• Title/Summary/Keyword: VCDL

Search Result 18, Processing Time 0.02 seconds

A Clock Generator with Jitter Suppressed Delay Locked Loop (낮은 지터를 갖는 지연고정루프를 이용한 클럭 발생기)

  • Nam, Jeong-Hoon;Choi, Young-Shig
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.7
    • /
    • pp.17-22
    • /
    • 2012
  • A novel Clock Generator with jitter suppressed delay-locked loop (DLL) has been proposed to generate highly accurate output signals. The proposed Clock Generator has a VCDL which can suppress its jitter by generating control signals proportional to phase differences among delay stages. It has been designed to generate 1GHz output at 100MHz input with 1.8V $0.18{\mu}m$ CMOS process. The simulation result demonstrates a 3.24ps of peak-to-peak jitter.

A Reset-Free Anti-Harmonic Programmable MDLL-Based Frequency Multiplier

  • Park, Geontae;Kim, Hyungtak;Kim, Jongsun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.459-464
    • /
    • 2013
  • A reset-free anti-harmonic programmable multiplying delay-locked loop (MDLL) that provides flexible integer clock multiplication for high performance clocking applications is presented. The proposed MDLL removes harmonic locking problems by utilizing a simple harmonic lock detector and control logic, which allows this MDLL to change the input clock frequency and multiplication factor during operation without the use of start-up circuitry and external reset. A programmable voltage controlled delay line (VCDL) is utilized to achieve a wide operating frequency range from 80 MHz to 1.2 GHz with a multiplication factor of 4, 5, 8, 10, 16 and 20. This MDLL achieves a measured peak-to-peak jitter of 20 ps at 1.2 GHz.

Group Delay Time Matched CMOS Microwave Frequency Doubler (군지연 시간 정합 CMOS 마이크로파 주파수 체배기)

  • Song, Kyung-Ju;Kim, Seung-Gyun;Choi, Heung-Jae;Jeong, Yong-Chae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.771-777
    • /
    • 2008
  • In this paper, a frequency doubler using modified time-delay technique is proposed. A voltage controlled delay line (VCDL) in the proposed frequency doubler compensates the group delay time mismatching between input and delayed signal. With the group delay time matching and waveform shaping using the adjustable Schmitt triggers, the unwanted fundamental component($f_0$) and the higher order harmonics such as third and fourth are diminished excellently. In result, only the doubled frequency component($2f_0$) appears dominantly at the output port. The frequency doubler is designed at 1.15 GHz of $f_0$ and fabricated with TSMC $0.18\;{\mu}m$ CMOS process. The measured output power at $2f_0$ is 2.67 dBm when the input power is 0 dBm. The obtained suppression ratio of $f_0,\;3f_0$, and $4f_0$ to $2f_0$ are 43.65, 38.65 and 35.59 dB, respectively.

A 0.12GHz-1.4GHz DLL-based Clock Generator with a Multiplied 4-phase Clock Using a 0.18um CMOS Process

  • Chi, Hyung-Joon;Lee, Jae-Seung;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.264-269
    • /
    • 2006
  • A $0.12GHz{\sim}1.4GHz$ DLL-based clock generator with the capability of multiplied four phase clock generation was designed using a 0.18um CMOS process. An adaptive bandwidth DLL with a regulated supply delay line was used for a multiphase clock generation and a low jitter. An extra phase detector (PD) in a reference DLL solves the problem of the initial VCDL delay and achieves a fast lock time. Twice multiplied four phase clocks were generated at the outputs of four edge combiners, where the timing alignment was achieved using a coarse lock signal and the 10 multiphase clocks with T/8 time difference. Those four clocks were combined one more time using a static XOR circuit. Therefore the four times multiplication was achieved. With a 1.8V supply, the rms jitter of 2.1ps and the peak-to-peak jitter of 14.4ps were measured at 1.25GHz output. The operating range is $0.12GHz{\sim}1.4GHz$. It consumes 57mW and occupies 450*325um2 of die area.

A DLL-Based Frequency Synthesizer for Generation of Various Clocks (가변 클록 발생을 위한 DLL 주파수 합성기)

  • 이지현;송윤귀;최영식;최혁환;류지구
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1153-1157
    • /
    • 2004
  • This paper describes a new programmable DLL_based frequency synthesizer. Generally, PLLs have been used for frequency synthesis. Inherent fast locking DLLs are also used for frequency synthesis. However, DLL needs a frequency multiplier for various frequencies. A conventional frequency multiplier used in DLL has a restriction in which a multiple is fixed. However, the proposed DLL can generate clocks which are from 6 times to 10 times of the reference clock. Frequency range of the proposed DLL is from 600MHz to 1GHz. The idea has been confirmed by HSPICE simulations in a $0.35-\mu\textrm{m}$ CMOS process.

A Jitter Suppressed DLL-Based Clock Generator (지연 고정 루프 기반의 지터 억제 클록 발생기)

  • Choi, Young-Shig;Ko, Gi-Yeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1261-1266
    • /
    • 2017
  • A random and systematic jitter suppressed delay locked loop (DLL)-based clock generator with a delay-time voltage variance converter (DVVC) and an averaging circuit (AC) is presented. The DVVC senses the delay variance of each delay stage and generates a voltage. The AC averages the output voltages of two consecutive DVVCs to suppress the systematic and random delay variance of each delay stage in the VCDL. The DVVC and AC averages the delay time of successive delay stages and equalizes the delay time of all delay stages. In addition, a capacitor with a switch working effectively as a negative feedback function is introduced to reduce the variation of the loop filter output voltage. Measurement results of the DLL-based clock generator fabricated in a one-poly six-metal $0.18{\mu}m$ CMOS process shows 13.4-ps rms jitter.

Digital Low-Power High-Band UWB Pulse Generator in 130 nm CMOS Process (130 nm CMOS 공정을 이용한 UWB High-Band용 저전력 디지털 펄스 발생기)

  • Jung, Chang-Uk;Yoo, Hyun-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.784-790
    • /
    • 2012
  • In this paper, an all-digital CMOS ultra-wideband(UWB) pulse generator for high band(6~10 GHz) frequency range is presented. The pulse generator is designed and implemented with extremely low power and low complexity. It is designed to meet the FCC spectral mask requirement by using Gaussian pulse shaping circuit and control the center frequency by using CMOS delay line with shunt capacitor. Measurement results show that the center frequency can be controlled from 4.5 GHz to 7.5 GHz and pulse width is 1.5 ns and pulse amplitude is 310 mV peak to peak at 10 MHz pulse repetition frequency(PRF). The circuit is implemented in 0.13 um CMOS process with a core area of only $182{\times}65um^2$ and dissipates the average power of 11.4 mW at an output buffer with 1.5-V supply voltage. However, the core consumes only 0.26 mW except for output buffer.

A Design of DLL-based Low-Power CDR for 2nd-Generation AiPi+ Application (2세대 AiPi+ 용 DLL 기반 저전력 클록-데이터 복원 회로의 설계)

  • Park, Joon-Sung;Park, Hyung-Gu;Kim, Seong-Geun;Pu, Young-Gun;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.39-50
    • /
    • 2011
  • In this paper, we presents a CDR circuit for $2^{nd}$-generation AiPi+, one of the Intra-panel Interface. The speed of the proposed clock and data recovery is increased to 1.25 Gbps compared with that of AiPi+. The DLL-based CDR architecture is used to generate the multi-phase clocks. We propose the simple scheme for frequency detector (FD) to mitigate the harmonic-locking and reduce the complexity. In addition, the duty cycle corrector that limits the maximum pulse width is used to avoid the problem of missing clock edges due to the mismatch between rising and falling time of VCDL's delay cells. The proposed CDR is implemented in 0.18 um technology with the supply voltage of 1.8 V. The active die area is $660\;{\mu}m\;{\times}\;250\;{\mu}m$, and supply voltage is 1.8 V. Peak-to-Peak jitter is less than 15 ps and the power consumption of the CDR except input buffer, equalizer, and de-serializer is 5.94 mW.