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REMARK FOR CALCULATING THE BEST
SIMULTANEOUS APPROXIMATIONS

Hyang Joo Rhee*

Abstract. This paper is concerned with algorithm for calculating
one-sided best simultaneous approximation, in the case of continu-
ous functions. we will apply any subgradient algorithm. In other
words, we consider the algotithms from a mathematical, rather then
computational, point of view.

1. Introduction

We assume that W is a normed linear space and K is a nonempty
subset of W . For any subset F of W , we define

d(F, K) := inf
k∈K

sup
f∈F

||f − k||

and the elements in K which attain the above infimum are called a best
simultaneous approximation for F from K.

Lemma 1.1. [6] Suppose that K is a nonempty closed convex subset
of a finite-dimensional subspace of a normed linear space W . For any
compact subset F ⊂ W , there exists a best simultaneous approximation
for F from K.

Throughout this article, we denote that X is a compact subset of Rm

satisfying X = intX, S is an n-dimensional subspace of C(X) with the
L1(X, µ)-norm where µ is an admissible measure on X.

Received March 08, 2010; Accepted August 12, 2010.
2010 Mathematics Subject Classification: Primary 41A28, 41A65.
Key words and phrases: one-sided simultaneous approximation, linear pro-

gramming.
This work was completed with the support by a fund of Duksung Women’s Uni-

versity in 2009.



436 Hyang Joo Rhee

Suppose that we are given l−tuple F = {f1, · · · , f`} in C(X) with

S(F ) =
⋂̀

i=1

{s ∈ S| s ≤ fi}

is non-empty. We define

d(F, S(F )) := inf
s∈S(F )

sup
f∈F

||f − s||1

and the elements in S(F ) which attain the above infimum are called a
one-sided best simultaneous approximation for F from S(F ). The case
by ` = 1, we called a one-sided best approximation for f from S(f) [5].

Finding a one-sided best simultaneous approximation for F from
S(F ) is equivalent to finding a s ∈ S(F ) satisfying

sup{
∫

X
s dµ| s ∈ S(F )}.

Since S(F ) is closed and convex, we have that S(F ) 6= φ for all l−tuple
F = {f1, · · · , f`} in C(X) if and only if S contains a strictly positive
function. By lemma 1.0.1., if S(F ) is nonempty, then there exists a one-
sided best simultaneous approximation for F from S(F ). We choose and
fix a basis s1, · · · , sn for S where s1 is strictly positive and∫

X
s1dµ = 1,

while ∫

X
sidµ = 0, i = 2, · · · , n.

Thus our problem can be reformulated as

max{a1 |
n∑

i=1

aisi ≤ fj , j = 1, · · · , `}.

For each â = (a2, · · · , an) ∈ Rn−1, define

hj(â) = min{fj(x)−∑n
i=2 aisi(x)

s1(x)
: x ∈ X}

and H(â) = min1≤j≤` hj(â).

Remark 1.2. Since s1 is strictly positive,

max{a1 |
n∑

i=1

aisi ≤ fj , j = 1, · · · , `} = max
â∈Rn−1

min
1≤j≤`

hj(â)

= max
â∈Rn−1

H(â).
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2. A subgadient to H at â

In this section, we shall consider vector in Rn−1 as being indexed 2
to n. This algorithm is based on ideas from gradients and subgradients.

Corollary 2.1. The function H is a continuous concave function
on Rn−1.

Proof. For each hj (1 ≤ j ≤ `), the continuity and concavity may
be proved as follows. The continuity is obvious. Let â, b̂ ∈ Rn−1. By
definition

fj ≥ hj(â)s1 +
n∑

i=2

aisi

fj ≥ hj(b̂)s1 +
n∑

i=2

bisi

on all of X. Thus, for any λ ∈ [0, 1],

fj ≥ (λhj(â) + (1− λ)hj(b̂))s1 +
n∑

i=2

(λai + (1− λ)bi)si

on X. Which implies that

hj(λâ + (1− λ)b̂) ≥ λhj(â) + (1− λ)hj(b̂).

Thus hj is concave. By definition, H(â) = min1≤j≤` hj(â), the function
H is a continuous concave function on a one-sided best simultaneous
approximation for F from S(F ).

We also have by definition that H is finite on Rn−1. We claim that

lim
||â||→∞

H(â) = −∞

where || · || is any norm on Rn−1. To see this, set T = span {s2, · · · , sn}.
Since T is a finite dimensional subspace of C(X), and

∫
X tdµ = 0 for

all t ∈ T , we necessarily have

lim
||â||→∞

max{
n∑

i=2

aisi(x) : x ∈ X} = ∞.

Thus

lim
||â||→∞

min{fj(x)−∑n
i=2 aisi(x)

s1(x)
: x ∈ X} = −∞,

i.e., lim||â||→∞ hj(â) = −∞, so lim||â||→∞H(â) = −∞.
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Maximizing H over Rn−1 is therefore a problem of maximizing a
concave function.

Definition 2.2. Let H be as above and â ∈ Rn−1. A vector g ∈ Rn−1

is said to be a subgradient to H at â if

H(b̂)−H(â) ≤ (g, b̂− â)

for all b̂ ∈ Rn−1. We let G(â) denote the set of subgradients to H at â.

Definition 2.3. Let H be as above and if G(â) is a singleton, then
this singleton is called the gradient to H at â.

By definition, a gradient to H exists at â if and only if there is a
unique supporting hyperplane to H at â. Thus we can take a remark
that a∗ is a maximum point of H if and only if 0 ∈ G(a∗).

Since G(â) is a compact convex set, it is uniquely determined by its
extreme points. These extreme points are related to one-sided direc-
tional derivatives as follows.

Proposition 2.4. [4] Let H be as above and â ∈ Rn−1. For each
d ∈ Rn−1

lim
t→0+

H(â + td)−H(â)
t

= H ′
d(â)

exists. Furthermore,

H ′
d(â) = min{(g, d) : g ∈ G(â)}.

As a consequence of proposition, the above definition of a gradient
implies the existence of the partial derivatives to H at â.

For any â ∈ Rn−1, set

Z(â) = {x : (fj0 −H(â)s1 −
n∑

i=2

aisi)(x) = 0 where hj0(â) = H(â)}.

By definition Z(â) 6= φ for each â ∈ Rn−1. For each x ∈ Z(â), set

gx = (−s2(x)/s1(x), · · · ,−sn(x)/s1(x)).

Let G̃(â) denote the convex hull of the set of vectors {gx : x ∈ Z(â)}.
Then the set G̃(â) is closed since Z(â) are closed.

Theorem 2.5. The set G̃(â) is the set of subgradients to H at â.

Proof. For each x ∈ Z(â), there exists j ∈ {1, · · · , `} such that

fj(x) = H(â)s1(x) +
n∑

i=2

aisi(x)
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= hj(â)s1(x) +
n∑

i=2

aisi(x).

By definition, that is fj ≥ hj(b̂)s1 +
∑n

i=2 bisi, for each b̂ ∈ Rn−1,

fj(x) ≥ hj(b̂)s1(x) +
n∑

i=2

bisi(x)

≥ H(b̂)s1(x) +
n∑

i=2

bisi(x).

Since s1(x) ≥ 0,

H(b̂)−H(â) ≤
n∑

i=2

ai
si(x)
s1(x)

−
n∑

i=2

bi
si(x)
s1(x)

=
n∑

i=2

(ai − bi)
si(x)
s1(x)

= (gx, b̂− â).

So gx is a subgradient to H at â, that is, G̃(â) ⊂ G(â).
It remains to prove that all subgradients to H at â are in G̃(â).

Suppose that G̃(â) 6= G(â). Then G̃(â) ⊂ G(â), and G̃(â), G(â) are both
convex and compact, there exists a g∗ ∈ G(â) and d ∈ Rn−1 for which

(g, d) > (g∗, d)

for all g ∈ G̃(â). Thus

min{(g, d) : g ∈ G̃(â)} > min{(g, d) : g ∈ G(â)} = H ′
d(â).

If the strictly inequality will be equality, we have proved our result.
It suffices to prove that, for each d ∈ Rn−1, there exists a g ∈ G̃(â)

for which

H ′
d(â) = lim

t→0+

H(â + td)−H(â)
t

= (g, d).

We therefore calculate H ′
d(â). Set

g(x) =
fj0(x)−∑n

i=2 aisi(x)
s1(x)

−H(â)

and vi(x) = si(x)
s1(x) , i = 2, · · · , n, where hj0(â) = H(â). Note that

min{g(x) : x ∈ X} = 0.
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Now, for each d ∈ Rn−1,

H(â + td)−H(â)
t

=
1
t
[hj0(â + td)− hj0(â)]

=
1
t
[min
x∈X

fj0(x)−∑n
i=2(ai + tdi)si(x)
s1(x)

−min
x∈X

fj0(x)−∑n
i=2 aisi(x)

s1(x)
]

=
1
t
[min
x∈X

fj0(x)−∑n
i=2 aisi(x)− t

∑n
i=2 disi(x)

s1(x)
−H(â)]

=
1
t

min
x∈X

[
fj0(x)−∑n

i=2 aisi(x)
s1(x)

− t
n∑

i=2

divi(x)−H(â)]

=
1
t

min
x∈X

{g(x)− t
n∑

i=2

divi(x)}.

For each x ∈ Z(â),

1
t
{g(x)− t

n∑

i=2

divi(x)} = −
n∑

i=2

divi(x).

Thus

H ′
d(â) = lim

t→0+

H(â + td)−H(â)
t

= lim
t→0+

1
t

min
x∈X

{g(x)− t
n∑

i=2

divi(x)}

≤ min
x∈Z(â)

−
n∑

i=2

divi(x)

= min
x∈Z(â)

(gx, d).

If equality holds, that is, for each d ∈ Rn−1, there exists a g ∈ G̃(â) for
which

H ′
d(â) = min{(gx, d) : gx ∈ G(â)}

= min{(gx, d) : gx ∈ G̃(â)},
then by proposition 2.0.6., the proof is complete, that is, G̃(â) = G(â).
We assume that equality does not hold. Set

c∗ = min
x∈Z(â)

−
n∑

i=2

divi(x) = − max
x∈Z(â)

n∑

i=2

divi(x).

Assume that, there exists a δ > 0 such that

H ′
d(a) ≤ c∗ − δ.
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Let tk → 0 and xk ∈ X satisfy

H ′
d(â) = lim

k→∞
1
tk
{g(xk)− tk

n∑

i=2

divi(xk)} ≤ c∗ − δ.

Because the limit exists, it follows that

lim
k→∞

g(xk) = 0.

Since X is compact, there exists a subsequence of the {xk}, again de-
noted by {xk}, converging to some x∗. Since g is continuous and therefore
g(x∗) = 0, i.e., x∗ ∈ Z(â).

The function
∑n

i=2 divi is continuous and there exists a K1 such that
for all k ≥ K1

|
n∑

i=2

divi(xk)−
n∑

i=2

divi(x∗)| < δ

2
.

Thus for k ≥ K1

c∗ +
n∑

i=2

divi(xk) = − max
x∈Z(â)

n∑

i=2

divi(x) +
n∑

i=2

divi(xk)

≤ −
n∑

i=2

divi(x∗) +
n∑

i=2

divi(xk) <
δ

2
.

There exists a K2 such that for all k ≥ K2

g(xk) ≤ tk{c∗ − δ

2
+

n∑

i=2

divi(xk)}.

Thus, for all k ≥ max{K1,K2},

g(xk) ≤ tk{c∗ − δ

2
+

n∑

i=2

divi(xk)} < 0.

Hence g(x) ≥ 0 for all x ∈ X. This contradiction proves the theorem.

As we have shown, the subgradients to H at â are easily determined
theoretically. We can apply any subgradient algorithm. Suffice it to say
that convergence is generally very slow, at least in theory. This paper is
concerned with algorithms for calculating best one-sided simultaneous
approximations. And this algorithms will expand the algorithms for
calculating best two-sided simultaneous approximations.
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