APPROXIMATION AND INTERPOLATION IN THE SPACE OF CONTINUOUS FUNCTIONS VANISHING AT INFINITY

Márcia Kashimoto

ABSTRACT. We establish a result concerning simultaneous approximation and interpolation from certain uniformly dense subsets of the space of vector-valued continuous functions vanishing at infinity on locally compact Hausdorff spaces.

1. Introduction and preliminaries

Throughout this paper we shall assume, unless stated otherwise, that X is a locally compact Hausdorff space and $(E, \|\cdot\|)$ is a normed vector space over \mathbb{K} , where \mathbb{K} denotes either the field \mathbb{R} of real numbers or the field \mathbb{C} of complex numbers. We shall denote by E^* the topological dual of E and by C(X; E) the vector space over \mathbb{K} of all continuous functions from X into E.

A continuous function f from X to E is said to vanish at infinity if for every $\varepsilon > 0$ the set $\{x \in X : \|f(x)\| \ge \varepsilon\}$ is compact. Let $C_0(X; E)$ be the vector space of all continuous functions from X into E vanishing at infinity and equipped with the supremum norm. The vector subspace of all functions in C(X; E) with compact support is denoted by $C_c(X; E)$.

Let A be a nonempty subset of $C_0(X; \mathbb{K})$. We denote by $A \otimes E$ the subset of $C_0(X; E)$ consisting of all functions of the form

$$f(x) = \sum_{i=1}^{n} \phi_i(x)v_i, \quad x \in X,$$

where $\phi_i \in A$, $v_i \in E$, i = 1, ..., n, $n \in \mathbb{N}$.

A subset $W \subset C_0(X; E)$ is an interpolating family for $C_0(X; E)$ if given any nonempty finite subset $S \subset X$ and any $f \in C_0(X; E)$, there exists $g \in W$ such that g(x) = f(x) for all $x \in S$.

A nonempty subset B of $C_0(X; E)$ is said to have the approximation-interpolation property on finite subsets (in short, the SAI property) if for every $f \in C_0(X; E)$, every $\varepsilon > 0$ and every nonempty finite subset S of X, there exists $g \in B$ such that $||f - g|| < \varepsilon$ and f(x) = g(x) for all $x \in S$.

Received June 1, 2010; Revised August 13, 2010.

²⁰¹⁰ Mathematics Subject Classification. Primary 41A65; Secondary 41A05.

Key words and phrases. simultaneous approximation and interpolation, Walsh's theorem.

The purpose of this paper is to present a result of simultaneous approximation and interpolation from certain subsets of $C_0(X; E)$. As a consequence, we obtain a generalization of a result by Prolla concerning simultaneous approximation and interpolation from vector subspaces of C(X;E) when X is a compact Hausdorff space.

2. Main result

Walsh (Theorem 6.5.1 [2]) proved the following result.

Theorem 2.1. Let K be a compact set in the complex plane and let z_1, \ldots, z_n be any set of n points in K. If the function f is defined on K and can be uniformly approximated by polynomials there, then f can be uniformly approximated by polynomials p which also satisfy the auxiliary conditions $p(z_i) = f(z_i)$, $i=1,\ldots,n$.

Motivated by Walsh, we establish the result below.

Theorem 2.2. Let A be an interpolating family for $C_0(X; \mathbb{K})$ and B an uniformly dense subset of $C_0(X; E)$. If $(A \otimes E) + B \subset B$, then B has the SAI property.

Lemma 2.1. If X is a locally compact Hausdorff space and $\{x_1, \ldots, x_n\} \subset X$, then there exists $l_i \in C_c(X; \mathbb{R})$ such that $l_i(x_i) = 1$ and $l_i(x_j) = 0, j \neq i$.

Proof. Since X is Hausdorff and $\{x_1,\ldots,x_n\}$ is finite there exists an open neighborhood U_i of x_i such that $x_j \notin U_i$ for all $j \neq i, j \in \{1, ..., n\}$. By Urysohn's Lemma [8] there exists $l_i \in C_c(X; \mathbb{R}), 0 \le l_i \le 1$, such that $l_i(x_i) = 1$ and $l_i(x) = 0$ if $x \notin U_i$, in particular, $l_i(x_i) = 0$, $j \neq i$.

Proof of Theorem 2.2. Let $S = \{x_1, \dots, x_n\}$ be a subset of X. Let $f \in C_0(X; E)$ and $\varepsilon > 0$.

By Lemma 2.1, for each $x_i \in S$ there exists $l_i \in C_c(X; \mathbb{R})$ such that

$$l_i(x_i) = 1$$

$$l_i(x_j) = 0; j \neq i, x_j \in S.$$

Since A is an interpolanting family for $C_0(X; \mathbb{K})$, there exist $\phi_1, \ldots, \phi_n \in A$ such that

$$\phi_i(x_j) = l_i(x_j); \quad 1 \le i, j \le n.$$

Since B is uniformly dense in $C_0(X; E)$ there exists $g \in B$ such that ||f - g|| < B η where $\eta := \varepsilon/(1 + \sum_{i=1}^{n} \|\phi_i\|).$ The function $h: X \to E$ defined by

$$h(x) = \sum_{i=1}^{n} \phi_i(x) (f(x_i) - g(x_i))$$

belongs to $A \bigotimes E$ and $h(x_j) = f(x_j) - g(x_j)$ for j = 1, ..., n.

Now the function p = h + g belongs to B and $p(x_j) = f(x_j)$ for j = 1, ..., n. Moreover,

$$||f - p|| \le ||f - g|| + ||h|| < \eta + \eta \sum_{i=1}^{n} ||\phi_i|| = \varepsilon.$$

Example 2.1. The set of all continuous real-valued nowhere differentiable functions on [a, b], denoted by ND[a, b], has the SAI property. Indeed, let P[a, b] be the set of all real polynomials on [a, b]. Note that

- (a) P[a, b] is an interpolating subset of $C([a, b]; \mathbb{R})$ (take the Lagrange polynomials);
 - (b) ND[a, b] is uniformly dense in $C([a, b]; \mathbb{R})$;
- (c) $(P[a,b] \bigotimes \mathbb{R}) + ND[a,b] = P[a,b] + ND[a,b] \subset ND[a,b]$. Hence, it follows from Theorem 2.2 that ND[a,b] has the SAI property.

Lemma 2.2. Every uniformly dense vector subspace of $C_0(X; \mathbb{K})$ is an interpolating family for $C_0(X; \mathbb{K})$.

Proof. Let $S = \{x_1, \ldots, x_n\}$ be a subset of X and G be an uniformly dense vector subspace of $C_0(X; \mathbb{K})$. Consider the following continuous linear mapping

$$T: C_0(X; \mathbb{K}) \rightarrow \mathbb{R}^n$$

 $f \mapsto (f(x_1), \dots, f(x_n)).$

Note that T(G) is closed because it is a vector subspace of \mathbb{R}^n . Then by density of G and continuity of T, it follows that

$$T(C_0(X; \mathbb{K})) = T(\overline{G}) \subset \overline{T(G)} = T(G).$$

Therefore, for any $f \in C_0(X; \mathbb{K})$, there exists $g \in G$ such that $(f(x_1), \dots, f(x_n)) = (g(x_1), \dots, g(x_n))$.

A subset M of $C_0(X; \mathbb{K})$ is dense-lineable or algebraically generic if $M \cup \{0\}$ contains a vector space dense in $C_0(X; \mathbb{K})$. For more information, see [1].

Corollary 2.1. If M is a dense-lineable subset of $C_0(X; \mathbb{K})$, then $M \cup \{0\}$ has the SAI property. In particular, all dense vector subspaces of $C_0(X; \mathbb{K})$ have the SAI property.

Proof. Since $M \cup \{0\}$ contains a vector space A dense in $C_0(X; \mathbb{K})$, it follows from Lemma 2.2 that A is an interpolating family for $C_0(X; \mathbb{K})$. Moreover,

$$(A \bigotimes \mathbb{K}) + A \subset A.$$

Then, by Theorem 2.2, it follows that A has the SAI property. Since $A \subset M \cup \{0\}$ we conclude that $M \cup \{0\}$ has the SAI property.

The last corollary can also be proved by using Deutsch's result [3].

In order to give a criterion to identify vector subspaces of $C_0(X; E)$ which have the SAI property, we need the next two results.

Proposition 2.1. The vector subspace $C_0(X; \mathbb{K}) \otimes E$ is uniformly dense in $C_0(X; E)$.

Proof. It follows from Corollary 6.4 [5] that $C_c(X; \mathbb{K}) \otimes E$ is uniformly dense in $C_0(X; E)$. Since

$$C_c(X; \mathbb{K}) \bigotimes E \subset C_0(X; \mathbb{K}) \bigotimes E \subset C_0(X; E),$$

we conclude that $C_0(X; \mathbb{K}) \bigotimes E$ is uniformly dense in $C_0(X; E)$.

Lemma 2.3. If A is an uniformly dense subset of $C_0(X; \mathbb{K})$, then $A \bigotimes E$ is uniformly dense in $C_0(X; E)$.

Proof. By Proposition 2.1, $C_0(X; \mathbb{K}) \otimes E$ is uniformly dense in $C_0(X; E)$. Then given $f \in C_0(X; E)$ and $\varepsilon > 0$, there exists $g \in C_0(X; \mathbb{K}) \otimes E$, say $g(x) = \sum_{i=1}^n \psi_j(x) v_j$, $\psi_j \in C_0(X; \mathbb{K})$, $v_j \in E$, $j = 1, \ldots, n$, such that $||f - g|| < \varepsilon/2$.

Since A is uniformly dense in $C_0(X; \mathbb{K})$, there exists $a_j \in A$ such that

$$\|\psi_j - a_j\| < \frac{\varepsilon}{2(\sum_{j=1}^n \|v_j\| + 1)}.$$

The function $h := \sum_{j=1}^{n} a_j v_j \in A \bigotimes E$. Moreover,

$$||f - h|| \le ||f - g|| + ||g - h|| < \frac{\varepsilon}{2} + \sum_{j=1}^{n} ||\psi_j - a_j|| ||v_j||$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2(\sum_{j=1}^{n} ||v_j|| + 1)} \sum_{j=1}^{n} ||v_j|| < \varepsilon.$$

We obtain the following result.

Theorem 2.3. If A is an uniformly dense vector subspace of $C_0(X; \mathbb{K})$ and B is a vector subspace of $C_0(X; E)$ such that $A \bigotimes E \subset B$, then B has the SAI property.

Proof. It follows from Lemma 2.2, Lemma 2.3 and Theorem 2.2.

Corollary 2.2 (Prolla [7], Theorem 7). Let X be a compact Hausdorff space and $B \subset C(X; E)$ a vector subspace such that $A := \{\phi \circ g : \phi \in E^*, g \in B\}$ is uniformly dense in $C(X; \mathbb{K})$ and $A \bigotimes E \subset B$. Then B has the SAI property.

Example 2.2. Let (X, d) be a compact metric space. A function $f: X \mapsto E$ is called Lipschitzian if there is some constant $K_f > 0$ such that

$$||f(x) - f(y)|| \le K_f d(x, y)$$

for every $x,y\in X$. We denote by Lip(X;E) the subset of C(X;E) of all such functions. By Theorem 9 [6], the vector subspace $Lip(X;\mathbb{K})$ is uniformly

dense in $C(X; \mathbb{K})$. For any $f_1, \ldots, f_n \in Lip(X; \mathbb{K}), v_1, \ldots, v_n \in E$, there exist constants $k_1, \ldots, k_n > 0$ such that

$$\|\sum_{j=1}^{n} f_j(x)v_j - f_j(y)v_j\| \le \sum_{j=1}^{n} |f_j(x) - f_j(y)| \|v_j\| \le \left(\sum_{j=1}^{n} k_j \|v_j\|\right) d(x,y)$$

for every $x, y \in X$. Hence, $Lip(X; \mathbb{K}) \bigotimes E \subset Lip(X; E)$. Then, by Theorem 2.3, Lip(X; E) has the SAI property.

Example 2.3. Since $C_c(X; \mathbb{K})$ is uniformly dense in $C_0(X; \mathbb{K})$ (see Nachbin [4], p. 64) and $C_c(X; \mathbb{K}) \otimes E \subset C_c(X; E)$, it follows from Theorem 2.3 that $C_c(X; E)$ has the SAI property.

Example 2.4. Let X_i be a locally compact Hausdorff space for i = 1, ..., n and $X = X_1 \times \cdots \times X_n$.

Let A be the set of all finite sums of functions of the form

$$x = (x_1, \dots, x_n) \mapsto f(x) = g_1(x_1) \cdots g_n(x_n),$$

where $g_j \in C_0(X_j; \mathbb{K})$ for j = 1, ..., n. By the weighted Dieudonné theorem ([4] Theorem 1 p. 68), A is an uniformly dense vector subspace of $C_0(X; \mathbb{K})$. From Theorem 2.3, $A \otimes E$ has the SAI property.

Acknowledgement. We thank the referee for comments and suggestions which greatly improved the presentation of the paper.

References

- [1] L. Bernal-González, Dense-lineability in spaces of continuous functions, Proc. Amer. Math. Soc. **36** (2008), no. 9, 3163–3169.
- [2] P. J. Davis, Interpolation and Approximation, Dover Publications, New York, 1975.
- [3] F. Deutsch, Simultaneous Interpolation and Approximation in Linear Topological Spaces, SIAM J. Appl. Math. 14 (1966), 1180–1190.
- [4] L. Nachbin, Elements of Approximation Theory, Van Nostrand, Princeton, NJ, 1967; reprinted by Krieger, Huntington, NY, 1976.
- [5] J. B. Prolla, Approximation of Vector-Valued Functions, Mathematics Studies 25, North-Holland, Amsterdam, 1977.
- [6] ______, Weierstrass-Stone, The Theorem, Verlag Peter Lang, Frankfurt, 1993.
- [7] _____, On the Weierstrass-Stone theorem, J. Approx. Theory 78 (1994), no. 3, 299–313.
- [8] W. Rudin, Real and Complex Analysis, McGraw-Hill, Singapore, Third Edition, 1987.

DEPARTAMENTO DE MATEMÁTICA E COMPUTAÇÃO

Universidade Federal de Itajubá - UNIFEI

Caixa Postal 50

37500-903 Itajubá, MG, Brazil

E-mail address: kaxixi@unifei.edu.br, mskashim@gmail.com