• Title/Summary/Keyword: Simultaneous Approximation

Search Result 60, Processing Time 0.021 seconds

THE SIMULTANEOUS APPROXIMATION ORDER BY NEURAL NETWORKS WITH A SQUASHING FUNCTION

  • Hahm, Nahm-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.4
    • /
    • pp.701-712
    • /
    • 2009
  • In this paper, we study the simultaneous approximation to functions in $C^m$[0, 1] by neural networks with a squashing function and the complexity related to the simultaneous approximation using a Bernstein polynomial and the modulus of continuity. Our proofs are constructive.

A SIMULTANEOUS NEURAL NETWORK APPROXIMATION WITH THE SQUASHING FUNCTION

  • Hahm, Nahm-Woo;Hong, Bum-Il
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.147-156
    • /
    • 2009
  • In this paper, we actually construct the simultaneous approximation by neural networks to a differentiable function. To do this, we first construct a polynomial approximation using the Fejer sum and then a simultaneous neural network approximation with the squashing activation function. We also give numerical results to support our theory.

A STUDY OF SIMULTANEOUS APPROXIMATION BY NEURAL NETWORKS

  • Hahm, N.;Hong, B.I.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.317-324
    • /
    • 2008
  • This paper shows the degree of simultaneous neural network approximation for a target function in $C^r$[-1, 1] and its first derivative. We use the Jackson's theorem for differentiable functions to get a degree of approximation to a target function by algebraic polynomials and trigonometric polynomials. We also make use of the de La Vall$\grave{e}$e Poussin sum to get an approximation order by algebraic polynomials to the derivative of a target function. By showing that the divided difference with a generalized translation network can be arbitrarily closed to algebraic polynomials on [-1, 1], we obtain the degree of simultaneous approximation.

  • PDF

TWO-SIDED BEST SIMULTANEOUS APPROXIMATION

  • Rhee, Hyang Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.705-710
    • /
    • 2010
  • Let $C_1(X)$ be a normed linear space over ${\mathbb{R}}^m$, and S be an n-dimensional subspace of $C_1(X)$ with spaned by {$s_1,{\cdots},s_n$}. For each ${\ell}$- tuple vectors F in $C_1(X)$, the two-sided best simultaneous approximation problem is $$\min_{s{\in}S}\;\max\limits_{i=1}^\ell\{{\parallel}f_i-s{\parallel}_1\}$$. A $s{\in}S$ attaining the above minimum is called a two-sided best simultaneous approximation or a Chebyshev center for $F=\{f_1,{\cdots},f_{\ell}\}$ from S. This paper is concerned with algorithm for calculating two-sided best simultaneous approximation, in the case of continuous functions.

SOME ALGORITHMS OF THE BEST SIMULTANEOUS APPROXIMATION

  • Rhee, Hyang J.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.141-148
    • /
    • 2009
  • We consider various algorithms calculating best onesided simultaneous approximations. We assume that X is a compact subset of $\mathbb{R}^{m}$ satisfying $X=\overline{intX}$, S is an n-dimensional subspace of C(X), and $\mu$ is any 'admissible' measure on X. For any l-tuple $f_1,\;{\cdots},\;f_{\ell}$ in C(X), we present various ideas for best approximation to F from S(F). The problem of best (both one and two-sided) approximation is a linear programming problem.

  • PDF

One-sided best simultaneous $L_1$-approximation for a compact set

  • Park, Sung-Ho;Rhee, Hyang-Joo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.127-140
    • /
    • 1998
  • In this paper, we discuss the characterizations and uniqueness of a one-sided best simultaneous approximation for a compact subset from a convex subset of a finite-dimensional subspace of a normed linear space $C_1(X)$. The motivation is furnished by the characterizations of the one-sided best simultaneous approximations for a finite subset ${f_1, \ldots, f_\ell}$ for any $\ell \in N$.

  • PDF

EXPANSION THEORY FOR THE TWO-SIDED BEST SIMULTANEOUS APPROXIMATIONS

  • RHEE, HYANG JOO
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.437-442
    • /
    • 2021
  • In this paper, we study the characterizations of two-sided best simultaneous approximations for ℓ-tuple subset from a closed convex subset of ℝm with ℓm1(w)-norm. Main fact is, k* is a two-sided best simultaneous approximation to F from K if and only if there exist f1, …, fp in F, for any k ∈ K $${\mid}{\sum\limits_{i=1}^{m}}sgn(f_{ji}-k^*_i)k_iw_i{\mid}{\leq}\;{\sum\limits_{i{\in}Z(f_j-k^*)}}\;{\mid}k_i{\mid}w_i$$ for each j = 1, …, p and 𝐰 ∈ W.

DISCRETE SIMULTANEOUS ℓ1m-APPROXIMATION

  • RHEE, HYANG J.
    • Honam Mathematical Journal
    • /
    • v.27 no.1
    • /
    • pp.69-76
    • /
    • 2005
  • The aim of this work is to generalize $L_1$-approximation in order to apply them to a discrete approximation. In $L_1$-approximation, we use the norm given by $${\parallel}f{\parallel}_1={\int}{\mid}f{\mid}d{\mu}$$ where ${\mu}$ a non-atomic positive measure. In this paper, we go to the other extreme and consider measure ${\mu}$ which is purely atomic. In fact we shall assume that ${\mu}$ has exactly m atoms. For any ${\ell}$-tuple $b^1,\;{\cdots},\;b^{\ell}{\in}{\mathbb{R}}^m$, we defined the ${\ell}^m_1{w}$-norn, and consider $s^*{\in}S$ such that, for any $b^1,\;{\cdots},\;b^{\ell}{\in}{\mathbb{R}}^m$, $$\array{min&max\\{s{\in}S}&{1{\leq}i{\leq}{\ell}}}\;{\parallel}b^i-s{\parallel}_w$$, where S is a n-dimensional subspace of ${\mathbb{R}}^m$. The $s^*$ is called the Chebyshev center or a discrete simultaneous ${\ell}^m_1$-approximation from the finite dimensional subspace.

  • PDF