JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **23**, No. 4, December 2010

TWO-SIDED BEST SIMULTANEOUS APPROXIMATION

Hyang Joo Rhee*

ABSTRACT. Let $C_1(X)$ be a normed linear space over \mathbb{R}^m , and S be an n-dimensional subspace of $C_1(X)$ with spaned by $\{s_1, \dots, s_n\}$. For each ℓ - tuple vectors F in $C_1(X)$, the two-sided best simultaneous approximation problem is

$$\min_{s \in S} \max_{i=1}^{\ell} \{ ||f_i - s||_1 \}.$$

A $s \in S$ attaining the above minimum is called a two-sided best simultaneous approximation or a Chebyshev center for $F = \{f_1, \dots, f_\ell\}$ from S. This paper is concerned with algorithm for calculating two-sided best simultaneous approximation, in the case of continuous functions.

1. Introduction

We assume that X is a compact subset of \mathbb{R}^m satisfying $X = \overline{\operatorname{int} X}$, S is an n-dimensional subspace of $C_1(X)$, and μ is any 'admissible' measure on X. For any l-tuple f_1, \dots, f_ℓ in $C_1(X)$, we present a algorithm to the solution of our problem of finding a $s^* \in S$ such that

$$\max_{1 \le i \le \ell} ||f_i - s^*||_1 \le \max_{1 \le i \le \ell} ||f_i - s||_1$$

for any $s \in S$.

DEFINITION 1.1. Suppose that K is a nonempty subset of a normed linear space W. Given any bounded subset $F \subset W$, define

$$d(F,K) := \inf_{k \in K} \sup_{f \in F} ||f - k||_1.$$

Received July 21, 2010; Accepted November 09, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 41A28, 41A65.

Key words and phrases: Chebyshev center, two-sided best simultaneous approximation.

This work was completed with the support by a fund of Duksung Women's University 2010.

Hyang Joo Rhee

An element $k^* \in K$ is said to be a two-sided best simultaneous approximation or a Chebyshev center for the set F from K if

$$d(F,K) = \sup_{f \in F} ||f - k^*||_1.$$

That mean that a ball of center k^* with radius d(F, K) is the smallest circle containing the set F.

For each positive integer n, define the set

$$\bar{F_n} := \{ (\bar{\lambda_n}, \bar{f_n}) : \bar{\lambda_n} = (\lambda_1, \cdots, \lambda_n), \bar{f_n} = (f_1, \cdots, f_n), f_i \in F,$$
$$\lambda_i \ge 0 \ (i = 1, \cdots, n), \ \Sigma_{i=1}^n \lambda_i = 1 \}.$$

Then, for any compact set F, $\overline{F_n}$ is a compact set in the product space and we note that for any $k \in K$,

$$\max_{f \in F} ||f - k||_1 = \max_{\bar{F}_n} \sum_{i=1}^n \lambda_i ||f_i - k||_1.$$

So $d(F, K) = d(\operatorname{con}(F), K)$ where $\operatorname{con}(F)$ denotes the convex hull of F. Furthermore, as a consequence of the above equality we have a remark.

REMARK 1.2. For any compact set F and K is a nonempty subset of a normed linear space W, k^* is a best simultaneous approximation for F from K if and only if k^* is a best simultaneous approximation for con(F) from K.

In the next theorem, we are able to determine criteria for when a finite dimensional subspace. It is the existence of a best simultaneous approximation. For a closed convex set, this problem is much more difficult.

THEOREM 1.3. [7] If K is a finite dimensional subspace of a normed linear space W, then for any compact subset $F \subset W$, there exists a best simultaneous approximation from K.

COROLLARY 1.4. [8] Suppose that K is a closed convex subset of a finite dimensional subspace of a normed linear space W. For any compact subset $F \subset W$, there exists a best simultaneous approximation from K.

706

2. Two-sided best simultaneous approximation

This algorithm is based on a discretization of our problem. For each positive integer m, let $x_1^m, \dots, x_m^m \in X$ and $\delta_1^m, \dots, \delta_m^m$ be strictly positive numbers such that

$$\lim_{m \to \infty} \sum_{i=1}^m \delta_i^m f(x_i^m) = \int_X f d\mu$$

for each $f \in C_1(X)$ where μ is any 'admissible' measure on X. For convenience only, we assume that $\sum_{i=1}^{m} \delta_i^m = \mu(X)$ for all m. The points $\{x_i^m\}_{i=1}^m$ become dense in X. Before proving the convergence of the algorithm, we need to pursue some technical facts.

LEMMA 2.1. [4] There exists a natural number M_1 where $\{x_1^m, \dots, x_m^m\}$ is such that for all $m \ge M_1$ we have $\dim S|_{\{x_1^m, \dots, x_m^m\}} = n$.

For any f_1, \dots, f_{ℓ} in $C_1(X)$, let $F = (f_1, \dots, f_{\ell})$ and $||F||_1 = ||(f_1, \dots, f_{\ell})||_1 = d(F, \{0\})$. By the remark 1.0.2, we denote $||F||_1 = \max_{a \in A} ||\sum_{i=1}^{\ell} a_i f_i||_1$ where $A = \{a = (a_1, \dots, a_{\ell}) : \sum_{i=1}^{\ell} a_i = 1, a_i \geq 0, i = 1, \dots, \ell\}$. Throughout this article, we assume that $F = (f_1, \dots, f_{\ell})$ in $C_1(X)$ are given and S is an n-dimensional subspace of $C_1(X)$. We want to consider the problem of approximating there functions simultaneously by elements in S. In other words, we want to find $s^* \in S$ to minimize

$$||(f_1 - s^*, \cdots, f_\ell - s^*)||_1$$

For each positive integer m, we denote by

$$\sigma_m := \min_{s \in S} \max_{j=1}^{\ell} \sum_{i=1}^{m} \delta_i^m |f_j(x_i^m) - s(x_i^m)|.$$

Let $s^m \in S$ be a solution to satisfy the above equality.

We first prove the following lemma.

LEMMA 2.2. There exists a positive integer M_2 such that the set $\{s^m\}_{m>M_2}$ are uniformly bounded.

Proof. By the lemma 2.0.5, there exists a natural number M_1 , for all $m \geq M_1$, $\dim S|_{\{x_1^m, \dots, x_m^m\}} = n$. Since, for each $f \in C_1(X)$, $\lim_{m \to \infty} \sum_{i=1}^m \delta_i^m f(x_i^m) = \int_X f d\mu$, and $||F||_1 = ||(f_1, \dots, f_\ell)||_1 = \max_{a \in A} ||\sum_{i=1}^\ell a_i f_i||_1 = \max_{1 \leq j \leq \ell} ||f_j||_1$ there exists a natural number M_2 , for all $m \geq M_2$,

$$\max_{1 \le j \le \ell} \sum_{i=1}^{m} \delta_i^m |f_j(x_i^m)| \le ||F||_1 + 1.$$

Hyang Joo Rhee

Let
$$M = max\{M_1, M_2\}$$
. Then, for all $m \ge M$ and any $j \in \{1, \dots, \ell\}$,

$$\sum_{i=1}^m \delta_i^m |s^m(x_i^m)| \le \sum_{i=1}^m \delta_i^m |f_j(x_i^m) - s^m(x_i^m)| + \sum_{i=1}^m \delta_i^m |f_j(x_i^m)| \le 2||F||_1 + 2,$$
.

since

$$\max_{1 \le j \le \ell} \sum_{i=1}^{m} \delta_i^m |f_j(x_i^m) - s^m(x_i^m)| \le \max_{1 \le j \le \ell} \sum_{i=1}^{m} \delta_i^m |f_j(x_i^m) - s(x_i^m)|$$

for all $s \in S$, that is

$$\max_{1 \le j \le \ell} \sum_{i=1}^{m} \delta_i^m |f_j(x_i^m) - s^m(x_i^m)| \le \max_{1 \le j \le \ell} \sum_{i=1}^{m} \delta_i^m |f_j(x_i^m)|.$$

Hence there exists a constant C > 0 such that

$$\sum_{i=1}^{m} \delta_i^m |s^m(x_i^m)| \le C$$

for all $m \ge M$. Let $s^m = \sum_{h=1}^n a_h^m s_h$, where s_1, \dots, s_n is a basis for S. If the $\{s^m\}$ are not uniformly bounded, there exists a subsequence $\{m_k\}$ on which

(a)
$$|a_r^{m_k}| = \max\{|a_h^{m_k}| : h = 1, \cdots, n\},\$$

(b) $\lim_{k \to \infty} |a_r^{m_k}| = \infty.$

Let $b_h^{m_k} = a_h^{m_k}/a_r^{m_k}$, $h = 1, \dots, n$. Then the sequence $\{b_h^{m_k}\}$ is bounded, so there exists a subsequence of $\{m_k\}$, again denoted by $\{m_k\}$, on which

$$\lim_{k \to \infty} b_h^{m_k} = b_h, \ h = 1, \cdots, n.$$

Set $\sum_{h=1}^{n} b_h s_h = v$. Since $|b_h^{m_k}| \le 1 = |b_r^{m_k}|, h = 1, \dots, n, v \ne 0$. Thus $\sum_{i=1}^{m_k} \delta_i^{m_k} |\sum_{h=1}^n b_h^{m_k} s_h(x_i^{m_k})| = \sum_{i=1}^{m_k} \delta_i^{m_k} |\sum_{h=1}^n \frac{a_h^{m_k}}{a_r^{m_k}} s_h(x_i^{m_k})|$ $=\frac{1}{|a_{r}^{m_{k}}|}\sum_{i=1}^{m_{k}}\delta_{i}^{m_{k}}|\sum_{h=1}^{n}a_{h}^{m_{k}}s_{h}(x_{i}^{m_{k}})|$

$$= \frac{1}{|a_r^{m_k}|} \sum_{i=1}^{m_k} \delta_i^{m_k} |s^{m_k}(x_i^{m_k})|$$
$$\leq \frac{C}{|a_r^{m_k}|}$$

for all $m_k \geq M$. Let $k \rightarrow \infty$. The right hand side of the inequality tends to zero, but the left hand side of the inequality tends to

708

 $\int_X |\sum_{h=1}^n b_h s_h| d\mu$. Since $\sum_{h=1}^n b_h s_h \neq 0$, it is a contradiction, which implies the desired result.

The algorithm is of course given by finding σ^m and each solution s^m at each step and letting m tend to infinity. Next, we prove a main theorem.

THEOREM 2.3. Let

$$\sigma_0 = \min_{s \in S} \{ \max_{j=1}^{\ell} ||f_j - s||_1 \}.$$

Then $\lim_{m\to\infty} \sigma_m = \sigma_0$. Furthermore, every convergent subsequence of the $\{s^m\}$ converges to a $s^* \in S$ satisfying $\max_{j=1}^{\ell} ||f_j - s^*||_1 = \sigma_0$.

Proof. By the theorem 1.0.3, there exists a $s^o \in S$ satisfy $\max_{1 \le j \le \ell} ||f_j - f_j|| \le j \le \ell$ $s^{0}||_{1} = d(F, S) = \sigma_{0}$. Then

$$\max_{1 \le j \le \ell} \sum_{i=1}^m \delta_i^m |f_j(x_i^m) - s^0(x_i^m)| \ge \max_{1 \le j \le \ell} \sum_{i=1}^m \delta_i^m |f_j(x_i^m) - s^m(x_i^m)| = \sigma_m.$$

Furthermore

$$\lim_{m \to \infty} \max_{1 \le j \le \ell} \sum_{i=1}^m \delta_i^m |f_j(x_i^m) - s^0(x_i^m)| = \max_{1 \le j \le \ell} ||f_j - s^0||_1 = \sigma_0.$$

Therefore $\overline{\lim_{m\to\infty}}\sigma_m \leq \sigma_0$. Assume that a subsequence $\{s^{m_k}\}$ satisfy $\lim_{k \to \infty} s^{m_k} = s^*.$

 $\underline{\text{claim}} \max_{1 \le j \le \ell} ||f_j - s^*||_1 = \sigma_0.$

It is clear, by definition,
$$\begin{aligned} \max_{1 \le j \le \ell} ||f_j - s^*||_1 \ge \sigma_0. \text{ Since} \\ \lim_{k \to \infty} \sigma_{m_k} &= \lim_{k \to \infty} \max_{1 \le j \le \ell} \{ \sum_{i=1}^{m_k} \delta_i^{m_k} |f_j(x_i^{m_k}) - s^{m_k}(x_i^{m_k})| \} \\ &= \max_{1 \le j \le \ell} ||f_j - s^*||_1. \end{aligned}$$

Thus $\max_{1 \le j \le \ell} ||f_j - s^*||_1 \le \sigma_0$. So $\max_{1 \le j \le \ell} ||f_j - s^*||_1 = \sigma_0$. By claim, s^* is a best simultaneous approximation to F from S. Thus every subsequence $\{m_k\}$ for which $\{s^{m_k}\}$ converge, $\lim_{k\to\infty} \sigma_{m_k} = \sigma_0$. Hence, $\lim_{m\to\infty} \sigma_m = \sigma_0$. We have therefore proven.

Note that s^* is unique, then

$$\lim_{m \to \infty} s^m = s^*$$

and the convergence is uniform.

Since the best approximation problem is an almost totally general form of a linear programming problem. Many different algorithms exist for solving linear programing problems. The main theorem is bases

Hyang Joo Rhee

on discretization to solve a two-sided best simultaneous approximation. Now we will extend the algorithm that involves absolutely no discretization, the study of this problem leads us to the important concepts of gradients and subgradients.

References

- L. Elsner, I. Koltracht and M. Neumann, Convergence of sequential and asynchronous nonlinear paracontractions, Numerische mathematik 62 (1992), 305– 319.
- [2] S. H. Park and H. J. Rhee, Characterization of best simultaneous approximation for a compact set, Bull K. Math. Soc. 33 (1996), 435–444.
- [3] S. H. Park and H. J. Rhee, One-sided best simultaneous L₁-approximation, J. K. Math. Soc. 33 (1996), 155–167.
- [4] A. Pinkus, On L₁-approximation, Cambridge Tracts in Mathematics, 93, Cambridge University Press, Cambridge-New York, 1989.
- [5] H. J. Rhee, An algorithm of the one-sided best simultaneous approximation, K. Ann. Math. 24 (2007), 69–79.
- [6] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Springer-Verlag, New York, 1970.
- [7] A. S. Holland, B. N. Sahney and J. Tzimbalario, On best simultaneous approximation, Letter to the Editer, J. Approx. Theory, 17 (1976), 187-188.
- [8] H. J. Rhee, Best simultaneous spproximations and one-sided best simultaneous approximations, Doctoral Dissertation, Sogang University, Seoul, 1994.

*

College of Natural Sciences Duksung Women's University Seoul 132-714, Republic of Korea *E-mail*: rhj@duksung.ac.kr

710