• 제목/요약/키워드: Strained-Si channel

검색결과 18건 처리시간 0.019초

고농도의 Ge 함량을 가진 Biaxially Strained SiGe/Si Channel Structure의 정공 이동도 특성 (Hole Mobility Characteristics of Biaxially Strained SiGe/Si Channel Structure with High Ge Content)

  • 정종완
    • 한국전기전자재료학회논문지
    • /
    • 제21권1호
    • /
    • pp.44-48
    • /
    • 2008
  • Hole mobility characteristics of two representative biaxially strained SiGe/Si structures with high Ge contents are studied, They are single channel ($Si/Si_{1-x}Ge_x/Si$ substrate) and dual channel ($Si/Si_{1-y}Ge_y/Si_{1-x}Ge_x/Si$ substrate), where the former consists of a relaxed SiGe buffer layer with 60 % Ge content and a tensile-strained Si layer on top, and for the latter, a compressively strained SiGe layer is inserted between two layers, Owing to the hole mobility performance between a relaxed SiGe film and a compressive-strained SiGe film in the single channel and the dual channel, the hole mobility behaviors of two structures with respect to the Si cap layer thickness shows the opposite trend, Hole mobility increases with thicker Si cap layer for single channel structure, whereas it decreases with thicker Si cap layer for dual channel. This hole mobility characteristics could be easily explained by a simple capacitance model.

단일채널 Strained Si/SiGe 구조와 이중채널 Strained Si/SiGe 구조의 이동도 특성 비교 (Comparison of Hole Mobility Characteristics of Single Channel and Dual Channel Si/SiGe Structure)

  • 정종완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.113-114
    • /
    • 2007
  • Hole mobility characteristics of single surface channel and dual channel Si/SiGe structure are compared, where the former one consists of a relaxed SiGe buffer layer and a tensile strained Si layer on top, and for dual channel structure a compressively strained SiGe layer is inserted between them. Due to the difference of hole mobility enhancement factors of layers between them, hole mobility characteristics with respect to the Si cap thickness shows the opposite tend. Hole mobility increases with thicker Si cap for single channel structure, whereas it decreases with thicker Si cap for dual channel structure.

  • PDF

Theoretical Study of Electron Mobility in Double-Gate Field Effect Transistors with Multilayer (strained-)Si/SiGe Channel

  • Walczak, Jakub;Majkusiak, Bogdan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권3호
    • /
    • pp.264-275
    • /
    • 2008
  • Electron mobility has been investigated theoretically in undoped double-gate (DG) MOSFETs of different channel architectures: a relaxed-Si DG SOI, a strained-Si (sSi) DG SSOI (strained-Si-on-insulator, containing no SiGe layer), and a strained-Si DG SGOI (strained-Si-on-SiGe-on-insulator, containing a SiGe layer) at 300K. Electron mobility in the DG SSOI device exhibits high enhancement relative to the DG SOI. In the DG SGOI devices the mobility is strongly suppressed by the confinement of electrons in much narrower strained-Si layers, as well as by the alloy scattering within the SiGe layer. As a consequence, in the DG SGOI devices with thinnest strained-Si layers the electron mobility may drop below the level of the relaxed DG SOI and the mobility enhancement expected from the strained-Si devices may be lost.

Strained-SiGe Complementary MOSFETs Adopting Different Thicknesses of Silicon Cap Layers for Low Power and High Performance Applications

  • Mheen, Bong-Ki;Song, Young-Joo;Kang, Jin-Young;Hong, Song-Cheol
    • ETRI Journal
    • /
    • 제27권4호
    • /
    • pp.439-445
    • /
    • 2005
  • We introduce a strained-SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si-cap layers in n-channel and p-channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high-electron-mobility Si surface channel in nMOSFETs and a compressively strained high-hole-mobility $Si_{0.8}Ge_{0.2}$ buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate-leakage levels. Unlike the conventional strained-Si CMOS employing a relatively thick (typically > 2 ${\mu}m$) $Si_xGe_{1-x}$ relaxed buffer layer, the strained-SiGe CMOS with a very thin (20 nm) $Si_{0.8}Ge_{0.2}$ layer in this study showed a negligible self-heating problem. Consequently, the proposed strained-SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.

  • PDF

Strained Si/Relaxed SiGe/SiO2/Si 구조 FD n-MOSFET의 전자이동에 Ge mole fraction과 strained Si 층 두께가 미치는 영향 (Effect of Ge mole fraction and Strained Si Thickness on Electron Mobility of FD n-MOSFET Fabricated on Strained Si/Relaxed SiGe/SiO2/Si)

  • 백승혁;심태헌;문준석;차원준;박재근
    • 대한전자공학회논문지SD
    • /
    • 제41권10호
    • /
    • pp.1-7
    • /
    • 2004
  • SOI 구조에서 형성된 MOS 트랜지스터의 장점과 strained Si에서 전자의 이동도가 향상되는 효과를 동시에 고려하기 위해 buried oxide(BOX)층과 Top Si층 사이에 Ge을 삽입하여 strained Si/relaxed SiGe/SiO₂Si 구조를 형성하고 strained Si fully depletion(FD) n-MOSFET를 제작하였다. 상부 strained Si층과 하부 SiGe층의 두께의 합을 12.8nm로 고정하고 상부 strained Si 층의 두께에 변화를 주어 두께의 변화가 electron mobility에 미치는 영향을 분석하였다. Strained Si/relaxed SiGe/SiO2/Si (strained Si/SGOI) 구조위의 FD n-MOSFET의 전자 이동도는 Si/SiO₂/Si (SOI) 구조위의 FD n-MOSFET 에 비해 30-80% 항상되었다. 상부 strained Si 층과 하부 SiGe 층의 두께의 합을 12.8nm 로 고정한 shrined Si/SGOI 구조 FD n-MOSFET에서 상부층 strained Si층의 두께가 감소하면 하부층 SiGe 층 두께 증가로 인한 Ge mole fraction이 증가함에 의해 inter-valley scattering 이 감소함에도 불구하고 n-channel 층의 전자이동도가 감소하였다. 이는 strained Si층의 두께가 감소할수록 2-fold valley에 있는 전자가 n-channel 층에 더욱더 confinement 되어 intra-valley phonon scattering 이 증가하여 전자 이동도가 감소함이 이론적으로 확인되었다.

A New Strained-Si Channel Power MOSFET for High Performance Applications

  • Cho, Young-Kyun;Roh, Tae-Moon;Kim, Jong-Dae
    • ETRI Journal
    • /
    • 제28권2호
    • /
    • pp.253-256
    • /
    • 2006
  • We propose a novel power metal oxide semiconductor field effect transistor (MOSFET) employing a strained-Si channel structure to improve the current drivability and on-resistance characteristic of the high-voltage MOSFET. A 20 nm thick strained-Si low field channel NMOSFET with a $0.75\;{\mu}m$ thick $Si_{0.8}Ge_{0.2}$ buffer layer improved the drive current by 20% with a 25% reduction in on-resistance compared with a conventional Si channel high-voltage NMOSFET, while suppressing the breakdown voltage and subthreshold slope characteristic degradation by 6% and 8%, respectively. Also, the strained-Si high-voltage NMOSFET improved the transconductance by 28% and 52% at the linear and saturation regimes.

  • PDF

초고속 구동을 위한 Ultra-thin Strained SGOI n-MOS 트랜지스터 제작 (High Performance nFET Operation of Strained-SOI MOSFETs Using Ultra-thin Strained Si/SiGe on Insulator(SGOI) Substrate)

  • 맹성렬;조원주;오지훈;임기주;장문규;박재근;심태헌;박경완;이성재
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.1065-1068
    • /
    • 2003
  • For the first time, high quality ultra-thin strained Si/SiGe on Insulator (SGOI) substrate with total SGOI thickness( $T_{Si}$ + $T_{SiGe}$) of 13 nm is developed to combine the device benefits of strained silicon and SOI. In the case of 6- 10 nm-thick top silicon, 100-110 % $I_{d,sat}$ and electron mobility increase are shown in long channel nFET devices. However, 20-30% reduction of $I_{d,sat}$ and electron mobility are observed with 3 nm top silicon for the same long channel device. These results clearly show that the FETs operates with higher performance due to the strain enhancement from the insertion of SiGe layer between the top silicon layer and the buried oxide(BOX) layer. The performance degradation of the extremely thin( 3 nm ) top Si device can be attributed to the scattering of the majority carriers at the interfaces.

  • PDF

A Design Evaluation of Strained Si-SiGe on Insulator (SSOI) Based Sub-50 nm nMOSFETs

  • Nawaz, Muhammad;Ostling, Mikael
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권2호
    • /
    • pp.136-147
    • /
    • 2005
  • A theoretical design evaluation based on a hydrodynamic transport simulation of strained Si-SiGe on insulator (SSOI) type nMOSFETs is reported. Although, the net performance improvement is quite limited by the short channel effects, simulation results clearly show that the strained Si-SiGe type nMOSFETs are well-suited for gate lengths down to 20 nm. Simulation results show that the improvement in the transconductance with decreasing gate length is limited by the long-range Coulomb scattering. An influence of lateral and vertical diffusion of shallow dopants in the source/drain extension regions on the device performance (i.e., threshold voltage shift, subthreshold slope, current drivability and transconductance) is quantitatively assessed. An optimum layer thickness ($t_{si}$ of 5 and $t_{sg}$ of 10 nm) with shallow Junction depth (5-10 nm) and controlled lateral diffusion with steep doping gradient is needed to realize the sub-50 nm gate strained Si-SiGe type nMOSFETs.

Improvement of Carrier Mobility on Silicon-Germanium on Insulator MOSFET Devices with a Strained-Si Layer

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.399-402
    • /
    • 2007
  • The effects of heat treatment on the electrical properties of strained-Si/SiGe-on-insulator (SGOI) devices were examined. We proposed the optimized heat treatment processes for improving the back interfacial electrical properties in SGOI-MOSFET. By applying the additional pre-RTA (rapid thermal annealing) before gate oxidation step and the post-RTA after source/drain dopant activation step, the electrical properties of strained-Si channel on $Si_{1-x}Ge_x$ layer were greatly improved, which resulting the improvement of the driving current, transconductance, and leakage current of SGOI-MOSFET.

An Analytical Model for the Threshold Voltage of Short-Channel Double-Material-Gate (DMG) MOSFETs with a Strained-Silicon (s-Si) Channel on Silicon-Germanium (SiGe) Substrates

  • Bhushan, Shiv;Sarangi, Santunu;Gopi, Krishna Saramekala;Santra, Abirmoya;Dubey, Sarvesh;Tiwari, Pramod Kumar
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.367-380
    • /
    • 2013
  • In this paper, an analytical threshold voltage model is developed for a short-channel double-material-gate (DMG) strained-silicon (s-Si) on silicon-germanium ($Si_{1-X}Ge_X$) MOSFET structure. The proposed threshold voltage model is based on the so called virtual-cathode potential formulation. The virtual-cathode potential is taken as minimum channel potential along the transverse direction of the channel and is derived from two-dimensional (2D) potential distribution of channel region. The 2D channel potential is formulated by solving the 2D Poisson's equation with suitable boundary conditions in both the strained-Si layer and relaxed $Si_{1-X}Ge_X$ layer. The effects of a number of device parameters like the Ge mole fraction, Si film thickness and gate-length ratio have been considered on threshold voltage. Further, the drain induced barrier lowering (DIBL) has also been analyzed for gate-length ratio and amount of strain variations. The validity of the present 2D analytical model is verified with ATLAS$^{TM}$, a 2D device simulator from Silvaco Inc.