DOI QR코드

DOI QR Code

EXPANSION THEORY FOR THE TWO-SIDED BEST SIMULTANEOUS APPROXIMATIONS

  • RHEE, HYANG JOO (Department of Mathematics, College of Natural Sciences, Duksung Women's University)
  • Received : 2021.04.09
  • Accepted : 2021.04.22
  • Published : 2021.05.30

Abstract

In this paper, we study the characterizations of two-sided best simultaneous approximations for ℓ-tuple subset from a closed convex subset of ℝm with ℓm1(w)-norm. Main fact is, k* is a two-sided best simultaneous approximation to F from K if and only if there exist f1, …, fp in F, for any k ∈ K $${\mid}{\sum\limits_{i=1}^{m}}sgn(f_{ji}-k^*_i)k_iw_i{\mid}{\leq}\;{\sum\limits_{i{\in}Z(f_j-k^*)}}\;{\mid}k_i{\mid}w_i$$ for each j = 1, …, p and 𝐰 ∈ W.

Keywords

References

  1. Allan M. Pinkus, On L1-approximation, Cambridge University Press, 1988.
  2. K. Fan, Minimax theorem, Proc. Nat. Acad. Soc. U.S.A. 39 (1953), 42-47. https://doi.org/10.1073/pnas.39.1.42
  3. S.H. Park and H.J. Rhee, Best simultaneous approximations from a convex subset, Bull. Korean Math. Soc. 33 (1996), 193-204.
  4. S.H. Park and H.J. Rhee, One-sided best simultaneous L1-approximation, Jour. Korean Math. Soc. 33 (1996), 155-167.
  5. S.H. Park and H.J. Rhee, One-sided best simultaneous L1-approximation for a compact set, Bull. Korean Math. Soc. 35 (1998), 127-140.
  6. S. Tanimoto, Uniform approximation and a generalized minimax theorem, J. Approx. Theory 45 (1985), 1-10. https://doi.org/10.1016/0021-9045(85)90054-1
  7. S. Tanimoto, A characterization of best simultaneous approximations, J. Approx. Theory 59 (1989), 359-361. https://doi.org/10.1016/0021-9045(89)90102-0