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TWO-SIDED BEST SIMULTANEOUS APPROXIMATION

Hyang Joo Rhee*

Abstract. Let C1(X) be a normed linear space over Rm, and S be
an n-dimensional subspace of C1(X) with spaned by {s1, · · · , sn}.
For each `− tuple vectors F in C1(X), the two-sided best simulta-
neous approximation problem is

min
s∈S

`
max
i=1

{||fi − s||1}.
A s ∈ S attaining the above minimum is called a two-sided best si-
multaneous approximation or a Chebyshev center for F = {f1, · · · , f`}
from S. This paper is concerned with algorithm for calculating two-
sided best simultaneous approximation, in the case of continuous
functions.

1. Introduction

We assume that X is a compact subset of Rm satisfying X = intX, S
is an n-dimensional subspace of C1(X), and µ is any ’admissible’ measure
on X. For any l−tuple f1, · · · , f` in C1(X), we present a algorithm to
the solution of our problem of finding a s∗ ∈ S such that

max
1≤i≤`

||fi − s∗||1 ≤ max
1≤i≤`

||fi − s||1

for any s ∈ S.

Definition 1.1. Suppose that K is a nonempty subset of a normed
linear space W. Given any bounded subset F ⊂ W, define

d(F, K) := inf
k∈K

sup
f∈F

||f − k||1.
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An element k∗ ∈ K is said to be a two-sided best simultaneous approx-
imation or a Chebyshev center for the set F from K if

d(F, K) = sup
f∈F

||f − k∗||1.

That mean that a ball of center k∗ with radius d(F,K) is the smallest
circle containing the set F .

For each positive integer n, define the set

F̄n := {(λ̄n, f̄n) : λ̄n = (λ1, · · · , λn), f̄n = (f1, · · · , fn), fi ∈ F,

λi ≥ 0 (i = 1, · · · , n), Σn
i=1λi = 1}.

Then, for any compact set F , F̄n is a compact set in the product space
and we note that for any k ∈ K,

max
f∈F

||f − k||1 = max
F̄n

Σn
i=1λi||fi − k||1.

So d(F, K) = d(con(F ),K) where con(F) denotes the convex hull of F.
Furthermore, as a consequence of the above equality we have a remark.

Remark 1.2. For any compact set F and K is a nonempty subset
of a normed linear space W , k∗ is a best simultaneous approximation
for F from K if and only if k∗ is a best simultaneous approximation for
con(F ) from K.

In the next theorem, we are able to determine criteria for when a
finite dimensional subspace. It is the existence of a best simultaneous
approximation. For a closed convex set, this problem is much more
difficult.

Theorem 1.3. [7] If K is a finite dimensional subspace of a normed
linear space W , then for any compact subset F ⊂ W, there exists a best
simultaneous approximation from K.

Corollary 1.4. [8] Suppose that K is a closed convex subset of
a finite dimensional subspace of a normed linear space W . For any
compact subset F ⊂ W, there exists a best simultaneous approximation
from K.



Two-sided best simultaneous approximation 707

2. Two-sided best simultaneous approximation

This algorithm is based on a discretization of our problem. For each
positive integer m, let xm

1 , · · · , xm
m ∈ X and δm

1 , · · · , δm
m be strictly pos-

itive numbers such that

lim
m→∞

m∑

i=1

δm
i f(xm

i ) =
∫

X
fdµ

for each f ∈ C1(X) where µ is any ’admissible’ measure on X. For
convenience only, we assume that

∑m
i=1 δm

i = µ(X) for all m. The
points {xm

i }m
i=1 become dense in X. Before proving the convergence of

the algorithm, we need to pursue some technical facts.

Lemma 2.1. [4] There exists a natural number M1 where {xm
1 , · · · , xm

m}
is such that for all m ≥ M1 we have dimS|{xm

1 ,··· ,xm
m} = n.

For any f1, · · · , f` in C1(X), let F = (f1, · · · , f`) and ||F ||1 =
||(f1, · · · , f`)||1 = d(F, {0}). By the remark 1.0.2, we denote ||F ||1 =
maxa∈A ||

∑`
i=1 aifi||1 where A = {a = (a1, · · · , a`) :

∑`
i=1 ai = 1, ai ≥

0, i = 1, · · · , `}. Throughout this article, we assume that F = (f1, · · · , f`)
in C1(X) are given and S is an n−dimensional subspace of C1(X). We
want to consider the problem of approximating there functions simul-
taneously by elements in S. In other words, we want to find s∗ ∈ S to
minimize

||(f1 − s∗, · · · , f` − s∗)||1.
For each positive integer m, we denote by

σm := min
s∈S

`
max
j=1

m∑

i=1

δm
i |fj(xm

i )− s(xm
i )|.

Let sm ∈ S be a solution to satisfy the above equality.
We first prove the following lemma.

Lemma 2.2. There exists a positive integer M2 such that the set
{sm}m≥M2 are uniformly bounded.

Proof. By the lemma 2.0.5, there exists a natural number M1, for all
m ≥ M1, dimS|{xm

1 ,··· ,xm
m} = n. Since, for each f ∈ C1(X), limm→∞∑m

i=1 δm
i f(xm

i ) =
∫
X fdµ, and ||F ||1 = ||(f1, · · · , f`)||1 = maxa∈A ||

∑`
i=1

aifi||1 = max1≤j≤` ||fj ||1 there exists a natural number M2, for all
m ≥ M2,

max
1≤j≤`

m∑

i=1

δm
i |fj(xm

i )| ≤ ||F ||1 + 1.
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Let M = max{M1,M2}. Then, for all m ≥ M and any j ∈ {1, · · · , `},
m∑

i=1

δm
i |sm(xm

i )| ≤
m∑

i=1

δm
i |fj(xm

i )−sm(xm
i )|+

m∑

i=1

δm
i |fj(xm

i )| ≤ 2||F ||1+2,

since

max
1≤j≤`

m∑

i=1

δm
i |fj(xm

i )− sm(xm
i )| ≤ max

1≤j≤`

m∑

i=1

δm
i |fj(xm

i )− s(xm
i )|

for all s ∈ S, that is

max
1≤j≤`

m∑

i=1

δm
i |fj(xm

i )− sm(xm
i )| ≤ max

1≤j≤`

m∑

i=1

δm
i |fj(xm

i )|.

Hence there exists a constant C > 0 such that
m∑

i=1

δm
i |sm(xm

i )| ≤ C

for all m ≥ M.
Let sm =

∑n
h=1 am

h sh, where s1, · · · , sn is a basis for S. If the {sm}
are not uniformly bounded, there exists a subsequence {mk} on which

(a) |amk
r | = max{|amk

h | : h = 1, · · · , n},
(b) lim

k→∞
|amk

r | = ∞.

Let bmk
h = amk

h /amk
r , h = 1, · · · , n. Then the sequence {bmk

h } is bounded,
so there exists a subsequence of {mk}, again denoted by {mk}, on which

lim
k→∞

bmk
h = bh, h = 1, · · · , n.

Set
∑n

h=1 bhsh = v. Since |bmk
h | ≤ 1 = |bmk

r |, h = 1, · · · , n, v 6= 0. Thus
mk∑

i=1

δmk
i |

n∑

h=1

bmk
h sh(xmk

i )| =
mk∑

i=1

δmk
i |

n∑

h=1

amk
h

amk
r

sh(xmk
i )|

=
1

|amk
r |

mk∑

i=1

δmk
i |

n∑

h=1

amk
h sh(xmk

i )|

=
1

|amk
r |

mk∑

i=1

δmk
i |smk(xmk

i )|

≤ C

|amk
r |

for all mk ≥ M. Let k → ∞. The right hand side of the inequal-
ity tends to zero, but the left hand side of the inequality tends to
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∫
X |

∑n
h=1 bhsh|dµ. Since

∑n
h=1 bhsh 6= 0, it is a contradiction, which

implies the desired result.

The algorithm is of course given by finding σm and each solution sm at
each step and letting m tend to infinity. Next, we prove a main theorem.

Theorem 2.3. Let

σ0 = min
s∈S

{ `
max
j=1

||fj − s||1}.
Then limm→∞ σm = σ0. Furthermore, every convergent subsequence of
the {sm} converges to a s∗ ∈ S satisfying max`

j=1 ||fj − s∗||1 = σ0.

Proof. By the theorem 1.0.3, there exists a so ∈ S satisfy max1≤j≤` ||fj−
s0||1 = d(F, S) = σ0. Then

max
1≤j≤`

m∑

i=1

δm
i |fj(xm

i )− s0(xm
i )| ≥ max

1≤j≤`

m∑

i=1

δm
i |fj(xm

i )− sm(xm
i )| = σm.

Furthermore

lim
m→∞ max

1≤j≤`

m∑

i=1

δm
i |fj(xm

i )− s0(xm
i )| = max

1≤j≤`
||fj − s0||1 = σ0.

Therefore limm→∞σm ≤ σ0. Assume that a subsequence {smk} satisfy
limk→∞ smk = s∗.

claim max1≤j≤` ||fj − s∗||1 = σ0.
It is clear, by definition, max1≤j≤` ||fj − s∗||1 ≥ σ0. Since

lim
k→∞

σmk
= lim

k→∞
max
1≤j≤`

{
mk∑

i=1

δmk
i |fj(x

mk
i )− smk(xmk

i )|}

= max
1≤j≤`

||fj − s∗||1.
Thus max1≤j≤` ||fj − s∗||1 ≤ σ0. So max1≤j≤` ||fj − s∗||1 = σ0.
By claim, s∗ is a best simultaneous approximation to F from S. Thus

every subsequence {mk} for which {smk} converge, limk→∞ σmk
= σ0.

Hence, limm→∞ σm = σ0. We have therefore proven.

Note that s∗ is unique, then

lim
m→∞ sm = s∗

and the convergence is uniform.
Since the best approximation problem is an almost totally general

form of a linear programming problem. Many different algorithms ex-
ist for solving linear programing problems. The main theorem is bases
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on discretization to solve a two-sided best simultaneous approximation.
Now we will extend the algorithm that involves absolutely no discretiza-
tion, the study of this problem leads us to the important concepts of
gradients and subgradients.
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