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SOME ALGORITHMS OF THE BEST SIMULTANEOUS
APPROXIMATION

Hyang J. Rhee*

Abstract. We consider various algorithms calculating best one-
sided simultaneous approximations. We assume that X is a com-
pact subset of Rm satisfying X = intX, S is an n-dimensional
subspace of C(X), and µ is any ’admissible’ measure on X. For
any l−tuple f1, · · · , f` in C(X), we present various ideas for best
approximation to F from S(F ). The problem of best (both one and
two-sided) approximation is a linear programming problem.

1. Introduction

We assume that X is a compact subset of Rm satisfying X = intX, S
is an n-dimensional subspace of C(X), and µ is any ’admissible’ measure
on X, i.e., µ is non-atomic, positive and finite and µ(U) > 0 for every
open set U . We assume that we are given l−tuple F = {f1, · · · , f`} in
C(X) with

S(F ) =
⋂̀
i=1

{s ∈ S| s ≤ fi}

is non-empty. Since S(F ) is closed and convex, we have that S(f) 6= φ
for all f ∈ C(X) if and only if S contains a strictly positive function.
The problem we shall discuss is

sup{
∫

X
s dµ| s ∈ S(F )}. (1.1)

Find a best one-sided simultaneous approximation to f1, · · · , f` from
S(F ) is equivalent to finding a s ∈ S(F ) satisfying (1.1). We assume
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that s0 ∈ S(F ) is a solution to (1.1) and

σ0 =
∫

X
s0dµ. (1.2)

2. A convergent sequence {σm}

For each m ∈ N, let xm
1 , · · · , xm

m ∈ X, and assume that the sequence
{xm

i }m
i=1 becomes dense in X. Any given basis for S, s1, · · · , sn, set

pj =
∫

X
sjdµ, j = 1, · · · , n.

For each m, we set

σm = max{
n∑

j=1

ajpj |
n∑

j=1

ajs
j(xm

i ) ≤ fk(xm
i ), i = 1, · · · ,m, k = 1, · · · , `}.

If for some m there exists a solution sm of σm with sm ∈ S(F ) then the
sm is a best one-sided simultaneous approximation to f1, · · · , f` from
S(F ). Before proving the convergence of the algorithm, we need a fact.

Remark 2.1. There exists an M such that the sequence {σm}m≥M

is bounded. Moreover, if sm =
∑n

j=1 am
j sj is a solution of σm then

{sm}m≥M is uniformly bounded.

Its proof is totally analogous to the proof of Remark 3.0.5. [6] We
now prove the convergence result.

Theorem 2.2. Every convergent subsequence of the set of solutions
{sm} converges to a best one-sided simultaneous approximation s0 in
(1.2). Thus the sequence {σm} converges to σ0 in (1.2).

Proof. Let {smk
} be a subsequence of {sm} with converges to s∗.

Since S is n-dimensional, this convergence is uniformly convergent to s∗
on X. Set

σ∗ =
∫

X
s∗dµ.

Then limmk→∞ σmk
= lim lim

∫
X smk

dµ =
∫
X lim smk

dµ =
∫
X s∗dµ =

σ∗. By definition, σm ≥ σ0 for all m. Thus σ∗ ≥ σ0. In the theorem
3.0.6.[6], it follows that s∗ ∈ S(F ). Thus σ∗ ≤ σ0. So σ∗ = σ0 and s∗ is
a solution of (1.1). Since lim σmk

= σ0 for every subsequence {smk
} on

which converges, and the {sm} are uniformly bounded for m sufficiently
large, we have

lim σm = σ0.
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3. The convergence result

Any given basis for S, s1, · · · , sn, set

A = {a| a = (a1, · · · , an),
∑

j

ajs
j ≤ fi, i = 1, · · · , `}.

For any a = (a1, · · · , an) ∈ Rn, we also set

gi(a, x) = fi(x)−
n∑

j=1

ajs
j(x)

and
Gi(a) = min

x∈X
gi(a, x).

And denoted by
G(a) = min

1≤i≤`
Gi(a).

For any a∗ ∈ A then gi(a∗, x) ≥ 0 for all x ∈ X, i = 1, · · · , `. So
Gi(a∗) ≥ 0, for all i = 1, · · · , `. By definition, G(a∗) ≥ 0. Conversely,
if G(a∗) ≥ 0, then gi(a∗, x) ≥ 0 for all x ∈ X, i = 1, · · · , `. For all i,
fi −

∑
j a∗js

j ≥ 0. Thus a∗ ∈ A. That is, a ∈ A if and only if G(a) ≥ 0.
Moreover, finding a best one-sided simultaneous approximation to F

from S(F ) is equivalent to finding a a∗ ∈ A,
∑

j a∗js
j satisfying (1.1).

We claim that the best one-sided simultaneous approximation prob-
lem is an almost totally general form of a linear programming problem.
To demonstrate this fact, consider any linear programming problem of
the form

max
n∑

j=1

ajpj

subject to:
n∑

j=1

ajs
j ≤ fi, i = 1, · · · , `.

The equivalence holds under certain minor restrictions. These re-
strictions are:

(1) There exist {aj}n
j=1 satisfying

∑n
j=1 ajs

j ≤ fi, i = 1, · · · , `.

(2) The maximum is in fact attained, i.e., the solution is not ∞.
(3) The solution set is bounded.
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To verify this equivalence, note that if there exists a d = (d1, · · · , dn) 6=
0 satisfying

(a)
n∑

j=1

djs
j ≤ 0,

(b)
n∑

j=1

djpj ≥ 0,

then either condition (2) or (3) is violated. Thus there exists no d 6= 0
satisfying (a) and (b).

In this algorithm, we start with a set BM = {x1, · · · , xM} of points
in X, where we assume that the points are chosen so that there exists
no d 6= 0 satisfying

(a′)
∑n

j=1 djs
j(xk) ≤ 0, k = 1, · · · ,M,

(b′)
∑n

j=1 djpj ≥ 0.

Equivalently, there exists no s ∈ S \ {0} satisfying s(xk) ≤ 0, k =
1, · · · ,M, and

∫
X sdµ ≥ 0. Thus the problem

max
n∑

j=1

ajpj

subject to:
n∑

j=1

ajs
j(xk) ≤ fi(xk), k = 1, · · · ,M i = 1, · · · , `

has a finite maximum and the solution set is bounded. We shall need
some more.

Lemma 3.1. Assume that the {x1, · · · , xM} are given such that there
exists no d ∈ Rn\{0} satisfying (a′) and (b′). Let C1 < C2 be any fixed
constants. Then the set of a ∈ Rn satisfying

a)
n∑

j=1

ajs
j(xk) ≤ fi(xk), k = 1, · · · ,M i = 1, · · · , `

b) C1 ≤
n∑

j=1

ajpj ≤ C2

is bounded.
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Proof. Suppose that the set of a ∈ Rn satisfying a) and b) is un-
bounded. Thus there exists a sequence of {ar}∞r=1 in Rn satisfying a)
and b), and an index t ∈ {1, · · · , n} such that

(1) |ar
t | = max{|ar

j | : j = 1, · · · , n}

(2) lim
r→∞

εar
t = ∞, for some ε ∈ {−1, 1}.

Let dr
j = ar

j/ar
t , j = 1, · · · , n. On a subsequence, again denoted by {r},

we have
lim

r→∞
dr

j = dj , j = 1, · · · , n,

i.e., the limits exist. Thus |dj | ≤ 1, j = 1, · · · , n, and dt = 1. Since the
ar satisfy a) and b), it follows after dividing by ar

t and letting r → ∞,
that

ε
n∑

j=1

djs
j(xi) ≤ 0, i = 1, · · · ,M,

n∑
j=1

djpj = 0.

However this contradicts our assumption with respect to a′) and b′).
This proves the lemma.

We now describe the algorithm. Assume that we are given Bm =
{x1, · · · , xm} for some m ≥ M. Then Bm+1 is obtained as follows.

We first solve the finite problem

σm = max{
n∑

j=1

ajpj |
n∑

j=1

ajs
j(xi) ≤ fk(xi), i = 1, · · · ,m, k = 1, · · · , `}.

Since m ≥ M , {x1, · · · , xM} ⊆ Bm. By Lemma 3.1, this problem has a
solution am = (am

1 , · · · , am
n ). If G(am) ≥ 0, then

∑n
j=1 am

j sj ∈ S(F ). Set

Am = {a : a = (a1, · · · , an),
n∑

j=1

ajs
j(xi) ≤ fk(xi),

i = 1, · · · ,m, k = 1, · · · , `}.
If

∑n
j=1 ajs

j ≤ fk on {x1, · · · , xm+1} for all i ∈ {1, · · · , `} then
∑n

j=1 ajs
j

≤ fk on {x1, · · · , xm} for all i ∈ {1, · · · , `}, so

AM ⊃ AM+1 ⊃ · · ·A.

Thus σm ≥ σm+1, that is, {σm+1} is a non-increasing sequence bounded
below by σ0,

∑n
j=1 am

j pj ≥ σ0, i.e.,
∑n

j=1 am
j sj satisfy (1.1), so we have
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found a best one-sided simultaneous approximation to our original prob-
lem. We are finished.

We therefore assume that G(am) < 0. Then there exists xm+1 ∈
X\Bm and for some i0 ∈ {1, · · · , `}, satisfy

fi0(xm+1) <
n∑

j=1

am
j sj(xm+1)

and G(am) = gi0(a
m, xm+1). Set Bm+1 = Bm ∪ {xm+1}.

This is the algorithm. In what follows we assume that the algorithm
does not terminate after a finite number of steps.

Theorem 3.2. In the above algorithm

lim
m→∞

σm = σ0.

And the solution set {am} is a bounded sequence, moreover if a∗ is any
cluster point of this sequence then

∑n
i=1 a∗i s

i is a solution of (1.1).

Proof. Since {σm} is a non-increasing sequence bounded below by σ0,
for each m ≥ M,

n∑
j=1

am
j sj(xi) ≤ fk(xi), i = 1, · · · ,M, k = 1, · · · , `,

and

σ0 ≤
n∑

j=1

am
j pj ≤ σM .

From Lemma 3.1, the {am} form a bounded sequence.
Let a∗ = (a∗1, · · · , a∗n) be any cluster point of {am}, and σ∗ =

∑n
j=1 a∗jpj .

Then
lim

m→∞
σm = σ∗ ≥ σ0.

If a∗ ∈ A, i.e.,
∑n

j=1 a∗js
j ≤ fk, k ∈ {1, · · · , `}, then σ∗ ≤ σ0 and the

theorem is proved. We shall prove that a∗ ∈ A.
Assume that a∗ /∈ A, i.e., G(a∗) < 0. Since a∗ is a cluster point of

{am}, and
AM ⊃ AM+1 ⊃ · · ·A,

a∗ ∈
⋂∞

m=M Am. We can choose a subsequence {amr}, limr→∞ amr = a∗

and S is finite-dimensional, the functions
∑n

j=1 amr
j sj uniformly con-

verge to
∑n

j=1 a∗js
j on X. Thus there exists an M1 such that for all
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m ≥ M1,

||
n∑

j=1

a∗js
j −

n∑
j=1

am
j sj ||∞ < −1

2
G(a∗).

Let mr ≥ max{M,M1}. Then

G(amr) = gi0(a
mr , xmr+1) = fi0(xmr+1)−

n∑
j=1

amr
j sj(xmr+1)

for some i0 ∈ {1, · · · , `}. Since a∗ ∈
⋂∞

m=M Am, we have a∗ ∈ Amr+1,
and therefore

gi0(a
∗, xmr+1) = fi0(xmr+1)−

n∑
j=1

a∗js
j(xmr+1) ≥ 0.

Thus

G(amr) = gi0(a
mr , xmr+1)

= gi0(a
∗, xmr+1) +

n∑
j=1

(a∗j − amr
j )sj(xmr+1)

≥
n∑

j=1

(a∗j − amr
j )sj(xmr+1)

>
1
2
G(a∗).

In other words G(amr) > 1
2G(a∗) for all mr ≥ M1. But G is continuous

on Rn, and limr→∞ amr = a∗. Thus G(a∗) ≥ 1
2G(a∗). Since G(a∗) < 0,

this is a contradiction. Thus a∗ ∈ A.

For example, suppose that X = [0, π] and S = R. If F = {sin(x)} and
Am = {1/m, · · · , (m−1)/m}, then σm = sin(1/m)·π and limm→∞ σm =
0. So sin(x) has a best one-sided approximation 0 from R on [0, π].

This paper is concerned with algorithms for calculating best one-
sided simultaneous approximations, a partial discretization, a partial
discretization with optimization, respectively. The problem of best two-
sided simultaneous approximation can also be shown to be a linear pro-
gramming problem. This fact is almost as straightforward as in the
one-sided approximation. So this algorithms will expand the algorithms
for calculating best two-sided simultaneous approximations.
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