\gamma}\right)<\infty
$$

If we set

$$
\mathfrak{M}_{p} f(\mathbf{x})=\sup _{\gamma \in \mathbb{Z}}\left|K_{\gamma} * f(\mathbf{x})\right|, f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right), 1<q \leq \infty
$$

where $K_{\gamma}(\mathbf{x})=p^{-\gamma d} K\left(p^{\gamma} \mathbf{x}\right)$ for $\gamma \in \mathbb{Z}$, then \mathfrak{M}_{p} is a bounded operator of $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ into $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ for $1<q \leq \infty$; moreover, \mathfrak{M}_{p} is of weak type $(1,1)$ on $L^{1}\left(\mathbb{Q}_{p}^{d}\right)$.

Corollary 1.4. Let $K(\mathbf{x})$ be a nonnegative measurable function on \mathbb{Q}_{p}^{d} such that

$$
K(\mathbf{x})=\Phi\left(|\mathbf{x}|_{p}\right),
$$

where $\Phi(t)$ is a monotone decreasing function on $(0, \infty)$ satisfying

$$
\begin{equation*}
c(p, \Phi) \fallingdotseq \lim _{n \rightarrow \infty} \sum_{-\infty<\gamma \leq n} p^{\gamma d} \Phi\left(p^{\gamma}\right)<\infty \tag{1.4}
\end{equation*}
$$

If $f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ for $1 \leq q<\infty$, then we have that
(a) $\lim _{\gamma \rightarrow-\infty}\left\|K_{\gamma} * f-\beta f\right\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)}=0$,
(b) $\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}: \lim _{\gamma \rightarrow-\infty}\left|K_{\gamma} * f(\mathbf{x})-\beta f(\mathbf{x})\right| \neq 0\right\}\right|_{H}=0$,
where $\int_{\mathbb{Q}_{P}^{d}} K(\mathbf{x}) d \mathbf{x} \fallingdotseq \beta$ and $K_{\gamma}(\mathbf{x})=p^{-\gamma d} K\left(p^{\gamma} \mathbf{x}\right)$ for $\gamma \in \mathbb{Z}$.
Remark. We observe that (1.4) and (3.8) imply that $0 \leq \beta=\left(1-p^{-d}\right) c(p, \Phi)<$ ∞.

Examples. (a) If $K(\mathbf{x})=\frac{1}{\left(1+|\mathbf{x}|_{p}\right)^{\alpha}}, \mathbf{x} \in \mathbb{Q}_{p}^{d}$ for $\alpha>d$, then we have $\Phi(t)=$ $\frac{1}{(1+t)^{\alpha}}$, and thus we obtain that

$$
c(p, \Phi)=\lim _{n \rightarrow \infty} \sum_{-\infty<\gamma \leq n} \frac{p^{\gamma d}}{\left(1+p^{\gamma}\right)^{\alpha}} \leq \sum_{\gamma=0}^{\infty} p^{-\gamma d}+\sum_{\gamma=1}^{\infty} p^{-\gamma(\alpha-d)}<\infty
$$

(b) If $K(\mathbf{x})=\ln ^{k}\left(|\mathbf{x}|_{p}^{-1}\right) \chi_{B_{0}(\mathbf{0})}(\mathbf{x}), \mathbf{x} \in \mathbb{Q}_{p}^{d}$ for $k \in \mathbb{N}$, then we have that

$$
\Phi(t)=\ln ^{k}\left(t^{-1}\right) \chi_{(0,1]}(t) .
$$

In order to obtain the finiteness of $c(p, \Phi)$, we observe the following inequalities;

$$
\begin{equation*}
\frac{k!}{(1-t)^{k+1}}=\sum_{\gamma=0}^{\infty}(\gamma+1)(\gamma+2) \cdots(\gamma+k) t^{\gamma} \geq \sum_{\gamma=0}^{\infty} \gamma^{k} t^{\gamma}, 0<t<1 \tag{1.5}
\end{equation*}
$$

If we set $t=p^{-d}$ in (1.5), then we have that

$$
\begin{aligned}
c(p, \Phi) & =\sum_{-\infty<\gamma \leq 0} p^{\gamma d} \ln ^{k}\left(p^{-\gamma}\right)=\sum_{\gamma=0}^{\infty} p^{-\gamma d} \ln ^{k}\left(p^{\gamma}\right) \\
& =(\ln p)^{k} \sum_{\gamma=0}^{\infty} \gamma^{k} p^{-\gamma d} \leq \frac{k!(\ln p)^{k}}{\left(1-p^{-d}\right)^{k+1}}<\infty
\end{aligned}
$$

(c) If $K(\mathbf{x})=e^{-|\mathbf{x}|_{p}}$ for $\mathbf{x} \in \mathbb{Q}_{p}^{d}$, then we see that $\Phi(t)=e^{-t}$. We also observe that there exists some constant $c_{p}>0$ depending on p such that

$$
t^{2 d} \leq c_{p} e^{t}
$$

whenever $t \geq p$. Thus this implies that

$$
\begin{aligned}
c(p, \Phi) & =\lim _{n \rightarrow \infty} \sum_{-\infty<\gamma \leq n} p^{\gamma d} e^{-p^{\gamma}} \\
& =\sum_{\gamma=0}^{\infty} p^{-\gamma d} e^{-p^{-\gamma}}+\lim _{n \rightarrow \infty} \sum_{\gamma=1}^{n} p^{\gamma d} e^{-p^{\gamma}} \\
& \leq \sum_{\gamma=0}^{\infty} p^{-\gamma d}+c_{p} \sum_{\gamma=1}^{\infty} p^{-\gamma d}<\infty .
\end{aligned}
$$

2. The p-adic version of the Marcinkiewicz interpolation theorem

First of all, we shall obtain the relation between Riemann-Stieltjes integrals and Haar integrals which we mentioned in (1.3). Let f be a measurable function on \mathbb{Q}_{p}^{d} satisfying $f \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$. For $\alpha>0$, we denote the distribution function $\omega_{H}(\alpha)$ of $|f|$ on \mathbb{Q}_{p}^{d} by

$$
\omega_{H}(\alpha)=\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|f(\mathbf{x})|>\alpha\right\}\right|_{H}
$$

Then we easily obtain the following proposition as in the Euclidean case.

Proposition 2.1 (Chebyshev's inequality). If $f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ for $q>0$, then we have that

$$
\omega_{H}(\alpha) \leq \frac{1}{\alpha^{q}} \int_{\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|f(\mathbf{x})|>\alpha\right\}}|f(\mathbf{x})|^{q} d \mathbf{x}, \alpha>0
$$

Lemma 2.2. If $f \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$, then we have that

$$
\int_{E_{a b}}|f(\mathbf{x})| d \mathbf{x}=-\int_{a}^{b} \alpha d \omega(\alpha)
$$

where $E_{a b}=\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}: a<|f(\mathbf{x})| \leq b\right\}$ for $a, b \in \mathbb{R}$ with $0<a<b<\infty$.
Proof. Since $f \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$, the distribution function ω_{H} is of bounded variation on $[a, b]$. So the Riemann-Stieltjes integral on the right exists. Let $\mathcal{P}=\{a=$ $\left.\alpha_{0}<\alpha_{1}<\cdots<\alpha_{k}=b\right\}$ be a partition of $[a, b]$ and let $E_{j}=\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}: \alpha_{j-1}<\right.$ $\left.|f(\mathbf{x})| \leq \alpha_{j}\right\}$ for $j=1,2, \ldots, k$. Then we see that $E_{a b}=\cup_{j=1}^{k} E_{j}$ is the disjoint union of measurable sets. Thus we have that

$$
\int_{E_{a b}}|f(\mathbf{x})| d \mathbf{x}=\sum_{j=1}^{k} \int_{E_{j}}|f(\mathbf{x})| d \mathbf{x}
$$

and $\left|E_{j}\right|_{H}=-\left[\omega_{H}\left(\alpha_{j}\right)-\omega_{H}\left(\alpha_{j-1}\right)\right]$, and so we obtain that
$-\sum_{j=1}^{k} \alpha_{j-1}\left[\omega_{H}\left(\alpha_{j}\right)-\omega_{H}\left(\alpha_{j-1}\right)\right] \leq \int_{E_{a b}}|f(\mathbf{x})| d \mathbf{x} \leq-\sum_{j=1}^{k} \alpha_{j}\left[\omega_{H}\left(\alpha_{j}\right)-\omega_{H}\left(\alpha_{j-1}\right)\right]$.
Hence we complete the proof by taking $\|\mathcal{P}\| \fallingdotseq \max _{1 \leq j \leq k}\left(\alpha_{j}-\alpha_{j-1}\right) \rightarrow 0$.
Proposition 2.3. If $f \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$, then we have that

$$
\int_{\mathbb{Q}_{p}^{d}}|f(\mathbf{x})| d \mathbf{x}=-\int_{0}^{\infty} \alpha d \omega_{H}(\alpha) .
$$

Proof. It easily follows from Lemma 2.2 and the p-adic version $[5,8]$ of Lebesgue's dominated convergence theorem.
Lemma 2.4. If $f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ for $q>0$, then we have that

$$
\int_{\mathbb{Q}_{p}^{d}}|f(\mathbf{x})|^{q} d \mathbf{x}=-\int_{0}^{\infty} \alpha^{q} d \omega_{H}(\alpha)=q \int_{0}^{\infty} \alpha^{q-1} \omega_{H}(\alpha) d \alpha
$$

Proof. It easily follows from the integration by parts on the Riemann-Stieltjes integral, Proposition 2.1 (Chebyshev's inequality), and the p-adic version of Lebesgue's dominated convergence theorem.

Next we need the p-adic version of the Marcinkiewicz interpolation theorem [3] which is one of powerful tools for $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$-estimates of sublinear operators like maximal operators. Indeed its proof can be obtained as in that of the Euclidean case by applying Lemma 2.4.

Theorem 2.5. For $1<r \leq \infty$, let a mapping $\mathcal{T}: L^{1}\left(\mathbb{Q}_{p}^{d}\right)+L^{r}\left(\mathbb{Q}_{p}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{Q}_{p}^{d}\right)$ satisfy

$$
|\mathcal{T}(f+g)(\mathbf{x})| \leq|\mathcal{T} f(\mathbf{x})|+|\mathcal{T} g(\mathbf{x})|, \mathbf{x} \in \mathbb{Q}_{p}^{d}
$$

Suppose that \mathcal{T} is both of weak type $(1,1)$ and of weak type (r, r); that is, there exist some constants $c_{1}>0$ and $c_{r}>0$ such that

$$
\begin{aligned}
& \left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathcal{T} f(\mathbf{x})|>\lambda\right\}\right|_{H} \leq \frac{c_{1}}{\lambda}\|f\|_{L^{1}\left(\mathbb{Q}_{p}^{d}\right)}, \lambda>0 \\
& \left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathcal{T} f(\mathbf{x})|>\lambda\right\}\right|_{H} \leq \frac{c_{r}^{r}}{\lambda^{r}}\|f\|_{L^{r}\left(\mathbb{Q}_{p}^{d}\right)}^{r}, \lambda>0
\end{aligned}
$$

Then there exists a constant $C=C\left(q, r, c_{1}, c_{r}\right)>0$ such that $\|\mathcal{T} f\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)} \leq$ $C\|f\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)}$ for any $f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right), 1<q<r$.

Sketch of the proof. For $\lambda>0$, we define a function f_{1} by

$$
f_{1}(\mathbf{x})= \begin{cases}f(\mathbf{x}), & \text { if }|f(\mathbf{x})| \geq \lambda / 2 \\ 0, & \text { if }|f(\mathbf{x})|<\lambda / 2\end{cases}
$$

In case that $r=\infty$, we may assume that $\|\mathcal{T} f\|_{L^{\infty}\left(\mathbb{Q}_{p}^{d}\right)} \leq\|f\|_{L^{\infty}\left(\mathbb{Q}_{p}^{d}\right)}$ by dividing \mathcal{T} by the constant c_{∞}. From the assumption we can easily obtain that

$$
\begin{aligned}
\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathcal{T} f(\mathbf{x})|>\lambda\right\}\right|_{H} & \leq\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:\left|\mathcal{T} f_{1}(\mathbf{x})\right|>\lambda / 2\right\}\right|_{H} \\
& \leq \frac{2 c_{1}}{\lambda} \int_{|f|>\lambda / 2}|f(\mathbf{x})| d \mathbf{x}
\end{aligned}
$$

Applying Lemma 2.4 and changing the order of integration, try to derive that

$$
\int_{\mathbb{Q}_{p}^{d}}|\mathcal{T} f(\mathbf{x})|^{q} d \mathbf{x} \leq \frac{2^{q} q c_{1}}{q-1} \int_{\mathbb{Q}_{p}^{d}}|f(\mathbf{x})|^{q} d \mathbf{x}
$$

We now consider the case $1<r<\infty$. If we set $f_{2}=f-f_{1}$, then it easily follow from the above assumptions that

$$
\begin{aligned}
& \left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathcal{T} f(\mathbf{x})|>\lambda\right\}\right|_{H} \\
\leq & \left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:\left|\mathcal{T} f_{1}(\mathbf{x})\right|>\lambda\right\}\right|_{H}+\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:\left|\mathcal{T} f_{2}(\mathbf{x})\right|>\lambda\right\}\right|_{H} \\
\leq & \frac{2 c_{1}}{\lambda} \int_{|f|>\lambda / 2}|f(\mathbf{x})| d \mathbf{x}+\frac{2^{r} c_{r}^{r}}{\lambda^{r}} \int_{|f| \leq \lambda / 2}|f(\mathbf{x})|^{r} d \mathbf{x} .
\end{aligned}
$$

Then apply Lemma 2.4 and changing the order of integration to obtain that

$$
\int_{\mathbb{Q}_{p}^{d}}|\mathcal{T} f(\mathbf{x})|^{q} d \mathbf{x} \leq 2^{q} q\left(\frac{c_{1}}{q-1}+\frac{c_{r}^{r}}{r-q}\right) \int_{\mathbb{Q}_{p}^{d}}|f(\mathbf{x})|^{q} d \mathbf{x}
$$

Therefore we complete the proof.

3. $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$-estimates of maximal operators

First of all we observe several interesting properties on the family

$$
\mathfrak{F}_{p}=\left\{B_{\gamma}(\mathbf{x}): \gamma \in \mathbb{Z}, \mathbf{x} \in \mathbb{Q}_{p}^{d}\right\}
$$

of all the p-adic balls, which differ from those of the Euclidean case.
Lemma 3.1. The family \mathfrak{F}_{p} has the following properties:
(a) If $\gamma \leq \gamma^{\prime}$, then either $B_{\gamma}(\mathbf{x}) \cap B_{\gamma^{\prime}}(\mathbf{y})=\phi$ or $B_{\gamma}(\mathbf{x}) \subset B_{\gamma^{\prime}}(\mathbf{y})$.
(b) $B_{\gamma}(\mathbf{x})=B_{\gamma}(\mathbf{y})$ if and only if $\mathbf{y} \in B_{\gamma}(\mathbf{x})$.

Proof. The first part (a) can easily be derived from the non-Archimedean property of the p-adic norm $|\cdot|_{p}$. Also the second part (b) is a natural by-product of (a).

Lemma 3.2. Let $\mathcal{C}=\left\{B_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ be a subfamily of \mathfrak{F}_{p} with $\sup _{\alpha \in \mathcal{A}} \mathfrak{r}\left(B_{\alpha}\right)=$ $c_{0}<\infty$, where $\mathfrak{r}\left(B_{\alpha}\right)$ denotes the radius of such p-adic ball B_{α}. If there exists some ball $B_{0} \in \mathcal{C}$ with $\mathfrak{r}\left(B_{0}\right) \geq c_{0} / p$ such that

$$
\mathcal{C}_{0} \fallingdotseq\left\{B_{\alpha} \in \mathcal{C}: B_{\alpha} \cap B_{0}=\phi\right\}=\phi
$$

then the subfamily \mathcal{C} is a partially ordered set by inclusion which has a unique maximal element.

Proof. By Lemma 3.1, it is trivial that \mathcal{C} is a partially ordered set by inclusion. From the uniform boundedness of the radii of balls in \mathcal{C}, we see that every linearly ordered subset of \mathcal{C} has an upper bound. Thus the subfamily \mathcal{C} has a maximal element by Zorn's lemma. So it suffices to show the uniqueness of maximal element. To see this, we have only to show that if $B_{\alpha}, B_{\alpha^{\prime}} \in \mathcal{C}$ with $B_{\alpha} \supset B_{0}$ and $B_{\alpha^{\prime}} \supset B_{0}$, then either $B_{\alpha} \subset B_{\alpha^{\prime}}$ or $B_{\alpha^{\prime}} \subset B_{\alpha}$. Indeed, this can easily be derived from Lemma 3.1. Hence we complete the proof.

We now state a covering lemma which will be useful in proving Theorem 1.1.
Lemma 3.3 (Covering Lemma). Let E be a measurable subset of \mathbb{Q}_{p}^{d} and let $\mathcal{C}=\left\{B_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ be a covering of E which consists of p-adic balls with

$$
\sup _{\alpha \in \mathcal{A}} \mathfrak{r}\left(B_{\alpha}\right)<\infty
$$

Then there exists a pairwise disjoint countable subcovering $\mathcal{C}_{0}=\left\{B_{k}\right\}_{k=1}^{\infty}$ of \mathcal{C} such that

$$
|E|_{H} \leq p^{d} \sum_{k=1}^{\infty}\left|B_{k}\right|_{H}
$$

Proof. We see that $\sup _{\alpha \in \mathcal{A}} \mathfrak{r}\left(B_{\alpha}\right)=p^{\gamma_{0}}$ for some $\gamma_{0} \in \mathbb{Z}$. First we choose a ball $B_{1} \in \mathcal{C}$ with $\mathfrak{r}\left(B_{1}\right) \geq p^{\gamma_{0}-1}$. We set $\mathcal{C}_{1}=\left\{B_{\alpha} \in \mathcal{C}: B_{\alpha} \cap B_{1}=\phi\right\}$. If $\mathcal{C}_{1}=\phi$, then by Lemma 3.2 the covering \mathcal{C} of E must be a partially ordered set
by inclusion whose unique maximal element with radius $p^{\gamma_{0}}$ contains E, and so we are done. So we may assume that $\mathcal{C}_{1} \neq \phi$. Then we choose $B_{2} \in \mathcal{C}_{1}$ so that

$$
p \mathfrak{r}\left(B_{2}\right) \geq \sup _{B_{\alpha} \in \mathcal{C}_{1}} \mathfrak{r}\left(B_{\alpha}\right)
$$

We set $\mathcal{C}_{2}=\left\{B_{\alpha} \in \mathcal{C}: B_{\alpha} \cap\left(B_{1} \cup B_{2}\right)=\phi\right\}$. If $\mathcal{C}_{2}=\phi$, then by Lemma 3.2 the covering \mathcal{C} must be the union of two disjoint partially ordered sets by inclusion the union of whose two distinct unique maximal elements with radius less than $p^{\gamma_{0}}$ contains E, and thus we are done. Thus we may assume that $\mathcal{C}_{2} \neq \phi$. Next we choose $B_{3} \in \mathcal{C}_{2}$ so that

$$
p \mathfrak{r}\left(B_{3}\right) \geq \sup _{B_{\alpha} \in \mathcal{C}_{2}} \mathfrak{r}\left(B_{\alpha}\right)
$$

Assume that $B_{1}, B_{2}, \ldots, B_{k}$ have been selected likewise. We now set

$$
\mathcal{C}_{k}=\left\{B_{\alpha} \in \mathcal{C}: B_{\alpha} \cap\left(\cup_{i=1}^{k} B_{i}\right)=\phi\right\} .
$$

If $\mathcal{C}_{k}=\phi$, then applying Lemma 3.2 again the covering \mathcal{C} should be the union of k pairwise disjoint partially ordered sets by inclusion the union of whose k distinct unique maximal elements with radius less than $p^{\gamma_{0}}$ contains E, and so we are done. Thus we may assume that $\mathcal{C}_{k} \neq \phi$. Next we choose $B_{k+1} \in \mathcal{C}_{k}$ so that

$$
\begin{equation*}
p \mathfrak{r}\left(B_{k+1}\right) \geq \sup _{B_{\alpha} \in \mathcal{C}_{k}} \mathfrak{r}\left(B_{\alpha}\right) . \tag{3.1}
\end{equation*}
$$

Continuing this process, we obtain a countable collection $\mathcal{C}_{0}=\left\{B_{k}\right\}_{k=1}^{\infty}$ of pairwise disjoint p-adic balls. If $\sum_{k=1}^{\infty}\left|B_{k}\right|_{H}=\infty$, then there is nothing to prove. So we may assume that

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|B_{k}\right|_{H}<\infty \tag{3.2}
\end{equation*}
$$

If B_{k}^{*} denotes the p-adic concentric ball of B_{k} with $\mathfrak{r}\left(B_{k}^{*}\right)=p \mathfrak{r}\left(B_{k}\right)$, then we claim that

$$
\begin{equation*}
E \subset \bigcup_{k=1}^{\infty} B_{k}^{*} \tag{3.3}
\end{equation*}
$$

To show the claim (3.3), it suffices to prove that $B_{\alpha} \subset \cup_{k=1}^{\infty} B_{k}^{*}$ for any $B_{\alpha} \in \mathcal{C}$. If $B_{\alpha} \in \mathcal{C}_{0}$, then we are done. So we assume that $B_{\alpha} \notin \mathcal{C}_{0}$. Since $\lim _{k \rightarrow \infty}\left|B_{k}\right|_{H}=0$ by (3.2), the number $k_{0} \in \mathbb{N}$ given by

$$
\begin{equation*}
k_{0}=\min \left\{k \in \mathbb{N}: p \mathfrak{r}\left(B_{k+1}\right)<\mathfrak{r}\left(B_{\alpha}\right)\right\} \tag{3.4}
\end{equation*}
$$

is well-defined. Then the ball B_{α} must intersect one of the balls $B_{1}, B_{2}, \ldots, B_{k_{0}}$; which otherwise contradicts (3.1). If $B_{\alpha} \cap B_{i_{0}} \neq \phi$ for some i_{0} with $1 \leq i_{0} \leq k_{0}$, then it follows from Lemma 3.1 that $B_{\alpha} \subset B_{i_{0}}^{*}$ because $\mathfrak{r}\left(B_{i_{0}}^{*}\right)=p \mathfrak{r}\left(B_{i_{0}}\right) \geq$ $\mathfrak{r}\left(B_{\alpha}\right)$ by (3.4). Therefore the claim (3.3) implies that

$$
|E|_{H} \leq \sum_{k=1}^{\infty}\left|B_{k}^{*}\right|_{H}=p^{d} \sum_{k=1}^{\infty}\left|B_{k}\right|_{H}
$$

Hence we complete the proof.
Proof of Theorem 1.1. Since it is easy to see that \mathcal{M}_{p} is bounded on $L^{\infty}\left(\mathbb{Q}_{p}^{d}\right)$, by Theorem 2.5 it suffices to show that \mathcal{M}_{p} is of weak type $(1,1)$ on $L^{1}\left(\mathbb{Q}_{p}^{d}\right)$. For $\lambda>0$, we set $E_{\lambda}=\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}: \mathcal{M}_{p} f(\mathbf{x})>\lambda\right\}$. We take any $\mathbf{x} \in E_{\lambda}$. Then there exists a p-adic ball $B_{\gamma_{\mathbf{x}}}(\mathbf{x})$ such that

$$
\begin{equation*}
\int_{B_{\gamma_{\mathbf{x}}(\mathbf{x})}}|f(\mathbf{y})| d \mathbf{y}>\lambda\left|B_{\gamma_{\mathbf{x}}}(\mathbf{x})\right|_{H} \tag{3.5}
\end{equation*}
$$

By Lemma 3.3, we may choose a sequence $\left\{\mathbf{x}_{k}\right\}_{k=1}^{\infty} \subset E_{\lambda}$ such that the collection $\left\{B_{\gamma_{\mathbf{x}_{k}}}\left(\mathbf{x}_{k}\right)\right\}_{k=1}^{\infty}$ of such p-adic balls is pairwise disjoint and

$$
\left|E_{\lambda}\right|_{H} \leq p^{d} \sum_{k=1}^{\infty}\left|B_{\gamma_{\mathbf{x}_{k}}}\left(\mathbf{x}_{k}\right)\right|_{H} .
$$

Hence by (3.5) we conclude that

$$
\left|E_{\lambda}\right|_{H} \leq p^{d} \sum_{k=1}^{\infty}\left|B_{\gamma_{\mathbf{x}_{k}}}\left(\mathbf{x}_{k}\right)\right|_{H} \leq \frac{p^{d}}{\lambda} \int_{\cup_{k=1}^{\infty} B_{\gamma_{\mathbf{x}_{k}}\left(\mathbf{x}_{k}\right)}}|f(\mathbf{y})| d \mathbf{y} \leq \frac{p^{d}}{\lambda}\|f\|_{L^{1}\left(\mathbb{Q}_{p}^{d}\right)}
$$

Therefore we complete the proof.
Proof of Theorem 1.3. From Theorem 1.1, it suffices to prove that

$$
\mathfrak{M}_{p} f(\mathbf{x}) \leq\left(1-p^{-d}\right) c(p, \Phi) \mathcal{M}_{p} f(\mathbf{x}), \quad \mathbf{x} \in \mathbb{Q}_{p}^{d}
$$

for any $f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right), 1<q \leq \infty$. For $\gamma \in \mathbb{Z}$, we set $B=\left\{(\mathbf{y}, t) \in \mathbb{Q}_{p}^{d} \times \mathbb{R}_{+}\right.$: $\left.K_{\gamma}(\mathbf{y})>t\right\}$. We observe that

$$
K_{\gamma}(\mathbf{y})=\int_{0}^{K_{\gamma}(\mathbf{y})} d t=\int_{0}^{\infty} \chi_{B}(\mathbf{y}, t) d t
$$

Then it follows from the translation invariance of the Haar measure and changing the order of integration that

$$
\begin{align*}
\left|K_{\gamma} * f(\mathbf{x})\right| & =\left|\int_{\mathbb{Q}_{p}^{d}} f(\mathbf{x}-\mathbf{y}) K_{\gamma}(\mathbf{y}) d \mathbf{y}\right| \tag{3.6}\\
& \leq \int_{\mathbb{Q}_{p}^{d}}|f(\mathbf{x}-\mathbf{y})|\left(\int_{0}^{\infty} \chi_{B}(\mathbf{y}, t) d t\right) d \mathbf{y} \\
& =\int_{0}^{\infty}\left(\int_{\mathbb{Q}_{p}^{d}}|f(\mathbf{x}-\mathbf{y})| \chi_{B}(\mathbf{y}, t) d \mathbf{y}\right) d t \\
& =\int_{0}^{\infty}\left(\int_{B_{t}}|f(\mathbf{x}-\mathbf{y})| d \mathbf{y}\right) d t
\end{align*}
$$

where $B_{t}=\left\{\mathbf{y} \in \mathbb{Q}_{p}^{d}: K_{\gamma}(\mathbf{y})>t\right\}$ for $t>0$. Here we note that B_{t} is a p-adic ball because $K(\mathbf{y})=\Phi\left(|\mathbf{y}|_{p}\right)$ and $\Phi(t)$ is a nonnegative monotone decreasing
function on $(0, \infty)$. Thus by (3.6) we have that

$$
\begin{align*}
\left|K_{\gamma} * f(\mathbf{x})\right| & \leq \int_{0}^{\infty}\left|B_{t}\right|_{H}\left(\frac{1}{\left|B_{t}\right|_{H}} \int_{B_{t}}|f(\mathbf{x}-\mathbf{y})| d \mathbf{y}\right) d t \tag{3.7}\\
& \leq\left(\int_{0}^{\infty}\left|B_{t}\right|_{H} d t\right) \mathcal{M}_{p} f(\mathbf{x}), \mathbf{x} \in \mathbb{Q}_{p}^{d}
\end{align*}
$$

for any $\gamma \in \mathbb{Z}$. It also follows from Lemma 2.4 and simple calculation on the integration on \mathbb{Q}_{p}^{d} that

$$
\begin{align*}
\int_{0}^{\infty}\left|B_{t}\right|_{H} d t & =\left\|K_{\gamma}\right\|_{L^{1}\left(\mathbb{Q}_{p}^{d}\right)}=\|K\|_{L^{1}\left(\mathbb{Q}_{p}^{d}\right)} \\
& =\lim _{n \rightarrow \infty} \sum_{-\infty<\gamma \leq n} \int_{S_{\gamma}(\mathbf{0})} \Phi\left(|\mathbf{x}|_{p}\right) d \mathbf{x} \tag{3.8}\\
& =\lim _{n \rightarrow \infty} \sum_{-\infty<\gamma \leq n} \Phi\left(p^{\gamma}\right)\left|S_{\gamma}(\mathbf{0})\right|_{H}=\left(1-p^{-d}\right) c(p, \Phi) .
\end{align*}
$$

Therefore by (3.7) and (3.8) we conclude that

$$
\mathfrak{M}_{p} f(\mathbf{x}) \leq\left(1-p^{-d}\right) c(p, \Phi) \mathcal{M}_{p} f(\mathbf{x}), \mathbf{x} \in \mathbb{Q}_{p}^{d}
$$

for any $f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right), 1<q \leq \infty$. Hence this complete the proof by Theorem 1.1.
4. Several convergence of convolution means with kernel integrable

$$
\text { on } \mathbb{Q}_{p}^{d}
$$

In this section, we prove Corollary 1.2 and Corollary 1.4. Since Corollary 1.2 is a special case of Corollary 1.4 with kernel $K(\mathbf{x})=\frac{1}{\left|B_{\gamma}(\mathbf{0})\right|_{H}} \chi_{B_{\gamma}(\mathbf{0})}(\mathbf{x})$, it suffices to show Corollary 1.4.

Lemma 4.1. If $K \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$ and $K_{\gamma}(\mathbf{x})=p^{-\gamma d} K\left(p^{\gamma} \mathbf{x}\right)$ for $\gamma \in \mathbb{Z}$, then we have the following properties:
(a) $\int_{\mathbb{Q}_{p}^{d}}\left|K_{\gamma}(\mathbf{x})\right| d \mathbf{x}=\int_{\mathbb{Q}_{p}^{d}}|K(\mathbf{x})| d \mathbf{x}$ for all $\gamma \in \mathbb{Z}$.
(b) $\lim _{\gamma \rightarrow-\infty} \int_{\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathbf{x}|_{p}>\delta\right\}}\left|K_{\gamma}(\mathbf{x})\right| d \mathbf{x}=0$ for any fixed $\delta>0$.

Proof. (a) It easily follows from the change of variable and the fact that $d(x \mathbf{x})=$ $|x|_{p}^{d} d \mathbf{x}$ for any $x \in \mathbb{Q}_{p} \backslash\{0\}$.
(b) By the change of variable and the p-adic version of Lebesgue dominated convergence theorem, we obtain that

$$
\int_{\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathbf{x}|_{p}>\delta\right\}}\left|K_{\gamma}(\mathbf{x})\right| d \mathbf{x}=\int_{\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathbf{x}|_{p}>\delta p^{-\gamma}\right\}}|K(\mathbf{x})| d \mathbf{x} \rightarrow 0
$$

as $\gamma \rightarrow-\infty$. Hence we complete the proof.

Lemma 4.2. For $\mathbf{y} \in \mathbb{Q}_{p}^{d}$ and $f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right), 1 \leq q<\infty$, we define the translation operator $\tau_{\mathbf{y}}$ by $\tau_{\mathbf{y}} f(\mathbf{x})=f(\mathbf{x}-\mathbf{y})$. Then the mapping $\mathbf{y} \mapsto \tau_{\mathbf{y}} f$ is a (vectorvalued) uniformly continuous function of \mathbb{Q}_{p}^{d} into $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ for $1 \leq q<\infty$.

Proof. We observe that the space $C_{c}\left(\mathbb{Q}_{p}^{d}\right)$ is dense in $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$, because \mathbb{Q}_{p}^{d} is a locally compact Hausdorff space. It thus follows from the uniform continuity of a function in $C_{c}\left(\mathbb{Q}_{p}^{d}\right)$ on its compact support.

Lemma 4.3. For $\gamma \in \mathbb{Z}$ and $K \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$ with $\int_{\mathbb{Q}_{p}^{d}} K(\mathbf{x}) d \mathbf{x} \fallingdotseq \beta$, we set $K_{\gamma}(\mathbf{x})=p^{-\gamma d} K\left(p^{\gamma} \mathbf{x}\right)$. If $f \in C_{c}\left(\mathbb{Q}_{p}^{d}\right)$, then the convolution means $K_{\gamma} * f$ converge to βf uniformly on \mathbb{Q}_{p}^{d} as $\gamma \rightarrow-\infty$.

Proof. Fix any $\varepsilon>0$. Since $K \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$, there is some constant $c_{1}>0$ such that $\|K\|_{L^{1}\left(\mathbb{Q}_{p}^{d}\right)} \leq c_{1}$. By the uniform continuity of f, there exists some $\delta>0$ such that

$$
\begin{equation*}
\sup _{\mathbf{x} \in \mathbb{Q}_{p}^{d}}|f(\mathbf{x}-\mathbf{y})-f(\mathbf{x})|<\frac{\varepsilon}{2 c_{1}} \tag{4.1}
\end{equation*}
$$

whenever $\mathbf{y} \in \mathbb{Q}_{p}^{d}$ and $|\mathbf{y}|_{p} \leq \delta$. Since f is uniformly bounded on \mathbb{Q}_{p}^{d}, there is some constant $c_{0}>0$ such that

$$
\begin{equation*}
\sup _{\mathbf{x} \in \mathbb{Q}_{p}^{d}}|f(\mathbf{x})| \leq c_{0} . \tag{4.2}
\end{equation*}
$$

From (b) of Lemma 4.1, we see that there is some constant $M>0$ so large that

$$
\begin{equation*}
\int_{\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathbf{x}|_{p}>\delta p^{-\gamma}\right\}}|K(\mathbf{x})| d \mathbf{x}<\frac{\varepsilon}{2 c_{0}} \tag{4.3}
\end{equation*}
$$

whenever $\gamma<-M$ and $\gamma \in \mathbb{Z}$. Then it follows from (4.1), (4.2), and (4.3) that

$$
\begin{aligned}
& \sup _{\mathbf{x} \in \mathbb{Q}_{p}^{d}}\left|K_{\gamma} * f(\mathbf{x})-\beta f(\mathbf{x})\right| \\
\leq & \int_{\left\{\mathbf{y} \in \mathbb{Q}_{p}^{d}:|\mathbf{y}|_{p} \leq \delta\right\}}\left(\sup _{\mathbf{x} \in \mathbb{Q}_{p}^{d}}|f(\mathbf{x}-\mathbf{y})-f(\mathbf{x})|\right)\left|K_{\gamma}(\mathbf{y})\right| d \mathbf{y} \\
& +\int_{\left\{\mathbf{y} \in \mathbb{Q}_{p}^{d}:|\mathbf{y}|_{p}>\delta\right\}}\left(\sup _{\mathbf{x} \in \mathbb{Q}_{p}^{d}}|f(\mathbf{x}-\mathbf{y})-f(\mathbf{x})|\right)\left|K_{\gamma}(\mathbf{y})\right| d \mathbf{y} \\
\leq & \frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon=\varepsilon
\end{aligned}
$$

whenever $\gamma<-M$ and $\gamma \in \mathbb{Z}$. Hence we complete the proof.
Proof of Corollary 1.4. (a) Take any $f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ for $1 \leq q<\infty$. Then there is some constant $c_{2}>0$ such that $\|f\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)} \leq c_{2}$. Since we see that $K \in L^{1}\left(\mathbb{Q}_{p}^{d}\right)$
from (1.4), there exists some constant $c_{1}>0$ such that $\|K\|_{L^{1}\left(\mathbb{Q}_{p}^{d}\right)} \leq c_{1}$. Fix any $\varepsilon>0$. By Lemma 4.2 , there exists some $\delta>0$ such that

$$
\begin{equation*}
\left\|\tau_{\mathbf{y}} f-f\right\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)}<\frac{\varepsilon}{2 c_{1}} \tag{4.4}
\end{equation*}
$$

whenever $\mathbf{y} \in \mathbb{Q}_{p}^{d}$ and $|\mathbf{y}|_{p} \leq \delta$. From (b) of Lemma 4.1, we see that there is some constant $M>0$ so large that

$$
\begin{equation*}
\int_{\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}:|\mathbf{x}|_{p}>\delta\right\}}\left|K_{\gamma}(\mathbf{x})\right| d \mathbf{x}<\frac{\varepsilon}{4 c_{2}} \tag{4.5}
\end{equation*}
$$

whenever $\gamma<-M$ and $\gamma \in \mathbb{Z}$. Then it follows from the p-adic version of the integral Minkowski's inequality and Minkowski's inequality, (4.4), and (4.5) that

$$
\begin{aligned}
\left\|K_{\gamma} * f-\beta f\right\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)} \leq & \int_{\mathbb{Q}_{p}^{d}}\left\|\tau_{\mathbf{y}} f-f\right\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)}\left|K_{\gamma}(\mathbf{y})\right| d \mathbf{y} \\
= & \int_{\left\{\mathbf{y} \in \mathbb{Q}_{p}^{d}:|\mathbf{y}|_{p} \leq \delta\right\}}\left\|\tau_{\mathbf{y}} f-f\right\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)}\left|K_{\gamma}(\mathbf{y})\right| d \mathbf{y} \\
& +2\|f\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)} \int_{\left\{\mathbf{y} \in \mathbb{Q}_{p}^{d}:|\mathbf{y}|_{p}>\delta\right\}}\left|K_{\gamma}(\mathbf{y})\right| d \mathbf{y} \\
\leq & \frac{1}{2} \varepsilon+\frac{1}{2} \varepsilon=\varepsilon
\end{aligned}
$$

whenever $\gamma<-M$ and $\gamma \in \mathbb{Z}$.
(b) Take any $f \in L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ for $1 \leq q<\infty$ and fix any $\varepsilon>0$. Since the space $C_{c}\left(\mathbb{Q}_{p}^{d}\right)$ is dense in $L^{q}\left(\mathbb{Q}_{p}^{d}\right)$ for each $n \in \mathbb{N}$ there exists some $g_{n} \in C_{c}\left(\mathbb{Q}_{p}^{d}\right)$ such that

$$
\begin{equation*}
\left\|f-g_{n}\right\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)}<\frac{\varepsilon^{1 / q}}{2 c_{3} n} \tag{4.6}
\end{equation*}
$$

where $c_{3}>0$ is some constant with $c_{3}>c_{p q}$ for the operator norm $c_{p q}$ of \mathfrak{M}_{p} in Theorem 1.3 which is given by

$$
c_{p q}= \begin{cases}\left\|\mathfrak{M}_{p}\right\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right) \rightarrow L^{q}\left(\mathbb{Q}_{p}^{d}\right)}, & 1<q<\infty \\ \left\|\mathfrak{M}_{p}\right\|_{L^{1}\left(\mathbb{Q}_{p}^{d}\right) \rightarrow L^{1, \infty}\left(\mathbb{Q}_{p}^{d}\right)}, & q=1\end{cases}
$$

Here, we note that $L^{1, \infty}\left(\mathbb{Q}_{p}^{d}\right)$ denotes the weak $L^{1}\left(\mathbb{Q}_{p}^{d}\right)$ space. For $\mathbf{x} \in \mathbb{Q}_{p}^{d}$ and $h \in L^{q}\left(\mathbb{Q}_{p}^{d}\right), 1 \leq q<\infty$, we define the operator Ω by

$$
\Omega(h)(\mathbf{x})=\limsup _{\gamma \rightarrow-\infty} K_{\gamma} * h(\mathbf{x})-\liminf _{\gamma \rightarrow-\infty} K_{\gamma} * h(\mathbf{x}) \geq 0
$$

Then we see that $\Omega(h)(\mathbf{x}) \leq 2 \mathfrak{M}_{p} h(\mathbf{x})$ for any $\mathbf{x} \in \mathbb{Q}_{p}^{d}$, and also $\Omega\left(g_{n}\right)=0$ for all $n \in \mathbb{N}$ by Lemma 4.3. Since $\Omega(f) \leq \Omega\left(f-g_{n}\right)$ for all $n \in \mathbb{N}$, by Theorem 1.3 and (4.6) we obtain the following estimate

$$
\begin{aligned}
\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}: \Omega(f)(\mathbf{x})>0\right\}\right|_{H} & =\lim _{n \rightarrow \infty}\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}: \Omega(f)(\mathbf{x})>1 / n\right\}\right|_{H} \\
& =\lim _{n \rightarrow \infty}\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}: \Omega\left(f-g_{n}\right)(\mathbf{x})>1 / n\right\}\right|_{H} \\
& \leq \lim _{n \rightarrow \infty}\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}: 2 \mathfrak{M}_{p}\left(f-g_{n}\right)(\mathbf{x})>1 / n\right\}\right|_{H} \\
& \leq \lim _{n \rightarrow \infty} 2^{q} n^{q} c_{3}^{q}\left\|f-g_{n}\right\|_{L^{q}\left(\mathbb{Q}_{p}^{d}\right)}^{q}<\varepsilon
\end{aligned}
$$

Taking $\varepsilon \downarrow 0$, we have that $\left|\left\{\mathbf{x} \in \mathbb{Q}_{p}^{d}: \Omega(f)(\mathbf{x})>0\right\}\right|_{H}=0$. This implies the required result. Hence we complete the proof.

References

[1] Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic press, New York, 1966.
[2] S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math. 101 (1990), 697-703.
[3] , Analytic potential theory over the p-adics, Ann. Inst. Fourier(Grenoble) 43 (1993), no. 4, 905-944.
[4] J. Marcinkiewicz, Sur l'interpolation d'opérateurs, C. R. Acad. Sci. Paris 208 (1939), 1272-1273.
[5] M. A. Naimark, Normed Rings, Moscow, Nauka, 1968.
[6] E. M. Stein, Harmonic Analysis: Real variable methods, orthogonality, and oscillatory integrals, Princeton Univ. Press, 1993.
[7] V. S. Vladimirov and I. V. Volovich, p-adic quantum mechanics, Commun. Math. Phys. 123 (1989), 659-676.
[8] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-adic Analysis and Mathematical Physics, Series on Soviet \& East European Mathematics, Vol. I, World Scientific, Singapore, 1992.

Department of Mathematics Education
Korea University
Seoul 136-701, Korea
E-mail address: ychkim@korea.ac.kr

