• Title/Summary/Keyword: Vce.sat

Search Result 13, Processing Time 0.025 seconds

Analysis of IGBT with Hole barrier layer and Diverter (Hole barrier layer 와 Diverter 구조의 IGBT에 관한 특성 분석)

  • Yu, Seung-Woo;Shin, Ho-Hyun;Kim, Yo-Hann;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1315-1316
    • /
    • 2007
  • This is paper, a new structure to effectively improve the Vce(sat) voltage and latch-up current in NPT type IGBTs with hole barrier layer and diverter. The hole barrier layer acts as a barrier to prevent the holes from flowing into the p-layer and stores them in the n-layer. And the diverter significantly reduce hole current from flowing into the p-layer and improve latch up current. Analysis on the Breakdown voltage shows identical values compared to existing Conventional IGBT structures. This shows an improvement on Vce(sat) and Latct-up current without lowering other characteristics of the device. The electrical characteristics were studied by MEDICI simulation results.

  • PDF

A Study on the Fabrication and Electrical Characteristics of High-Voltage BCD Devices (고내압 BCD 소자의 제작 및 전기적 특성에 관한 연구)

  • Kim, Kwang-Soo;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.37-42
    • /
    • 2011
  • In this paper, the high-voltage novel devices have been fabricated by 0.35 um BCD (Bipolar-CMOS-DMOS) process. Electrical characteristics of 20 V level BJT device, 30/60 V HV-CMOS, and 40/60 V LDMOS are analyzed. Also, the vertical/lateral BJT with the high-current gain and LIGBT with the high-voltage are proposed. In the experimental results, vertical/lateral BJT has breakdown voltage of 15 V and current gain of 100. The proposed LIGBT with the high-voltage has breakdown voltage of 195 V, threshold voltage of 1.5 V, and Vce, sat of 1.65 V.

A Study on Mathematics Exams for University Entrance in USA, UK, Australia, Singapore, and Japan (대학입학 수학 시험 국제 비교 분석 - 미국, 영국, 호주, 싱가포르, 일본 -)

  • Nam, Jin Young;Tak, Byungjoo
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.2
    • /
    • pp.287-307
    • /
    • 2016
  • In this study, mathematics exams for university entrance in the USA, the UK, Australia, Singapore, and Japan are investigated. We look into SAT, ACT and AP-course in the USA, GCE A-level test in the UK and Singapore, VCE in Australia, and UECE (University Entrance Center Exam) and individual university's admission tests in Japan. Those exams are analyzed in terms of exam system, mathematical contents, types of items, and testing time. Based on the result five issues on university entrance exam system in Korea are drawn out: types of tests, mathematical contents, item types, sub-items, and opening tests results to the public.

Study on Thermal Characteristics of IGBT (IGBT의 열 특성에 관한 연구)

  • Kang, Ey-Goo;Ahn, Byoung-Sub;Nam, Tae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.70-70
    • /
    • 2009
  • In this paper, we proposed 2500V Non punch-through(NPT) Insulated gate bipolar transistor(IGBT) for high voltage industry application. we carried out optimal simulation for high efficiency of 2500V NPT IGBT according to size of device. In results, we obtaind design parameter with 375um n-drift thickness, 15um gate length, and 8um emitter windows. After we simulate with optimal parameter, we obtained 2840V breakdown voltage and 3.4V Vce,sat. These design and process parameter will be used designing of more 2000V NPT IGBT devices.

  • PDF

Study on Design of 2500 V NPT IGBT (2500 V급 NPT-IGBT소자의 설계에 관한 연구)

  • Kang, Ey-Goo;Ahn, Byoung-Sub;Nam, Tae-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.273-279
    • /
    • 2010
  • In this paper, we proposed 2500 V Non punch-through(NPT) Insulated gate bipolar transistor(IGBT) for high voltage industry application. we carried out optimal simulation for high efficiency of 2500 V NPT IGBT according to size of device. In results, we obtaind design parameter with 375 um n-drift thickness, 15 um gate length, and 8um emitter windows. After we simulate with optimal parameter, we obtained 2840 V breakdown voltage and 3.4V Vce,sat. These design and process parameter will be used designing of more 2000 V NPT IGBT devices.

Low on Resistance Characteristic with 2500V IGBTs (낮은 온-저항 특성을 갖는 2500V급 IGBTs)

  • Shin, Samuell;Son, Jung-Man;Ha, Ka-San;Won, Jong-Il;Jung, Jun-Mo;Koo, Yong-Seo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.563-564
    • /
    • 2008
  • This paper presents a new Insulated Gate Bipolar Transistor(IGBT) for power switching device based on Non Punch Through(NPT) IGBT structure. The proposed structure has adding N+ beside the P-base region of the conventional IGBT structure. The proposed device has faster turn-off time and lower forward conduction loss than the conventional IGBT structure.

  • PDF

An analysis of new IGBT(Insulator Gate Bipolar Transistor) structure having a additional recessedwith E-field shielding layer

  • Yu, Seung-Woo;Lee, Han-Shin;Kang, Ey-Goo;Sung, Man-Young
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.247-251
    • /
    • 2007
  • The recessed gate IGBT has a lower on-state voltage drop compared with the DMOS IGBT, because there is no JFET resistance. But because of the electric field concentration in the corner of the gate edge, the breakdown voltage decreases. This paper is about the new structure to effectively improve the Vce(sat) voltage without breakdown voltage drop in 1700V NPT type recessed gate IGBT with p floating shielding layer. For the fabrication of the recessed gate IGBT with p floating shielding layer, it is necessary to perform the only one implant step for the shielding layer. Analysis on the Breakdown voltage shows the improved values compared to the conventional recessed gate IGBT structures. The result shows the improvement on Breakdown voltage without worsening other characteristics of the device. The electrical characteristics were studied by MEDICI simulation results.

  • PDF

Study on Design and Electric Characteristics of MOS Controlled Thyristor for High Breakdown Voltage (고내압용 MOS 구동 사이리스터 소자의 설계 및 전기적 특성에 관한 연구)

  • Hong, Young-Sung;Chung, Hun-Suk;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.794-798
    • /
    • 2011
  • This paper was carried out design of 1,700 V Base Resistance Thyristor for fabrication. We decided conventional BRT (base resistance thyristor) device and Trench Gate type one for design. we carried out device and process simulation with T-CAD tools. and then, we have extracted optimal device and process parameters for fabrication. we have analysis electrical characteristics after simulations. As results, we obtained 2,000 V breakdown voltage and 3.0 V Vce,sat. At the same time, we carried out field ring simulation for obtaining high voltage.

Study on Electric Characteristics of IGBT Having P Region Under Trench Gate (Trench Gate 하단 P-영역을 갖는 IGBT의 전기적 특성에 관한 연구)

  • Ann, Byoung Sub;Yuek, Jinkeoung;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.361-365
    • /
    • 2019
  • Although there is no strict definition of a power semiconductor device, a general description is a semiconductor that has capability to control more than 1 W of electricity. Integrated gate bipolar transistors (IGBTs), which are power semiconductors, are widely used in voltage ranges above 300 V and are especially popular in high-efficiency, high-speed power systems. In this paper, the size of the gate was adjusted to test the variation in the yield voltage characteristics by measuring the electric field concentration under the trench gate. After the experiment Synopsys' TCAD was used to analyze the efficiency of threshold voltage, on-state voltage drop, and breakdown voltage by measuring the P- region and its size under the gate.

Analysis of The Dual-Emitter LIGBT with Low Forward Voltage Loss and High Lacth-up Characteristics (낮은 순방향 전압 강하와 높은 래치-업 특성을 갖는 이중-에미터 구조의 LIGBT에 관한 분석)

  • Jung, Jin-Woo;Lee, Byung-Seok;Park, San-Cho;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.15 no.2
    • /
    • pp.164-170
    • /
    • 2011
  • In this paper, we present a novel Lateral Insulated-Gate Bipolar Transistor(LIGBT) structure. The proposed structure has extra emitter between emitter and collector of the conventional structure. The added emitter can significantly improve latch-up current densities, forward voltage drop (Vce,sat) and turn-off characteristics. From the simulation results, the proposed LIGBT has the lower forward voltage drop(1.05V), the higher latch-up current densities($2.5{\times}10^3\;A/{\mu}m^2$), and the shorter turn-off time(7.4us) than those of the conventional LIGBT.