• Title/Summary/Keyword: Via hole

Search Result 297, Processing Time 0.031 seconds

Empirical Model of Via-Hole Structures in High-Count Multi-Layered Printed Circuit Board (HCML 배선기판에서 비아홀 구조에 대한 경험적 모델)

  • Kim, Young-Woo;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.12
    • /
    • pp.55-67
    • /
    • 2010
  • The electrical properties of a back drilled via-hole (BDH) without the open-stub and the plated through via-hole (PTH) with the open-stub, which is called the conventional structure, in a high-count multi~layered (HCML) printed circuit board (PCB) were investigated for a high-speed digital system, and a selected inner layer to transmit a high-speed signal was farthest away from the side to mount the component. Within 10 GHz of the broadband frequency, a design of experiment (DOE) methodology was carried out with three cause factors of each via-hole structure, which were the distance between the via-holes, the dimensions of drilling pad and the anti-pad in the ground plane, and then the relation between cause and result factors which were the maximum return loss, the half-power frequency, and the minimum insertion loss was analyzed. Subsequently, the empirical formulae resulting in a macro model were extracted and compared with the experiment results. Even, out of the cause range, the calculated results obtained from the macro model can be also matched with the measured results within 5 % of the error.

A study on micro punching process of ceramic green sheet (세라믹 그린시트의 미세 비아홀 펀칭 공정 연구)

  • 신승용;주병윤;임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.101-106
    • /
    • 2003
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole quality is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene Terephthalate) one. In this paper we found the correlation between hole quality and process condition such as ceramic thickness, and tool size. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

  • PDF

3D Packaging Technology Using Femto Laser (팸토초 레이저를 이용한 3차원 패키징 기술)

  • Kim, Ju-Seok;Sin, Yeong-Ui;Kim, Jong-Min;Han, Seong-Won
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.190-192
    • /
    • 2006
  • The 3-dimensional(3D) chip stacking technology is one of the leading technologies to realize a high density and high performance system in package(SIP). It could be found that it is the advanced process of through-hole via formation with the minimum damaged on the Si-wafer. Laser ablation is very effective method to penetrate through hole on the Si-wafer because it has the advantage that formed under $100{\mu}m$ diameter through-hole via without using a mask. In this paper, we studied the optimum method for a formation of through-hole via using femto-second laser heat sources. Furthermore, the processing parameters of the specimens were several conditions such as power of output, pulse repetition rate as well as irradiation method and time. And also the through-hole via form could be investigated and analyzed by microscope and analyzer.

  • PDF

Low Cost Via-Hole Filling Process Using Powder and Solder (파우더와 솔더를 이용한 저비용 비아홀 채움 공정)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Nam, Jae-Woo;Lee, Jong-Hyun;Cho, Chan-Seob;Kim, Bonghwan
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • This study proposed a noble process to fabricate TSV (Through Silicon Via) structure which has lower cost, shorter production time, and more simple fabrication process than plating method. In order to produce the via holes, the Si wafer was etched by a DRIE (Deep Reactive Ion Etching) process. The via hole was $100{\mu}m$ in diameter and $400{\mu}m$ in depth. A dielectric layer of $SiO_2$ was formed by thermal oxidation on the front side wafer and via hole side wall. An adhesion layer of Ti and a seed layer of Au were deposited. Soldering process was applied to fill the via holes with solder paste and metal powder. When the solder paste was used as via hole metal line, sintering state and electrical properties were excellent. However, electrical connection was poor due to occurrence of many voids. In the case of metal powder, voids were reduced but sintering state and electrical properties were bad. We tried the via hole filling process by using mixing solder paste and metal powder. As a consequence, it was confirmed that mixing rate of solder paste (4) : metal powder (3) was excellent electrical characteristics.

Analysis of LED Package Properties by PCB Material and Via-hole Construction (PCB 재질 및 Via hole 구성에 따른 LED 패키지의 특성 분석)

  • Lee, Se-Il;Yang, Jong-Kyung;Kim, Sung-Hyun;Lee, Seung-Min;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2038-2042
    • /
    • 2010
  • In this paper, we confirmed the thermal & optical properties for improving the heat transfer coefficient by changing the via hole size and in FR4 PCB with the same area. Osram 1W power LED Package (Golden Dragon) was used and the K-factor which is relative constant between LED junction temperature and forward bias was measured with power source meter(KEITHLEY 2430) to measure the thermal resistance from PCB configuration. As results, thermal resistance in metal PCB came out to the lowest as $26 [^{\circ}C/W]$ and thermal resistance in FR4 PCB without via-holes emerged as the highest as $69 [^{\circ}C/W]$. However thermal resistance of FR4 PCB could have decreased until $32[^{\circ}C/W]$ in 0.6 mm by using the via hole. Also, the luminous flux could have improved, too.

The Optimization of Semiconductor Processes for MMIC Fabrication - Si$_3$N$_4$ deposition, GaAs via-hole dry etching, Airbridge process (MMIC 제작을 위한 반도체 공정 조건들의 최적화 - Si$_3$N$_4$증착, GaAs via-hole건식식각, Airbridge공정)

  • 정진철;김상순;남형기;송종인
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.934-937
    • /
    • 1999
  • MMIC 제작을 위한 단일 반도체 공정으로써 PECVD를 이용한 Si₃N₄의 증착, RIE를 이용한 CaAs via-hole건식식각, 그리고 airbridge 공정조건을 위한 실험 및 분석 작업을 수행하였다. Si₃N₄의 증착 실험에서는 굴절률이 2인 조건을, GaAs via-hole 식각 실험에서는 최적화된 thru-via의 모양과 식각률을 갖는 조건을, airbridge 실험에서는 polyimide coating 및 건식 식각 조건과 금 도금 및 습식 식각의 최적 조건들을 찾아내었다.

  • PDF

The Effects of Current Types on Through Via Hole Filling for 3D-SiP Application (전류인가 방법이 3D-SiP용 Through Via Hole의 Filling에 미치는 영향)

  • Chang, Gun-Ho;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.45-50
    • /
    • 2006
  • Copper via filling is the important factor in 3-D stacking interconnection of SiP (system in package). As the packaging density is getting higher, the size of via is getting smaller. When DC electroplating is applied, a defect-free hole cannot be obtained in a small size via hole. To prevent the defects in holes, pulse and pulse reverse current was applied in copper via filling. The holes, $20\and\;50{\mu}m$ in diameter and $100{\sim}190\;{\mu}m$ in height. The holes were prepared by DRIE method. Ta was sputtered for copper diffusion barrier followed by copper seed layer IMP sputtering. Via specimen were filled by DC, pulse and pulse-reverse current electroplating methods. The effects of additives and current types on copper deposits were investigated. Vertical and horizontal cross section of via were observed by SEM to find the defects in via. When pulse-reverse electroplating method was used, defect free via were successfully obtained.

  • PDF

Improved Characteristic of Radiated Emission of a PCB by Using the Via-Hole Position (단일 비아 위치를 이용한 PCB의 복사성 방사 성능 향상)

  • Kim, Li-Jin;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1272-1278
    • /
    • 2009
  • The cancellation method of P/G(power/ground) plane resonances which are generated between the power plane and the ground plane in a 4-layer PCB(Printed Circuit Boards) with a via-hole for the improvement of the RE(Radiated Emission) characteristic is presented. The validity of the proposed method was confirmed from simulation and measurement of performances of signal transmission characteristic, intensities of edge-radiation and radiated emission of PCB with a via-hole.

Development of microcolumn control unit to detect of via-hole defects on wafer (반도체소자의 Via hole 결함 측정을 위한 전자컬럼 제어기술 개발)

  • Roh, Young-Sup;Kim, Heung-Tae;Kim, H.S.;Kim, D.W.;Ahn, S.J.;Kim, Y.C.;Jin, S.W.;Whang, N.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.528-529
    • /
    • 2008
  • A new concept based on sample current measurements for detecting of via-hole defects on wafer has been performed by low energy electron beam microcolumn. The microcolumn has been operated at a low voltage of 290 eV with total emission current of 400 nA, and a sample current of 6 nA. The test sample was fabricated with SiO2 layer of 300 nm thickness on a piece of a silicon substrate. Preliminary results of both sample current method and secondary electron method show microcolumn and its control can be useful technology for detecting of via-hole defects on wafer.

  • PDF

Analysis of Thermal Properties in LED Package by Via hole of FR4 PCB (FR4 PCB의 Via-hole이 LED 패키지에 미치는 열적 특성 분석)

  • Lee, Se-Il;Lee, Seung-Min;Park, Dae-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.57-63
    • /
    • 2010
  • The efficiency of LED package is increasing by applying the high power, and a existing lighting is changing as the LED lighting. However, many problems have appeared by heat. Therefore, in order to solve thermal problems, LED lighting is designing in several ways, but the advantages of LED lighting is fading due to increase the prices and volumes. In this study, we try to improve the thermal performance by formation of via holes. The junction temperature and thermal resistance in the FR4-PCB with via-holes of 0.6[mm] was excellent in experiment and FR4-PCB with Via-holes of 0.6[mm] was excellent in simulation without solder. Further, the thermal resistance and the optical properties can be improved through a formation of via-holes.