SOME ALGORITHMS OF THE BEST SIMULTANEOUS APPROXIMATION

Hyang J. Rhee*

Abstract

We consider various algorithms calculating best onesided simultaneous approximations. We assume that X is a compact subset of \mathbb{R}^{m} satisfying $X=\overline{\operatorname{int} X}, S$ is an n-dimensional subspace of $C(X)$, and μ is any 'admissible' measure on X. For any l-tuple f_{1}, \cdots, f_{ℓ} in $C(X)$, we present various ideas for best approximation to F from $S(F)$. The problem of best (both one and two-sided) approximation is a linear programming problem.

1. Introduction

We assume that X is a compact subset of \mathbb{R}^{m} satisfying $X=\overline{\operatorname{int} X}, S$ is an n-dimensional subspace of $C(X)$, and μ is any 'admissible' measure on X, i.e., μ is non-atomic, positive and finite and $\mu(U)>0$ for every open set U. We assume that we are given l-tuple $F=\left\{f_{1}, \cdots, f_{\ell}\right\}$ in $C(X)$ with

$$
S(F)=\bigcap_{i=1}^{\ell}\left\{s \in S \mid s \leq f_{i}\right\}
$$

is non-empty. Since $S(F)$ is closed and convex, we have that $S(f) \neq \phi$ for all $f \in C(X)$ if and only if S contains a strictly positive function. The problem we shall discuss is

$$
\begin{equation*}
\sup \left\{\int_{X} s d \mu \mid s \in S(F)\right\} \tag{1.1}
\end{equation*}
$$

Find a best one-sided simultaneous approximation to f_{1}, \cdots, f_{ℓ} from $S(F)$ is equivalent to finding a $s \in S(F)$ satisfying (1.1). We assume

[^0]that $s_{0} \in S(F)$ is a solution to (1.1) and
\[

$$
\begin{equation*}
\sigma_{0}=\int_{X} s_{0} \mathrm{~d} \mu \tag{1.2}
\end{equation*}
$$

\]

2. A convergent sequence $\left\{\sigma_{m}\right\}$

For each $m \in N$, let $x_{1}^{m}, \cdots, x_{m}^{m} \in X$, and assume that the sequence $\left\{x_{i}^{m}\right\}_{i=1}^{m}$ becomes dense in X. Any given basis for S, s^{1}, \cdots, s^{n}, set

$$
p_{j}=\int_{X} s^{j} d \mu, \quad j=1, \cdots, n .
$$

For each m, we set
$\sigma_{m}=\max \left\{\sum_{j=1}^{n} a_{j} p_{j} \mid \sum_{j=1}^{n} a_{j} s^{j}\left(x_{i}^{m}\right) \leq f_{k}\left(x_{i}^{m}\right), i=1, \cdots, m, k=1, \cdots, \ell\right\}$.
If for some m there exists a solution s_{m} of σ_{m} with $s_{m} \in S(F)$ then the s_{m} is a best one-sided simultaneous approximation to f_{1}, \cdots, f_{ℓ} from $S(F)$. Before proving the convergence of the algorithm, we need a fact.

Remark 2.1. There exists an M such that the sequence $\left\{\sigma_{m}\right\}_{m \geq M}$ is bounded. Moreover, if $s_{m}=\sum_{j=1}^{n} a_{j}^{m} s^{j}$ is a solution of σ_{m} then $\left\{s_{m}\right\}_{m \geq M}$ is uniformly bounded.

Its proof is totally analogous to the proof of Remark 3.0.5. [6] We now prove the convergence result.

Theorem 2.2. Every convergent subsequence of the set of solutions $\left\{s_{m}\right\}$ converges to a best one-sided simultaneous approximation s_{0} in (1.2). Thus the sequence $\left\{\sigma_{m}\right\}$ converges to σ_{0} in (1.2).

Proof. Let $\left\{s_{m_{k}}\right\}$ be a subsequence of $\left\{s_{m}\right\}$ with converges to s_{*}. Since S is n-dimensional, this convergence is uniformly convergent to s_{*} on X. Set

$$
\sigma_{*}=\int_{X} s_{*} d \mu \text {. }
$$

Then $\lim _{m_{k} \rightarrow \infty} \sigma_{m_{k}}=\lim \lim \int_{X} s_{m_{k}} d \mu=\int_{X} \lim s_{m_{k}} d \mu=\int_{X} s_{*} d \mu=$ σ_{*}. By definition, $\sigma_{m} \geq \sigma_{0}$ for all m. Thus $\sigma_{*} \geq \sigma_{0}$. In the theorem 3.0.6.[6], it follows that $s_{*} \in S(F)$. Thus $\sigma_{*} \leq \sigma_{0}$. So $\sigma_{*}=\sigma_{0}$ and s_{*} is a solution of (1.1). Since $\lim \sigma_{m_{k}}=\sigma_{0}$ for every subsequence $\left\{s_{m_{k}}\right\}$ on which converges, and the $\left\{s_{m}\right\}$ are uniformly bounded for m sufficiently large, we have

$$
\lim \sigma_{m}=\sigma_{0}
$$

3. The convergence result

Any given basis for S, s^{1}, \cdots, s^{n}, set

$$
A=\left\{a \mid a=\left(a_{1}, \cdots, a_{n}\right), \sum_{j} a_{j} s^{j} \leq f_{i}, i=1, \cdots, \ell\right\} .
$$

For any $a=\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{R}^{n}$, we also set

$$
g_{i}(a, x)=f_{i}(x)-\sum_{j=1}^{n} a_{j} s^{j}(x)
$$

and

$$
G_{i}(a)=\min _{x \in X} g_{i}(a, x) .
$$

And denoted by

$$
G(a)=\min _{1 \leq i \leq \ell} G_{i}(a) .
$$

For any $a^{*} \in A$ then $g_{i}\left(a^{*}, x\right) \geq 0$ for all $x \in X, i=1, \cdots, \ell$. So $G_{i}\left(a^{*}\right) \geq 0$, for all $i=1, \cdots, \ell$. By definition, $G\left(a^{*}\right) \geq 0$. Conversely, if $G\left(a^{*}\right) \geq 0$, then $g_{i}\left(a^{*}, x\right) \geq 0$ for all $x \in X, i=1, \cdots, \ell$. For all i, $f_{i}-\sum_{j} a_{j}^{*} s^{j} \geq 0$. Thus $a^{*} \in A$. That is, $a \in A$ if and only if $G(a) \geq 0$.

Moreover, finding a best one-sided simultaneous approximation to F from $S(F)$ is equivalent to finding a $a^{*} \in A, \sum_{j} a_{j}^{*} s^{j}$ satisfying (1.1).

We claim that the best one-sided simultaneous approximation problem is an almost totally general form of a linear programming problem. To demonstrate this fact, consider any linear programming problem of the form

$$
\max \sum_{j=1}^{n} a_{j} p_{j}
$$

subject to:

$$
\sum_{j=1}^{n} a_{j} s^{j} \leq f_{i}, \quad i=1, \cdots, \ell .
$$

The equivalence holds under certain minor restrictions. These restrictions are:
(1) There exist $\left\{a_{j}\right\}_{j=1}^{n}$ satisfying $\sum_{j=1}^{n} a_{j} s^{j} \leq f_{i}, \quad i=1, \cdots, \ell$.
(2) The maximum is in fact attained, i.e., the solution is not ∞.
(3) The solution set is bounded.

To verify this equivalence, note that if there exists a $d=\left(d_{1}, \cdots, d_{n}\right) \neq$ 0 satisfying

$$
\begin{aligned}
& \text { (a) } \sum_{j=1}^{n} d_{j} s^{j} \leq 0 \\
& \text { (b) } \sum_{j=1}^{n} d_{j} p_{j} \geq 0
\end{aligned}
$$

then either condition (2) or (3) is violated. Thus there exists no $d \neq 0$ satisfying (a) and (b).

In this algorithm, we start with a set $B_{M}=\left\{x_{1}, \cdots, x_{M}\right\}$ of points in X, where we assume that the points are chosen so that there exists no $d \neq 0$ satisfying

$$
\begin{aligned}
& \left(a^{\prime}\right) \sum_{j=1}^{n} d_{j} s^{j}\left(x_{k}\right) \leq 0, k=1, \cdots, M \\
& \left(b^{\prime}\right) \sum_{j=1}^{n} d_{j} p_{j} \geq 0
\end{aligned}
$$

Equivalently, there exists no $s \in S \backslash\{0\}$ satisfying $s\left(x_{k}\right) \leq 0, k=$ $1, \cdots, M$, and $\int_{X} s d \mu \geq 0$. Thus the problem

$$
\max \sum_{j=1}^{n} a_{j} p_{j}
$$

subject to:

$$
\sum_{j=1}^{n} a_{j} s^{j}\left(x_{k}\right) \leq f_{i}\left(x_{k}\right), k=1, \cdots, M i=1, \cdots, \ell
$$

has a finite maximum and the solution set is bounded. We shall need some more.

Lemma 3.1. Assume that the $\left\{x_{1}, \cdots, x_{M}\right\}$ are given such that there exists no $d \in \mathbb{R}^{n} \backslash\{0\}$ satisfying $\left(a^{\prime}\right)$ and (b^{\prime}). Let $C_{1}<C_{2}$ be any fixed constants. Then the set of $a \in \mathbb{R}^{n}$ satisfying

$$
\begin{aligned}
& \text { a) } \sum_{j=1}^{n} a_{j} s^{j}\left(x_{k}\right) \leq f_{i}\left(x_{k}\right), k=1, \cdots, M i=1, \cdots, \ell \\
& \text { b) } C_{1} \leq \sum_{j=1}^{n} a_{j} p_{j} \leq C_{2}
\end{aligned}
$$

is bounded.

Proof. Suppose that the set of $a \in \mathbb{R}^{n}$ satisfying $\left.a\right)$ and b) is unbounded. Thus there exists a sequence of $\left\{a_{r}\right\}_{r=1}^{\infty}$ in \mathbb{R}^{n} satisfying $\left.a\right)$ and b), and an index $t \in\{1, \cdots, n\}$ such that

$$
\text { (1) }\left|a_{t}^{r}\right|=\max \left\{\left|a_{j}^{r}\right|: j=1, \cdots, n\right\}
$$

(2) $\lim _{r \rightarrow \infty} \varepsilon a_{t}^{r}=\infty$, for some $\varepsilon \in\{-1,1\}$.

Let $d_{j}^{r}=a_{j}^{r} / a_{t}^{r}, j=1, \cdots, n$. On a subsequence, again denoted by $\{r\}$, we have

$$
\lim _{r \rightarrow \infty} d_{j}^{r}=d_{j}, j=1, \cdots, n
$$

i.e., the limits exist. Thus $\left|d_{j}\right| \leq 1, j=1, \cdots, n$, and $d_{t}=1$. Since the a_{r} satisfy a) and b), it follows after dividing by a_{t}^{r} and letting $r \rightarrow \infty$, that

$$
\begin{aligned}
& \varepsilon \sum_{j=1}^{n} d_{j} s^{j}\left(x_{i}\right) \leq 0, i=1, \cdots, M \\
& \sum_{j=1}^{n} d_{j} p_{j}=0
\end{aligned}
$$

However this contradicts our assumption with respect to a^{\prime}) and b^{\prime}). This proves the lemma.

We now describe the algorithm. Assume that we are given $B_{m}=$ $\left\{x_{1}, \cdots, x_{m}\right\}$ for some $m \geq M$. Then B_{m+1} is obtained as follows.

We first solve the finite problem

$$
\sigma_{m}=\max \left\{\sum_{j=1}^{n} a_{j} p_{j} \mid \sum_{j=1}^{n} a_{j} s^{j}\left(x_{i}\right) \leq f_{k}\left(x_{i}\right), i=1, \cdots, m, k=1, \cdots, \ell\right\} .
$$

Since $m \geq M,\left\{x_{1}, \cdots, x_{M}\right\} \subseteq B_{m}$. By Lemma 3.1, this problem has a solution $a^{m}=\left(a_{1}^{m}, \cdots, a_{n}^{m}\right)$. If $G\left(a^{m}\right) \geq 0$, then $\sum_{j=1}^{n} a_{j}^{m} s^{j} \in S(F)$. Set

$$
\begin{aligned}
A_{m}=\{a: a & =\left(a_{1}, \cdots, a_{n}\right), \sum_{j=1}^{n} a_{j} s^{j}\left(x_{i}\right) \leq f_{k}\left(x_{i}\right), \\
i & =1, \cdots, m, k=1, \cdots, \ell\} .
\end{aligned}
$$

If $\sum_{j=1}^{n} a_{j} s^{j} \leq f_{k}$ on $\left\{x_{1}, \cdots, x_{m+1}\right\}$ for all $i \in\{1, \cdots, \ell\}$ then $\sum_{j=1}^{n} a_{j} s^{j}$ $\leq f_{k}$ on $\left\{x_{1}, \cdots, x_{m}\right\}$ for all $i \in\{1, \cdots, \ell\}$, so

$$
A_{M} \supset A_{M+1} \supset \cdots A
$$

Thus $\sigma_{m} \geq \sigma_{m+1}$, that is, $\left\{\sigma_{m+1}\right\}$ is a non-increasing sequence bounded below by $\sigma_{0}, \sum_{j=1}^{n} a_{j}^{m} p_{j} \geq \sigma_{0}$, i.e., $\sum_{j=1}^{n} a_{j}^{m} s^{j}$ satisfy (1.1), so we have
found a best one-sided simultaneous approximation to our original problem. We are finished.

We therefore assume that $G\left(a^{m}\right)<0$. Then there exists $x_{m+1} \in$ $X \backslash B_{m}$ and for some $i_{0} \in\{1, \cdots, \ell\}$, satisfy

$$
f_{i_{0}}\left(x_{m+1}\right)<\sum_{j=1}^{n} a_{j}^{m} s^{j}\left(x_{m+1}\right)
$$

and $G\left(a^{m}\right)=g_{i_{0}}\left(a^{m}, x_{m+1}\right)$. Set $B_{m+1}=B_{m} \cup\left\{x_{m+1}\right\}$.
This is the algorithm. In what follows we assume that the algorithm does not terminate after a finite number of steps.

Theorem 3.2. In the above algorithm

$$
\lim _{m \rightarrow \infty} \sigma_{m}=\sigma_{0}
$$

And the solution set $\left\{a^{m}\right\}$ is a bounded sequence, moreover if a^{*} is any cluster point of this sequence then $\sum_{i=1}^{n} a_{i}^{*} s^{i}$ is a solution of (1.1).

Proof. Since $\left\{\sigma_{m}\right\}$ is a non-increasing sequence bounded below by σ_{0}, for each $m \geq M$,

$$
\sum_{j=1}^{n} a_{j}^{m} s^{j}\left(x_{i}\right) \leq f_{k}\left(x_{i}\right), i=1, \cdots, M, k=1, \cdots, \ell
$$

and

$$
\sigma_{0} \leq \sum_{j=1}^{n} a_{j}^{m} p_{j} \leq \sigma_{M}
$$

From Lemma 3.1, the $\left\{a^{m}\right\}$ form a bounded sequence.
Let $a^{*}=\left(a_{1}^{*}, \cdots, a_{n}^{*}\right)$ be any cluster point of $\left\{a^{m}\right\}$, and $\sigma_{*}=\sum_{j=1}^{n} a_{j}^{*} p_{j}$. Then

$$
\lim _{m \rightarrow \infty} \sigma_{m}=\sigma_{*} \geq \sigma_{0}
$$

If $a^{*} \in A$, i.e., $\sum_{j=1}^{n} a_{j}^{*} s^{j} \leq f_{k}, k \in\{1, \cdots, \ell\}$, then $\sigma_{*} \leq \sigma_{0}$ and the theorem is proved. We shall prove that $a^{*} \in A$.

Assume that $a^{*} \notin A$, i.e., $G\left(a^{*}\right)<0$. Since a^{*} is a cluster point of $\left\{a^{m}\right\}$, and

$$
A_{M} \supset A_{M+1} \supset \cdots A
$$

$a^{*} \in \bigcap_{m=M}^{\infty} A_{m}$. We can choose a subsequence $\left\{a^{m_{r}}\right\}, \lim _{r \rightarrow \infty} a^{m_{r}}=a^{*}$ and S is finite-dimensional, the functions $\sum_{j=1}^{n} a_{j}^{m_{r}} s^{j}$ uniformly converge to $\sum_{j=1}^{n} a_{j}^{*} s^{j}$ on X. Thus there exists an M_{1} such that for all
$m \geq M_{1}$,

$$
\left\|\sum_{j=1}^{n} a_{j}^{*} s^{j}-\sum_{j=1}^{n} a_{j}^{m} s^{j}\right\|_{\infty}<-\frac{1}{2} G\left(a^{*}\right) .
$$

Let $m_{r} \geq \max \left\{M, M_{1}\right\}$. Then

$$
G\left(a^{m_{r}}\right)=g_{i_{0}}\left(a^{m_{r}}, x_{m_{r}+1}\right)=f_{i_{0}}\left(x_{m_{r}+1}\right)-\sum_{j=1}^{n} a_{j}^{m_{r}} s^{j}\left(x_{m_{r}+1}\right)
$$

for some $i_{0} \in\{1, \cdots, \ell\}$. Since $a^{*} \in \bigcap_{m=M}^{\infty} A_{m}$, we have $a^{*} \in A_{m_{r}+1}$, and therefore

$$
g_{i_{0}}\left(a^{*}, x_{m_{r}+1}\right)=f_{i_{0}}\left(x_{m_{r}+1}\right)-\sum_{j=1}^{n} a_{j}^{*} s^{j}\left(x_{m_{r}+1}\right) \geq 0
$$

Thus

$$
\begin{aligned}
G\left(a^{m_{r}}\right) & =g_{i_{0}}\left(a^{m_{r}}, x_{m_{r}+1}\right) \\
& =g_{i_{0}}\left(a^{*}, x_{m_{r}+1}\right)+\sum_{j=1}^{n}\left(a_{j}^{*}-a_{j}^{m_{r}}\right) s^{j}\left(x_{m_{r}+1}\right) \\
& \geq \sum_{j=1}^{n}\left(a_{j}^{*}-a_{j}^{m_{r}}\right) s^{j}\left(x_{m_{r}+1}\right) \\
& >\frac{1}{2} G\left(a^{*}\right)
\end{aligned}
$$

In other words $G\left(a^{m_{r}}\right)>\frac{1}{2} G\left(a^{*}\right)$ for all $m_{r} \geq M_{1}$. But G is continuous on \mathbb{R}^{n}, and $\lim _{r \rightarrow \infty} a^{m_{r}}=a^{*}$. Thus $G\left(a^{*}\right) \geq \frac{1}{2} G\left(a^{*}\right)$. Since $G\left(a^{*}\right)<0$, this is a contradiction. Thus $a^{*} \in A$.

For example, suppose that $X=[0, \pi]$ and $S=\mathbb{R}$. If $F=\{\sin (x)\}$ and $A_{m}=\{1 / m, \cdots,(m-1) / m\}$, then $\sigma_{m}=\sin (1 / m) \cdot \pi$ and $\lim _{m \rightarrow \infty} \sigma_{m}=$ 0 . So $\sin (x)$ has a best one-sided approximation 0 from \mathbb{R} on $[0, \pi]$.

This paper is concerned with algorithms for calculating best onesided simultaneous approximations, a partial discretization, a partial discretization with optimization, respectively. The problem of best twosided simultaneous approximation can also be shown to be a linear programming problem. This fact is almost as straightforward as in the one-sided approximation. So this algorithms will expand the algorithms for calculating best two-sided simultaneous approximations.

References

[1] Y. Censor, T. Elfving and G. T. Herman, Averaging strings of sequential iterations for convex feasibility problems, Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (2001), 101-114.
[2] L. Elsner, I. Koltracht and M. Neumann, Convergence of sequential and asynchronous nonlinear paracontractions, Numerische mathematik 62 (1992), 305319.
[3] A. S. Holland, B. N. Sahney and J. Tzimbalario, On best simultaneous approximation, J. Approx. Theory 17 (1976), 187-188.
[4] H. N. Mhaskar and D. V. Pai, Fundamentals of approximation theory, CRC Press, 2000.
[5] A. Pinkus, On L_{1}-approximation, Cambridge Tracts in Mathematics, 93, Cambridge University Press, Cambridge-New York, 1989.
[6] H. J. Rhee, An algorithm of the one-sided best simultaneous approximation, K. Ann. Math. 24 (2007), 69-79.
[7] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970.
*
College of Natural Sciences
Duksung Women's University
Seoul 132-714, Republic of Korea
E-mail: rhj@duksung.ac.kr

[^0]: Received November 20, 2008; Accepted March 05, 2009.
 2000 Mathematics Subject Classification: Primary 41A28, 41A65.
 Key words and phrases: one-sided simultaneous approximation, linear programming.

 This work was completed with the support by a fund of Duksung Women's University.

