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A SIMULTANEOUS NEURAL NETWORK
APPROXIMATION WITH THE SQUASHING

FUNCTION

Nahmwoo Hahm† and Bum Il Hong‡

Abstract. In this paper, we actually construct the simultaneous
approximation by neural networks to a differentiable function. To
do this, we first construct a polynomial approximation using the
Fejer sum and then a simultaneous neural network approximation
with the squashing activation function. We also give numerical
results to support our theory.

1. Introduction

In recent years, many mathematicians ([3], [4], [6], [7]) have been
studied the approximation by neural networks. Recently, Hahm and
Hong [2] constructed a neural network approximation to differentiable
functions on [0, 1] using Bernstein polynomials and a cosine function
as a smooth activation function. In [2], we showed the simultaneous
approximation to target functions and their derivatives, but the approx-
imation rate is somewhat slow. So, we construct another approximation
algorithm to avoid this difficulty.

Since any function defined on [−1, 1] can be replaced by a 2π-periodic
function on [−π, π], we construct an algebraic polynomial approximation
using the Fejer sum and show the simultaneous approximation by neural
network with a sigmoidal activation function. Note that a sigmoidal
function is a function which is defined by

(1.1) lim
x→−∞ f(x) = 0 and lim

x→∞ f(x) = 1.
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The following functions are some examples of non-polynomial sigmoidal
functions.

σ(x) =
{ 1 if x ≥ 0

0 if x < 0
(The Heaviside function)

σ(x) = 1/(1 + e−x) (The squashing function).

Kalman and Kwasny [5] pointed out the importance of choosing a sig-
moidal function as an activation function in hardware implementations
of back propagation and related training algorithm. Thus we choose the
squashing function as an activation function of neural network for the
simultaneous approximation of target functions and their derivatives.

2. Simultaneous Approximation

The motivation of this research comes from the following. If f is a
function on [−1, 1], then g(θ) := f(cos θ) is an even 2π-periodic function
on [−π, π]. Conversely, if g is an even 2π-periodic function on [−π, π],
then f(x) = f(cos θ) := g(θ) is a function on [−1, 1]. In addition,

‖f‖∞,[−1,1] = ‖g‖∞,[−π,π].

If g is a 2π-periodic function on [−π, π], the nth partial sum of its
Fourier series is given by Sn(g, θ). For each n ∈ N, the Fejer sum Fn of
g is given by

(2.1) Fn(g, θ) =
1
n

n−1∑

i=0

Si(θ).

Then Fn(g, θ) is a trigonometric polynomial of degree ≤ n − 1. For a
differentiable 2π-periodic function, we have the following result.

Lemma 2.1. If g is a differentiable 2π-periodic function on [−π, π],
then

F ′
n(g, θ) = Fn(g′, θ).

Proof. Note that the Fejer sum Fn(g, θ) can be rewritten as

Fn(g, θ) =
1

2nπ

∫ π

−π
g(θ − φ)

(
sin(nφ/2)
sin(φ/2)

)2

dφ.



Simultaneous Neural Network Approximation 149

Thus

F ′
n(g, θ) =

1
2nπ

∫ π

−π
g′(θ − φ)

(
sin(nφ/2)
sin(φ/2)

)2

dφ.

On the other hand, by the definition of Fn for g′, we get

1
2nπ

∫ π

−π
g′(θ − φ)

(
sin(nφ/2)
sin(φ/2)

)2

dφ = Fn(g′, θ).

Therefore, we have
F ′

n(g, θ) = Fn(g′, θ).

Using Lemma 2.1, we obtain the following.

Theorem 2.2. Let ε > 0 be given. If f ∈ C1[−1, 1], then, for
sufficiently large n ∈ N, there exists an algebraic polynomial Pn(f, x) of
degree ≤ n such that

‖f − Pn(f)‖∞,[−1,1] < ε and ‖f ′ − P ′
n(f)‖∞,[−1,1] < ε.

Proof. Let f̂ be a function in C1[−2, 2] such that f̂ |[−1,1] = f . We
set x = 2 cos θ for θ ∈ [−π, π] and define

(2.2) g(θ) = f̂(2 cos θ) = f̂(x).

Then g is a differentiable 2π-periodic function on [−π, π]. Let Fn(g) be
the Fejer sum of g for n ∈ N. Since g′ is also a 2π-periodic function on
[−π, π], we have, by Theorem 1 [chapter VIII, [9]],

(2.3) ‖g − Fn(g)‖∞,[−π,π] < ε and ‖g′ − F ′
n(g)‖∞,[−π,π] < ε

for sufficiently large n ∈ N.
Let Pn(f̂ , x) = P (f̂ , 2 cos θ) = Fn(g, θ) for n ∈ N. Then Pn(f̂) is an

algebraic polynomial of degree ≤ n. We set Pn(f, x) = Pn(f̂ , x)|[−1,1].
Then, by (2.3), we have

‖f − Pn(f)‖∞,[−1,1] ≤ ‖f̂ − Pn(f̂)‖∞,[−2,2]

= ‖g − Fn(g)‖∞,[−π,π](2.4)
< ε

for sufficiently large n ∈ N. From (2.2), we have

(2.5) f̂ ′(x) = g′(θ) · 1
−2 sin θ
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and hence, for some positive constant c1,

(2.6) ‖f ′‖∞,[−1,1] ≤ c1‖g′‖∞,[π/3,2π/3] ≤ c1‖g′‖∞,[−π,π].

From Lemma 2.1 and (2.6), we have

‖f ′ − P ′
n(f)‖∞,[−1,1] = ‖(f − Pn)′‖∞,[−1,1]

≤ c2‖g′ − F ′
n(g)‖∞,[−π,π]

= c2‖g′ − Fn(g′)‖∞,[−π,π](2.7)
< ε,

where c2 is a positive constant. Thus we complete the proof.

Now, we construct a simultaneous neural network approximation al-
gorithm for a monomial. Since the squashing function σ is monotone
increasing on R, by the Baire’s Category theorem, there exists α ∈ R
such that

σ(n)(α) 6= 0

for all n ∈ N.

Lemma 2.3. Let ε > 0 be given and let σ be the squashing function.
Assume that α is a point in R such that σ(n)(α) 6= 0 for any n ∈ N. If
we define a neural network

(2.8) Nm,h :=
1

hmσ(m)(α)

m∑

j=0

(−1)m−j

(
m
j

)
σ(jhx + α)

for a given m ∈ N, then

(2.9) ‖xm −Nm,h‖∞,[−1,1] < ε and ‖(xm)′ −N ′
m,h‖∞,[−1,1] < ε

for sufficiently small h > 0.

Proof. By the divided difference formula, we have

σ(hx + α)− σ(α)
hσ′(α)

→ x

as h → 0. Inductively, we get

1
hmσ(m)(α)

m∑

j=0

(−1)m−j

(
m
j

)
σ(jhx + α) → xm

as h → 0 for any m ∈ N. Therefore,

‖xm −Nm,h‖∞,[−1,1] = O(h) < ε
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for sufficiently small h > 0. Now we show the second part of (2.9). Note
that

N ′
m,h

=
1

hmσ(m)(α)

m∑

j=0

(−1)m−j

(
m
j

)
σ(jhx + α)jh(2.10)

=
m

hm−1σ(m)(α)

m−1∑

j=0

(−1)m−j−1

(
m− 1

j

)
σ′(jhx + hx + α).

For l ∈ N with l > m− 1, by Taylor’s theorem, we have

σ′(jhx + hx + α) = σ′(jhx + α)(2.11)

+
l−1∑

i=1

(hx)i

i!
σ(i+1)(jhx + α) +

(hx)l

l!
σ(l+1)(jhx + α + ξ),

where ξ is a point between jhx + α and (j + 1)hx + α.
Now, we estimate the right side of (2.11) using (2.10). Note that

(2.12)
m

hm−1σ(m)(α)

m−1∑

j=0

(−1)m−j−1

(
m− 1

j

)
σ′(jhx + α)

is the divided difference for mxm−1. Hence
(2.13)

‖mxm−1−mh−m+1

σ(m)(α)

m−1∑

j=0

(−1)m−j−1

(
m− 1

j

)
σ′(jhx+α)‖∞,[−1,1] = O(h).

Note that

mh−m+1

σ(m)(α)

m−1∑

j=0

(−1)m−j−1

(
m− 1

j

) l−1∑

i=1

(hx)i

i!
σ(i+1)(jhx + α)(2.14)

=
l−1∑

i=1

mhixi

{m−1∑

j=0

h−m+1

σ(m)(α)
(−1)m−j−1

(
m− 1

j

)
σ(i+1)(jhx + α)

}

=
l−1∑

i=1

mhixi
{
xm−1 +O(h)

}

= O(h).
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Finally, we have
(2.15)

mh−m+1

σ(m)(α)

m−1∑

j=0

(−1)m−j−1

(
m− 1

j

)
(hx)l

l!
σ(l+1)(jhx + α + ξ) = O(h),

since σ(l+1)(jhx + α + ξ) is bounded for x ∈ [−1, 1].
From (2.10), (2.13), (2.14) and (2.15), we get, for a sufficiently small

h > 0,

‖mxm−1 −N ′
m,h‖∞,[−1,1]

≤ ‖mxm−1 − mh−m+1

σ(m)(α)

m−1∑

j=0

(−1)m−j−1

(
m− 1

j

)
σ′(jhx + α)‖∞,[−1,1]

+‖mh−m+1

σ(m)(α)

m−1∑

j=0

(−1)m−j−1

(
m− 1

j

) l−1∑

i=1

(hx)i

i!
σ(i+1)(jhx + α)‖∞,[−1,1]

+‖mh−m+1

σ(m)(α)

m−1∑

j=0

(−1)m−j−1

(
m− 1

j

)
(hx)l

l!
σ(l+1)(jhx + α + ξ)‖∞,[−1,1]

= O(h)
< ε.

Therefore, we complete the proof.

From Lemma 2.3, we can easily obtain the following.

Theorem 2.4. Let ε > 0 be given and let σ be the squashing func-
tion. Assume that α is a point in R such that σ(n)(α) 6= 0 for any
n ∈ N. If Pn =

∑n
i=0 aix

i is a polynomial of degree n, there exists a
neural network

Nn :=
n∑

i=0

aiNi,h =
n∑

i=0

ai
1

hiσ(i)(α)

i∑

j=0

(−1)i−j

(
i
j

)
σ(jhx + α)

such that

(2.16) ‖Pn −Nn‖∞,[−1,1] < ε and ‖P ′
n −N ′

n‖∞,[−1,1] < ε

for sufficiently small h > 0.

Proof. By Lemma 2.3, we get, for a sufficiently small h1 > 0,

‖Pn −Nn‖∞,[−1,1] ≤
n∑

i=0

|ai| · ‖xi −Ni,h1‖∞,[−1,1] = O(h1) < ε.
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Similarly, for a sufficiently small h2 > 0, we have

‖P ′
n −N ′

n‖∞,[−1,1] ≤
n∑

i=0

|ai| · ‖(xi)′ −N ′
i,h2
‖∞,[−1,1] = O(h2) < ε.

If we choose h = min{h1, h2} > 0, we get (2.16).

The following is the main theorem of this paper.

Theorem 2.5. Let f ∈ C1[−1, 1] and let ε > 0 be given. Assume

that α is a point in R such that σ(n)(α) 6= 0 for any n ∈ N, where σ is
the squashing function. For a sufficiently large n ∈ N and sufficiently
small h > 0, there is a neural network Nn such that

‖f −Nn(f)‖∞,[−1,1] < ε and ‖f ′ −N ′
n(f)‖∞,[−1,1] < ε.

Proof. By Theorem 2.2, we have, for a sufficiently large n, there exists
an algebraic polynomial Pn(f, x) of degree ≤ n such that

(2.17) ‖f − Pn(f)‖∞,[−1,1] <
ε

2
and ‖f ′ − P ′

n(f)‖∞,[−1,1] <
ε

2
.

We set Pn(f, x) =
∑n

i=0 aix
i. By Theorem 2.4, there exists a neural

network

Nn(f) :=
n∑

i=0

aiNi,h =
n∑

i=0

ai
1

hiσ(i)(α)

i∑

j=0

(−1)i−j

(
i
j

)
σ(jhx + α)

such that

(2.18) ‖Pn(f)−Nn(f)‖∞,[−1,1] <
ε

2
and ‖P ′

n(f)−N ′
n(f)‖∞,[−1,1] <

ε

2

for a sufficiently small h > 0. From (2.17) and (2.18), we have

‖f −Nn(f)‖∞,[−1,1] ≤ ‖f −Pn(f)‖∞,[−1,1] +‖Pn(f)−Nn(f)‖∞,[−1,1] < ε

and

‖f ′−N ′
n(f)‖∞,[−1,1] ≤ ‖f ′−P ′

n(f)‖∞,[−1,1]+‖P ′
n(f)−N ′

n(f)‖∞,[−1,1] < ε.

We complete the proof.
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3. Numerical Results and Conclusion

In this section, we demonstrate numerical data implemented by MAT-
LAB in order to justify our theory. We selected f(x) = 1

2 ln(x + 2) as
a target function which is differentiable on [−1, 1]. We approximated
f and f ′ on [−1, 1] by neural networks with 5, 8, 11 neurons. For the
construction of neural networks, we chose the squashing function as an
activation function since σ(i)(1

2) 6= 0 for nonnegative integer i. The
results are the followings.
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neural network with 5 neurons
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Figure 1. The target function and neural networks

According to Figure 1, the neural network approximates the target
function well when we use more neurons in the hidden layer as we ex-
pected by Theorem 2.5. Also, we can find the similar results for the
1st derivatives of the target function in Figure 2 although the graphs of
neural network have some oscillations.

We can expect that the neural network approximation to the higher
order derivatives of the target function will be getting worse. We will
explore how we can avoid this difficulty in the future.
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Figure 2. The 1st derivatives of the target function and
neural networks
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