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EQUALITY IN DEGREES OF COMPACTNESS: SCHAUDER’S

THEOREM AND s-NUMBERS

Asuman Güven Aksoy and Daniel Akech Thiong

Abstract. We investigate an extension of Schauder’s theorem by study-

ing the relationship between various s-numbers of an operator T and its
adjoint T ∗. We have three main results. First, we present a new proof

that the approximation number of T and T ∗ are equal for compact oper-
ators. Second, for non-compact, bounded linear operators from X to Y ,

we obtain a relationship between certain s-numbers of T and T ∗ under

natural conditions on X and Y . Lastly, for non-compact operators that
are compact with respect to certain approximation schemes, we prove re-

sults for comparing the degree of compactness of T with that of its adjoint

T ∗.

1. Introduction

In the following, we give a brief review of the background, notation, and ter-
minology that will be relevant to this paper. Let L(X,Y ) denote the normed
vector space of all continuous operators fromX to Y ,X∗ be the dual space ofX,
and K(X,Y ) denote the collection of all compact operators from X to Y . De-
note by T ∗ ∈ L(Y ∗, X∗) the adjoint operator of T ∈ L(X,Y ). The well known
theorem of Schauder states that T ∈ K(X,Y ) if and only if T ∗ ∈ K(Y ∗, X∗).
The proof of Schauder’s theorem that uses Arzelà-Ascoli theorem is presented
in most textbooks on functional analysis (see, e.g., [19]). A new and simple
proof that does not depend on Arzelà-Ascoli can be found in [20]. Recalling
the fact that a class of operators A(X,Y ) ⊂ L(X,Y ) is called symmetric if
T ∈ A(X,Y ) implies T ∗ ∈ A(Y ∗, X∗), we note that Schauder’s theorem as-
sures that the class K(X,Y ) of compact operators between arbitrary Banach
spaces X and Y is a symmetric operator ideal in L(X,Y ).

In [18] F. Riesz proved compact operators have at most countable set of
eigenvalues λn(T ), which arranged in a sequence, tend to zero. This result raises
the question of what are the conditions on T ∈ L(X,Y ) such that (λn(T )) ∈ ℓq?
Specifically, what is the rate of convergence to zero of the sequence (λn(T ))?
To answer these questions, in [15] and [17], A. Pietsch developed s-numbers
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sn(T ) (closely related to singular values), which characterize the degree of
compactness of T . The concept of s-numbers sn(T ) is introduced axiomatically
in [15], and their relationships to eigenvalues are given in detail in [17].

Definition. A map that assigns to every operator T a scalar sequence is said
to be an s-function if the following conditions are satisfied:

(1) ||T || = s1(T ) ≥ s2(T ) ≥ · · · ≥ 0 for T ∈ L(X,Y ).
(2) sm+n−1(S + T ) ≤ sm(T ) + sn(T ) for S, T ∈ L(X,Y ).
(3) sn(RTK) ≤ ||R||sn(T )||K|| for K ∈ L(X0, X), T ∈ L(X,Y ), R ∈

L(Y, Yo).
(4) If rank (T ) < n, then sn(T ) = 0.
(5) sn(In) = 1, where In is the identity map of ℓn2 .

We call sn(T ) the n-th s-number of the operator T . Observe that sn(T ) de-
pends on T continuously since

|sn(S)− sn(T )| ≤ ||S − T ||.

In [15] it is shown that there is only one s-function on the class of all oper-
ators between Hilbert spaces. For example, if we let T be a diagonal operator
acting on ℓ2 such that

T (xn) = (λnxn), where λ1 ≥ λ2 ≥ · · · ≥ 0, then sn(T ) = λn

for every s-function.
However, for Banach spaces, there are several possibilities of assigning to

every operator T : X → Y a certain sequence of numbers {sn(T )} which
characterizes the degree of approximability or compactness of T . The main
examples of s-numbers to be used in this paper are approximation numbers,
Kolmogorov numbers, Gelfand numbers and symmetrized approximation num-
bers which are all defined below.

First, for two arbitrary normed spaces X and Y , we define the collection of
the finite-rank operators as follows:

Fn(X,Y ) = {A ∈ L(X,Y ) : rank(A) ≤ n} and F(X,Y ) =

∞⋃
n=0

Fn(X,Y )

which forms the smallest ideal of operators that exists.

Definition. In the following we define the s-numbers we will use.
(1) The nth approximation number

an(T ) = inf{||T −A|| : A ∈ Fn(X,Y )}, n = 0, 1, . . . .

Note that an(T ) provides a measure of how well T can be approximated by
finite mappings whose range is at most n-dimensional. It is clear that the
sequence {an(T )} is monotone decreasing and limn→∞ an(T ) = 0 if and only if
T is the limit of finite rank operators. It is known that the largest s-number is
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the approximation number. This is so because a : S → (an(S)) is an s-function
and if we consider S ∈ L(X,Y ) and if L ∈ F(X,Y ) with rank(L) < n, then

sn(S) ≤ sn(L) + ||S − L|| = ||S − L||.

Therefore sn(S) ≤ an(S). See [7] or [15] for more details.
(2) The nth Kolmogorov diameter of T ∈ L(X) is defined by

δn(T ) = inf{||QGT || : dimG ≤ n},

where the infimum is over all subspaces G ⊂ X such that dimG ≤ n and QG

denotes the canonical quotient map QG : X → X/G.
(3) The nth Gelfand number of T , cn(T ) is defined as:

cn(T ) = inf{ϵ > 0 : ||Tx|| ≤ sup
1≤i≤k

|⟨x, ai⟩|+ ϵ||x||},

where ai ∈ X∗, 1 ≤ i ≤ k with k < n. It follows that an operator T is compact
if and only if cn(T ) → 0 as n → ∞.

(4) The nth symmetrized approximation number τn(T ) for any operator T
defined between arbitrary Banach spaces X and Y is defined as follows:

τn(T ) = δn(JY T ), where JY : Y → ℓ∞(BY ∗)

is an embedding map. Note that above definition is equivalent to

τn(T ) = an(JY TQX)

as well as to

τn(T ) = cn(TQX),

where QX : ℓ1(BX) → X is a metric surjection onto X given by QX(ξx) =∑
BX

ξxx for (ξx) ∈ ℓ1(BX).

It is possible to compare various s-numbers such as an(T ), δn(T ), cn(T ) if
one imposes some mild restrictions on X and Y . With this purpose in mind
we define well known concepts of lifting and extension properties.

Definition. In the following we introduce two well-known important properties
of Banach spaces. See [7] for details.

(1) We say that a Banach space X has the lifting property if for every T ∈
L(X,Y/F ) and every ϵ > 0 there exists an operator S ∈ L(X,Y ) such that

||S|| ≤ (1 + ϵ)||T || and T = QFS,

where F is a closed subspace of the Banach space Y and QF : Y → Y/F
denotes the canonical projection.

Example 1.1. The Banach space ℓ1(Γ) of summable number families {λγ}γ∈Γ

over an arbitrary index set Γ, whose elements {λγ}γ∈Γ are characterized by∑
γ∈Γ |λγ | < ∞, has the metric lifting property.



1130 A. G. AKSOY AND D. A. THIONG

(2) A Banach space Y is said to have the extension property if for each
T ∈ L(M,Y ) there exists an operator S ∈ L(X,Y ) such that T = SJM and
||T || = ||S||, where M is a closed subspace of an arbitrary Banach space X and
JM : M → Y is the canonical injection.

Example 1.2. The Banach space ℓ∞(Γ) of bounded number families {λγ}γ∈Γ

over an arbitrary index set Γ has the metric extension property.

We mention a couple of facts to illustrate the importance of lifting and
extensions properties with respect to s-numbers. If T is any map from a Banach
space with metric lifting property to an arbitrary Banach space, then an(T ) =
δn(T ) ([7], Prop. 2.2.3). It is also known that every Banach space X appears as
a quotient space of an appropriate space ℓ1(Γ) (see [7], p. 52). Furthermore, if
T is any map from an arbitrary Banach space into a Banach space with metric
extension property, then an(T ) = cn(T ) ([7], Prop. 2.3.3). Additionally, every
Banach space Y can be regarded as a subspace of an appropriate space ℓ∞(Γ)
(see [7], p. 60).

For non-compact operator T ∈ L(X,Y ), we do not have too much infor-
mation about the relationship between sn(T ) with sn(T

∗). In this paper, by
imposing certain natural conditions on X and Y we are able to obtain a re-
lationship between sn(T ) with sn(T

∗) for certain s-numbers. Moreover, using
a new characterization of compactness due to Runde [20] together with the
Principle of Local Reflexivity, we give a different, simpler proof of Hutton’s
theorem [10] establishing that for any compact map T ,

an(T ) = an(T
∗) for all n.

Next we consider operators which are not compact but compact with respect
to certain approximation schemes Q. We call such operators as Q-compact and
prove that for any Q-compact operator T , one has τn(T ) = τn(T

∗). This result
answers the question of comparing the degree of compactness for T and its
adjoint T ∗ for non-compact operators T .

2. Comparing sn(T ) and sn(T
∗)

Hutton in [10] used the Principle of Local Reflexivity (PLR) to prove that
for T ∈ K(X,Y ) we have

an(T ) = an(T
∗) for all n.

This result fails for non-compact operators. For example, if T = I : ℓ1 → c0 is
the canonical injection and T ∗ : ℓ1 → ℓ∞ is the natural injection, then one can
show

1 = an(T ) ̸= an(T
∗) =

1

2
.
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On the other hand by considering the ball measure of non-compactness,
namely,

γ(T ) := inf{r > 0 : T (BX) ⊂
n⋃

k=1

Ak, max1≤k≤n diam (Ak) < r, n ∈ N}.

Astala in [4] proved that if T ∈ L(X,Y ), where X and Y are arbitrary Banach
spaces with metric lifting and extension property, respectively, then

γ(T ) = γ(T ∗).

Our first result is a different, simpler proof of Hutton’s theorem. We use only
the characterization of compactness by Runde [20], together with the Principle
of Local Reflexivity. Lindenstrass and Rosenthal [12] discovered a principle that
shows that all Banach spaces are “locally reflexive” or said in another way, every
bidual X∗∗ is finitely representable in the original space X. The following is
a stronger version of this property called Principle of Local Reflexivity (PLR)
due to Johnson, Rosenthal and Zippin [11]:

Definition. Let X be a Banach space regarded as a subspace of X∗∗, let E
and F be finite dimensional subspaces of X∗∗ and X∗, respectively, and let
ϵ > 0. Then there exists a one-to-one operator T : E → X such that

(1) T (x) = x for all x ∈ X ∩ E,
(2) f(Te) = e(f) for all e ∈ E and f ∈ F ,
(3) ||T ||||T−1|| < 1 + ϵ.

PLR is an effective tool in Banach space theory. For example Oja and
Silja in [14] investigated versions of the principle of local reflexivity for nets of
subspaces of a Banach space and gave some applications to duality and lifting
theorems.

Lemma 2.1 (Lemma 1 in [20]). Let X be a Banach space and let T ∈ L(X).
Then T ∈ K(X) if and only if, for each ϵ > 0, there is a finite-dimensional
subspace Fϵ of X such that ||QFϵT || < ϵ, where QFϵ : X → X/Fϵ is the
canonical projection.

Theorem 2.2. Let T ∈ K(X). Then an(T ) = an(T
∗) for all n.

Proof. Since one always has an(T
∗) ≤ an(T ), if we have an(T ) ≤ an(T

∗∗), then
an(T

∗∗) ≤ an(T
∗) would imply an(T ) ≤ an(T

∗). Thus we must verify an(T ) ≤
an(T

∗∗). To this end, suppose T ∈ K(X), by Schauder’s theorem, T ∗ and T ∗∗

are compact. Let ϵ > 0, then by definition, there exists A ∈ Fn(X
∗∗) such that

||T ∗∗−A|| < an(T
∗∗)+ϵ. By Lemma 2.1, there are finite-dimensional subspaces

Eϵ of X
∗∗ and Fϵ of X

∗ such that ||QEϵT
∗∗|| < ϵ, where QEϵ : X

∗∗ → X∗∗/Eϵ

and ||QFϵT
∗|| < ϵ, where QFϵ : X∗ → X∗/Fϵ. By the Principle of Local

Reflexivity (PLR), there exists a one-to-one linear operator S : Eϵ → X such
that ||S||||S−1|| < 1 + ϵ, y∗(Sx∗∗) = x∗∗(y∗) for all x∗∗ ∈ Eϵ and all y∗ ∈ Fϵ,
and S|Eϵ∩X = I.
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Let J : X → X∗∗ be the canonical map. By the Hahn-Banach theorem,
since Eϵ is a subspace of X∗∗, S : Eϵ → X can be extended to a linear
operator S : X∗∗ → X. We now have T ∈ L(X) and SAJ ∈ L(X) and
rank (SAJ) = rank(A) < n, and therefore

an(T ) ≤ ||T − SAJ ||.

To get an upper bound for ||T −SAJ || we estimate ||Tx−SAJ(x)|| for x ∈ BX

using an appropriate element zj of the covering of the set T (BX). Indeed, the
compactness of T implies that T (BX) is relatively compact so that one can
extract a finite-dimensional subset Yϵ ⊂ T (BX) ⊂ X and let zj = Txj be the
n elements forming a basis. Let x ∈ BX . Then we have

an(T ) ≤ |Tx− SAJ(x)||
≤ ||Tx− zj ||+ ||zj − SAJ(x)||
≤ ϵ+ ||zj − SAJ(x)|| = ϵ+ ||Szj − SAJ(x)||
≤ ϵ+ (1 + ϵ)||zj −AJ(x)||
< ϵ+ (1 + ϵ)(an(T

∗) + ϵ)

since

||zj −AJ(x)|| = ||Jzj −AJ(x)||
≤ ||Jzj − JTx||+ ||JTx−AJ(x)||
≤ ϵ+ ||JTx−AJx|| = ϵ+ ||T ∗∗Jx−AJx||
≤ ||T ∗∗ −A||
< an(T

∗) + ϵ.

It follows that an(T ) ≤ an(T
∗∗), as promised. □

Theorem 2.3. If T ∈ L(X,Y ), where X and Y are arbitrary Banach spaces
with metric lifting and extension property, respectively, then δn(T

∗) = δn(T )
for all n.

Proof. It is known that if T ∈ L(X,Y ), where X and Y are arbitrary Banach
spaces, then δn(T

∗) = cn(T ) ([7], Prop. 2.5.5). We also know that if T ∈
L(X,Y ), where X and Y are arbitrary Banach spaces with metric lifting and
extension property, respectively, then δn(T ) = an(T ) = cn(T ). Hence,

δn(T
∗) = cn(T ) = an(T ) = δn(T ). □

Remark 2.4. As stated before, Astala in [4] proved that if T ∈ L(X,Y ), where
X and Y are arbitrary Banach spaces with metric lifting and extension prop-
erty, respectively, then γ(T ) = γ(T ∗), where γ(T ) denotes the measure of
non-compactness of T . In [1], it is shown that limn→∞ δn(T ) = γ(T ). This re-
lationship between Kolmogorov diameters and the measure of non-compactness
together with Theorem 2.3 provide an alternative proof for the result of Astala.
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Theorem 2.5. If T ∈ K(X,Y ), where X and Y are arbitrary Banach spaces
with metric lifting and extension property, respectively, then cn(T

∗) = cn(T )
for all n.

Proof. If T ∈ K(X,Y ), then it is known that δn(T ) = cn(T
∗) ([7], Prop. 2.5.6).

If X and Y are Banach spaces with metric lifting and extension property,
respectively, then we also have δn(T ) = an(T ) = cn(T ). Thus, cn(T

∗) = cn(T )
for all n. □

Remark 2.6. In [9] it is shown that if X has the lifting property, then X∗ has
the extension property. However, if Y has the extension property, then Y ∗ has
the lifting property if and only if Y is finite-dimensional. Therefore one can
observe that if X has the lifting property and Y is finite-dimensional with the
extension property, then Y ∗ has the lifting property and X∗ has the extension
property, so that we have

δn(T
∗) = an(T

∗) = cn(T
∗).

3. Compactness with approximation schemes

Approximation schemes were introduced in Banach space theory by Butzer
and Scherer in 1968 [6] and independently by Y. Brudnyi and N. Kruglyak
under the name of “approximation families” in [5]. They were popularized by
Pietsch in his 1981 paper [16], for later developments we refer the reader to
[1–3]. The following definition is due to Aksoy and generalizes the classical
concept of approximation scheme in a way that allows using families of subsets
of X instead of elements of X, which is useful when we deal with n-widths.

Definition (Generalized Approximation Scheme). Let X be a Banach space.
For each n ∈ N, let Qn = Qn(X) be a family of subsets of X satisfying the
following conditions:

(GA1) {0} = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn ⊂ · · · .
(GA2) λQn ⊂ Qn for all n ∈ N and all scalars λ.
(GA3) Qn +Qm ⊆ Qn+m for every n,m ∈ N.
Then Q(X) = (Qn(X))n∈N is called a generalized approximation scheme on X.
We shall simply use Qn to denote Qn(X) if the context is clear.

We use here the term “generalized” because the elements of Qn may be
subsets of X. Let us now give a few important examples of generalized approx-
imation schemes.

Example 3.1.

(1) Qn is the set of all at-most-n-dimensional subspaces of any given Ba-
nach space X.

(2) Let E be a Banach space and X = L(E); let Qn = Nn(E), where
Nn(E) is the set of all n-nuclear maps on E [15].
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(3) Let ak = (an)
1+ 1

k , where (an) is a nuclear exponent sequence. Then
Qn on X = L(E) can be defined as the set of all Λ∞(ak)-nuclear maps
on E [8].

Definition (Generalized Kolmogorov number). Let BX be the closed unit ball
of X, Q = Q(X) = (Qn(X))n∈N be a generalized approximation scheme on X,
and D be a bounded subset of X. Then the nth generalized Kolmogorov number
δn(D;Q) of D with respect to Q is defined by

(1) δn(D;Q) = inf{r > 0 : D ⊂ rBX +A for some A ∈ Qn(X)}.
Assume that Y is a Banach space and T ∈ L(Y,X). The nth Kolmogorov
number δn(T ;Q) of T is defined as δn(T (BY );Q).

It follows that δn(T ;Q) forms a non-increasing sequence of non-negative
numbers:

(2) ∥T∥ = δ0(T ;Q) ≥ δ1(T ;Q) ≥ · · · ≥ δn(T ;Q) ≥ 0.

We are now able to introduce Q-compact sets and operators:

Definition (Q-compact set). Let D be a bounded subset of X. We say that
D is Q-compact if lim

n
δn(D;Q) = 0.

Definition (Q-compact map). We say that T ∈ L(X,Y ) is a Q-compact map
if T (BY ) is a Q-compact set,

lim
n

δn(T ;Q) = 0.

Q-compact maps are a genuine generalization of compact maps since there
are examples of Q-compact maps that are not compact in the usual sense.
In the following, we present two examples of Q-compact maps that are not
compact. The first of these examples is known (see [1]) and it involves a
projection P : Lp[0, 1] → Rp, where Rp denotes the closure of the span of the
space of Rademacher functions. The second example is new and illustrates
the fact that if Bw is a weighted backward shift on c0(N) with w = (wn)n a
bounded sequence not converging to 0, then Bw is a Q-compact operator which
is not compact.

Example 3.2. Let {rn(t)} be the space spanned by the Rademacher functions.
It can be seen from the Khinchin inequality [13] that

(3) ℓ2 ≈ {rn(t)} ⊂ Lp[0, 1] for all 1 ≤ p ≤ ∞.

We define an approximation scheme An on Lp[0, 1] as follows:

(4) An = Lp+ 1
n
.

Lp+ 1
n
⊂ Lp+ 1

n+1
gives us An ⊂ An+1 for n = 1, 2, . . . , and it is easily seen that

An+Am ⊂ An+m for n,m = 1, 2, . . . , and that λAn ⊂ An for all λ. Thus {An}
is an approximation scheme. It can be shown that for p ≥ 2 the projection
P : Lp[0, 1] → Rp is a non-compact Q-compact map, where Rp denotes the
closure of the span of {rn(t)} in Lp[0, 1] (see [1] for details).
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Next, we give another example is a Q-operator which is not compact.

Example 3.3. Consider the weighted backward shift

B(x1, x2, x3, . . . ) = (w2x2, w3x3, w4x4, . . . ),

where w = (wn)n is a sequence of non-zero scalars called a weight sequence.
Any weighted shift is a linear operator and is bounded if and only if w is a
bounded sequence.

Let w = (wn)n be a bounded sequence of positive real numbers. The uni-
lateral weighted shift on c0(N) is defined by

Bw(e1) = 0 and Bw(en) = wnen−1 for all n ≥ 2.

Proposition 3.4. Suppose the approximation scheme Q = (An)
∞
n=1 of c0(N)

is defined as An = ℓn(N) for all n. Then any bounded weighted shift on c0 is
Q-compact.

Proof. Let Bw be any bounded and linear weighted shift on c0. Then w =
(wn)n is a bounded weight. Let m ≥ 1. Consider,

δm(Bw(Uc0), (An)n)

= inf{r > 0 : Bw(Uc0) ⊆ rUc0 + ℓm}
= inf{r > 0 : ∀x ∈ Uc0 ,∃y ∈ Uc0 ,∃z ∈ ℓm with Bw(x) = ry + z}.

Let x = (xn)n≥1 ∈ Uc0 . Let us define y = (yn)n≥1 ∈ Uc0 and z = (zn)n≥1 ∈
ℓ1 ⊆ ℓm such that Bw(x) =

1
2m y + z. Let A := {n ≥ 1 : 2m|xnwn| > 1}. The

set A is finite, otherwise (wn)n is unbounded. Set{
xnwn = zn−1,
yn−1 = 0, ∀n ∈ A.

Observe that (wnxn)n∈N\A ∈ c0, hence there exists a subsequence (nk)k such

that
∑∞

k=1 |wnk
xnk

| < ∞. Set{
xnk

wnk
= znk−1,

ynk−1 = 0, ∀k ≥ 1.

Finally, set {
2mxnwn = yn−1,
zn−1 = 0, ∀n ∈ N \ {(nk)k ∪A}.

Hence, xnwn = 1
2m yn−1+zn−1 for all n ≥ 2. In other words, Bw(x) =

1
2m y+z.

Note that y ∈ Uc0 and z ∈ ℓ1 ⊂ ℓm. In conclusion, δm(Bw(Uc0), (An)n) ≤ 1
2m .

As m goes to ∞, we obtain that δm(Bw(Uc0), (An)n) goes to 0 and Bw is
Q-compact. □

It is well-known that Bw is compact if and only if w = (wn)n is a null
sequence.
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Corollary 3.5. Let Bw be a weighted backward shift on c0(N) with w = (wn)n a
bounded sequence not converging to 0. Consider the approximation schemes on
c0(N) as Q = (An)

∞
n=1 with An = ℓn(N) for all n. Then, Bw is a non-compact

Q-compact operator.

Our next objective here is to ascertain whether or not Schauder’s type of
theorem is true for Q-compact maps. For this purpose we use symmetrized
approximation numbers of T . For our needs, we choose the closed unit ball BZ

of the Banach space Z as an index set Γ. Our proof of the Schauder’s theorem
for Q-compact operators will depend on the fact that ℓ1(BZ) has the lifting
property and ℓ∞(BZ) has the extension property. First we recall the following
proposition.

Proposition 3.6 (Refined version of Schauder’s theorem [7], p. 84). An op-
erator T between arbitrary Banach spaces X and Y is compact if and only
if

lim
n→∞

τn(T ) = 0

and moreover,
τn(T ) = τn(T

∗).

Motivated by this, we give the definition of Q-compact operators using the
symmetrized approximation numbers.

Definition. We say T is Q-symmetric compact if and only if

lim
n→∞

τn(T,Q) = 0.

Remark 3.7. We need the following simple facts for our proof, for details we
refer the reader to [7, Propositions 2.5.4-2.5.6].

(a) Recall that τn(T,Q) = cn(TQX , Q), where QX : ℓ1(BX) → X.
(b) We will also abbreviate the canonical embedding

Kℓ1(BY ∗ ) : ℓ1(BY ∗) → ℓ∞(BY ∗)∗

by K so that QY ∗ = J∗
Y K.

(c) Denote by P0 : ℓ∞(BX∗∗) → ℓ∞(BX) the operator which restricts any
bounded function on BX∗∗ to the subset KX(BX) ⊂ BX∗∗ so that
Q∗

X = P0JX∗ .
(d) The relations (b) and (c) are crucial facts for the estimates of δn(T

∗, Q∗)
and cn(T

∗, Q∗). In particular, we have cn(T
∗, Q∗) ≤ δn(T,Q).

We now state and prove the following theorem which states that the degree
of Q-compactness of T and T ∗ is the same in so far as it is measured by the
symmetrized approximation numbers τn.

Theorem 3.8 (Schauder’s theorem for Q-compact operators). Let T ∈L(X,Y )
with X,Y be arbitrary Banach spaces, and let Q = (Qn(X)) be a generalized
approximation scheme on X. Then

τn(T
∗, Q∗) = τn(T,Q)
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for all n.

Proof. Let us show that τn(T
∗, Q∗) = τn(T,Q). By Remark 3.7 parts (a) and

(b) we have the following estimates:

τn(T
∗, Q∗) = cn(T

∗QY ∗ , Q∗)

= cn(T
∗J∗

Y K,Q∗)

≤ cn((JY T )
∗, Q∗)

≤ δn(JY T,Q)

= tn(T,Q).

Conversely, we have by using Remark 3.7 parts (c) and (d):

tn(T,Q) = cn(TQX , Q)

= δn(TQX)∗, Q∗)

= δn(Q
∗
XT ∗, Q∗)

= δn(P0JX∗T ∗, Q∗)

≤ δn(JX∗T ∗, Q∗)

= tn(T
∗, Q∗). □

Next we define approximation numbers with respect to a given scheme as
follows:

Definition. Given an approximation scheme {Qn} on X and T ∈ L(X), the n-
th approximation number an(T,Q) with respect to this approximation scheme
is defined as:

an(T,Q) = inf{||T −B|| : B ∈ L(X), B(X) ⊆ Qn}.

Let X∗ and X∗∗ be the dual and second dual of X. Note that if we let
J : X → X∗∗ be the canonical injection and let (X,Qn) be an approxima-
tion scheme, then (X∗∗, J(Qn)) is an approximation scheme. Let {Qn} and
{Q∗∗

n } := {J(Qn)} denote the subsets of X and X∗∗, respectively.

Definition. We say (X,Qn) has the Extended Local Reflexivity Property
(ELRP) if for each countable subset C of X∗∗, for each F ∈ Q∗∗

n , for some
n and each ϵ > 0, there exists a continuous linear map

P : span(F ∪ C) → X such that

(1) ||P || ≤ 1 + ϵ,
(2) P ↾C∩X= I (Identity).

Note that ELRP is an analogue of local reflexivity principle which is pos-
sessed by all Banach spaces.

Theorem 3.9. Suppose (X,Qn) has ELRP and T ∈ L(X) has separable range.
Then for each n we have an(T,Q) = an(T

∗, Q∗).
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Proof. Since one always have an(T
∗, Q∗) ≤ an(T,Q) we only need to verify

an(T,Q) ≤ an(T
∗∗, Q∗∗). Let J : X → X∗∗ be the canonical map and UX be

the unit ball of X. Given ϵ > 0, choose B ∈ L(X∗∗) such that B(X∗∗) ∈ Q∗∗
n

and
||B − T ∗∗|| < ϵ+ an(T

∗∗, Q∗∗
n ).

Let {zj} be a countable dense set in T (X), thus Txj = zj , where xj ∈ X.
Consider the set

K = span{(JTxj)
∞
1 ∪B(X∗∗)}

applying ELRP of X we obtain a map

P : K → X such that ||P || ≤ 1 + ϵ and P ↾(JTxj)∞1 ∩X= I.

For x ∈ UX , consider

||Tx− PBJx|| ≤ ||Tx− zj ||+ ||zj − PBJx||
≤ ϵ+ ||PJTxj − PBJx||
≤ ϵ+ (1 + ϵ)||JTxj −BJx||
≤ ϵ+ (1 + ϵ)[||JTxj − JTx||+ ||JTx−BJx||]
≤ ϵ+ (1 + ϵ)[an(T

∗∗, Q∗∗
n ) + 2ϵ]

and thus
an(T,Q) ≤ an(T

∗∗, Q∗∗
n ). □
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