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THE SIMULTANEOUS APPROXIMATION ORDER BY
NEURAL NETWORKS WITH A SQUASHING FUNCTION

Nahmwoo Hahm

Abstract. In this paper, we study the simultaneous approximation to
functions in Cm[0, 1] by neural networks with a squashing function and
the complexity related to the simultaneous approximation using a Bern-
stein polynomial and the modulus of continuity. Our proofs are construc-
tive.

1. Introduction

It is well known that an approximation by neural networks is based on
superpositions of a transfer function. A feedforward neural network with a
transfer function σ : R→ R and n neurons in the hidden layer is given by

n∑

i=1

aiσ(bix + ci),

where bi’s are weights and ci’s are thresholds. Many researchers have proved
the density results [1, 5, 7] and the complexity results [11, 12, 13] by neural net-
works. Especially, simultaneous approximations of functions and their deriva-
tives have been studied in recent years by many authors [2, 4, 6, 8, 9] since they
have many applications in the fields of science and engineering. Most results in
[2, 4, 6, 9] investigated the density results of simultaneous approximations by
neural networks. Li and Xu [8] showed the simultaneous approximation order
by neural networks with a trigonometric function. The goal of this paper is to
obtain the simultaneous approximation order of functions in Cm[0, 1] and their
derivatives by neural networks with a sigmoidal function. A sigmoidal function
is a function σ : R→ R such that

lim
x→−∞

σ(x) = 0 and lim
x→∞

σ(x) = 1.
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The following functions are some sigmoidal functions.

Heaviside function : σh(x) =

{
1 if x ≥ 0
0 if x < 0.

Squashing function : σc(x) =
1

1 + ce−x
, c is a positive constant.

It is well known that continuous functions on a compact subset of R can be
approximated well by neural networks with the Heaviside function. But, the
Heaviside function is not differentiable. Therefore, in this paper, we choose
a squashing function σ(x) = 1/(1 + e−x) as a transfer function of neural net-
works. In addition, neural networks with a squashing function are important
due to historical reasons [14] as a suitable model for the response characteristics
of a biological neuron.

2. Preliminaries

Throughout the paper, m denotes a fixed positive integer, c, c1, c2, c3, . . .
denote positive constants and their values may be different at different occur-
rences.

In order to get the main result, we use a Bernstein polynomial. By the
binomial theorem and the properties of a Bernstein polynomial [10], we have
the following result.

Lemma 2.1. Let n ∈ N be given. Then, for any integer r with 0 ≤ r ≤ n and
x ∈ [0, 1], the followings hold.

(a)
∑n−r

k=0

(
n− r

k

)
xk(1− x)n−r−k = 1.

(b)
∑n−r

k=0

(
n− r

k

)
kxk(1− x)n−r−k = (n− r)x.

(c)
∑n−r

k=0

(
n− r

k

)
k2xk(1− x)n−r−k = (n− r)x

(
(n− r − 1)x + 1

)
.

The following lemma can be directly obtained from Lemma 2.1.

Lemma 2.2. Let n ∈ N be given. Then, for any integer r with 0 ≤ r ≤ n, we
have

‖Tn,r‖∞,[0,1] ≤
n− r

4
,

where Tn,r(x) =
∑n−r

k=0

(
k − (n− r)x

)2
(

n− r
k

)
xk(1− x)n−r−k for x ∈ [0, 1].
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Proof. By Lemma 2.1, we have

Tn,r(x) =
n−r∑

k=0

(k − (n− r)x)2
(

n− r
k

)
xk(1− x)n−r−k(1)

=
n−r∑

k=0

{
k2 − 2(n− r)kx + (n− r)2x2

}(
n− r

k

)
xk(1− x)n−r−k

= (n− r)x
{

(n− r − 1)x + 1− (n− r)x
}

= (n− r)(x− x2).

Therefore |Tn,r(x)| ≤ (n− r)/4 for any x ∈ [0, 1]. ¤

For f ∈ Cm[0, 1] and δ > 0, we define the modulus of continuity of f (r) for
r ∈ Z with 0 ≤ r ≤ m as follows.

ω(f (r), δ) := sup
{
|f (r)(x)− f (r)(y)| : |x− y| < δ

}
,

where x, y ∈ [0, 1]. Note that ω(f (r), δ) satisfies the followings.
(a) ω(f (r), δ) is a non-decreasing function.
(b) ω(f (r), αδ) ≤ (α + 1)ω(f (r), δ) for a positive real number α.
(c) ω(f (r), α + β) ≤ ω(f (r), α) + ω(f (r), β) for positive real numbers α, β.
For any nonnegative integer n, the difference of a function f with a step h

is defined by

∆n
hf(x) := ∆h(∆n−1

h f(x)),

where ∆0
hf(x) := f(x) and ∆hf(x) := ∆1

hf(x) = f(x + h)− f(x).

3. Main results

In this section, first, we obtain the simultaneous approximation order of
functions in Cm[0, 1] by Bernstein polynomials. Then we show that Bern-
stein polynomials are simultaneously approximated by neural networks with a
squashing function using the properties of a squashing function.

Theorem 3.1. Let f ∈ Cm[0, 1] and n ∈ N with m < n. Then, for any integer
r with 0 ≤ r ≤ m, we have

‖f (r) −B(r)
n (f)‖∞,[0,1] ≤ c1ω

(
f (r),

1√
n− r

)
+

c2

n
,

where c1 and c2 are positive constants independent of n.

Proof. For r = 0, it is proved in [10] that

(2) ‖f −Bn(f)‖∞,[0,1] ≤ cω
(
f,

1√
n

)
,
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where c is a positive constant independent of n. Note that

B
′
n(f, x) =

n∑

k=0

f

(
k

n

)(
n
k

) [
kxk−1(1− x)n−k − (n− k)xk(1− x)n−1−k

]
(3)

= n

n−1∑

k=0

[
f

(
k + 1

n

)
− f

(
k

n

)](
n− 1

k

)
xk(1− x)n−1−k

= n

n−1∑

k=0

∆1/nf

(
k

n

) (
n− 1

k

)
xk(1− x)n−1−k.

By differentiating B
′
n(f, x) and simplifying the computation, we get

B
′′
n(f, x)

(4)

= n(n− 1)
n−2∑

k=0

[
f

(
k + 2

n

)
− 2f

(
k + 1

n

)
+ f

(
k

n

)](
n− 2

k

)
xk(1− x)n−2−k

= n(n− 1)
n−2∑

k=0

∆2
1/nf

(
k

n

)(
n− 2

k

)
xk(1− x)n−2−k.

Inductively, we can easily obtain

(5) B(r)
n (f, x) = n(n−1) · · · (n−r+1)

n−r∑

k=0

∆r
1/nf

(
k

n

)(
n− r

k

)
xk(1−x)n−r−k

for r with 1 ≤ r ≤ m. According to the properties of the divided difference [3],
there exists θk,r ∈ [k/n, (k + r)/n] such that

(6) ∆r
1/nf

(
k

n

)
=

(
1
n

)r

f (r)(θk,r).

Thus, by (6), (5) can be rewritten as

(7) B(r)
n (f, x) =

r−1∏

j=0

(
1− j

n

) n−r∑

k=0

f (r)(θk,r)
(

n− r
k

)
xk(1− x)n−r−k

for r with 1 ≤ r ≤ m. Now we estimate the simultaneous approximation order
by a Bernstein polynomial. For x ∈ [0, 1], we have

|f (r)(x)−B(r)
n (f, x)|

≤
r−1∏

j=0

(
1− j

n

) n−r∑

k=0

|f (r)(x)− f (r)(θk,r)|
(

n− r
k

)
xk(1− x)n−r−k

+
[
1−

r−1∏

j=0

(1− j

n
)
]
|f (r)(x)|.

(8)
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We compute the first part of the right side of (8). Note that
r−1∏

j=0

(
1− j

n

) n−r∑

k=0

|f (r)(x)− f (r)(θk,r)|
(

n− r
k

)
xk(1− x)n−r−k

≤
n−r∑

k=0

|f (r)(x)− f (r)(θk,r)|
(

n− r
k

)
xk(1− x)n−r−k

≤
n−r∑

k=0

∣∣∣∣f (r)(x)− f (r)

(
k

n− r

)∣∣∣∣
(

n− r
k

)
xk(1− x)n−r−k

+
n−r∑

k=0

∣∣∣∣f (r)

(
k

n− r

)
− f (r)(θk,r)

∣∣∣∣
(

n− r
k

)
xk(1− x)n−r−k.

(9)

Now we compute an upper bound of
n−r∑

k=0

∣∣∣∣f (r)(x)− f (r)(
k

n− r
)
∣∣∣∣
(

n− r
k

)
xk(1− x)n−r−k

in (9). Let δ > 0 be given. For x0, y0 ∈ [0, 1], we set α := α(x0, y0, δ) an
integer

[|y0 − x0|/δ
]
, where [·] is the Gauss function. For i = 0, 1, 2, . . . , α + 1,

we define qi = x0 +
(
(y0 − x0)/(α + 1)

)
i. Then

|f (r)(x0)− f (r)(y0)| ≤
α∑

i=0

|f (r)(qi+1)− f (r)(qi)| ≤ (α + 1)ω(f (r), δ)(10)

for r with 1 ≤ r ≤ m. By Lemma 2.2 and (10), we have
n−r∑

k=0

∣∣∣∣f (r)(x)− f (r)

(
k

n− r

)∣∣∣∣
(

n− r
k

)
xk(1− x)n−r−k

≤ ω(f (r), δ)
n−r∑

k=0

[
α

(
x,

k

n− r
, δ

)
+ 1

](
n− r

k

)
xk(1− x)n−r−k

≤ ω(f (r), δ)
[n−r∑

k=0

α

(
x,

k

n− r
, δ

)(
n− r

k

)
xk(1− x)n−r−k + 1

]

≤ ω(f (r), δ)
[

1
δ2

n−r∑

k=0

(
k

n− r
− x

)2 (
n− r

k

)
xk(1− x)n−r−k + 1

]

≤ ω(f (r), δ)
(

1
4(n− r)δ2

+ 1
)

.

(11)

If we choose δ = 1/
√

n− r, then, by (11), we have
(12)

n−r∑

k=0

∣∣∣∣f (r)(x)− f (r)

(
k

n− r

)∣∣∣∣
(

n− r
k

)
xk(1− x)n−r−k ≤ 5

4
ω
(
f (r),

1√
n− r

)
.
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Finally, we compute an upper bound of
n−r∑

k=0

∣∣∣∣f (r)

(
k

n− r

)
− f (r)(θk,r)

∣∣∣∣
(

n− r
k

)
xk(1− x)n−r−k

in (9). Note that k/n ≤ k/(n− r) ≤ (k + r)/n for r with 1 ≤ r ≤ m < n and
any integer k with 0 ≤ k ≤ n− r. Since θk,r ∈ [k/n, (k + r)/n], we have

n−r∑

k=0

∣∣∣∣f (r)

(
k

n− r

)
− f (r)(θk,r)

∣∣∣∣
(

n− r
k

)
xk(1− x)n−r−k

≤
n−r∑

k=0

ω
(
f (r),

r

n

) (
n− r

k

)
xk(1− x)n−r−k.

(13)

By the properties of the modulus of continuity,

(14) ω
(
f (r),

r

n

)
≤ (r + 1)ω

(
f (r),

1
n

)
≤ (r + 1)ω

(
f (r),

1√
n− r

)
.

From (12), (13) and (14), we have an upper bound of (9) such that
r−1∏

j=0

(
1− j

n

) n−r∑

k=0

|f (r)(x)− f (r)(θk,r)|
(

n− r
k

)
xk(1− x)n−r−k

≤ 5
4
ω

(
f (r),

1√
n− r

)
+ (r + 1)ω

(
f (r),

1√
n− r

)

:= c1ω

(
f (r),

1√
n− r

)
,

(15)

where c1 is a constant independent of n.
Now we compute the second part of the right side of (8). Since

1−
r−1∏

j=0

(
1− j

n

)
=

[
1−

(
1− 1

n

)]
+

[(
1− 1

n

)
−

(
1− 1

n

) (
1− 2

n

)]
+ · · ·

+
[(

1− 1
n

)
· · ·

(
1− r − 2

n

)
−

(
1− 1

n

)
· · ·

(
1− r − 1

n

)]

=
r−1∑

i=1

i

n

i−1∏

j=0

(
1− j

n

)

≤
r−1∑

i=1

i

n
=

r(r − 1)
2n

,

(16)

we have

(17)
[
1−

r−1∏

j=0

(
1− j

n

)]
|f (r)(x)| ≤ r(r − 1)

2n
Mr :=

c2

n
,
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where Mr := ‖f (r)‖∞,[0,1] for r with 1 ≤ r ≤ m and c2 is a constant independent
of n. From (2), (15) and (17), we get

||f (r) −B(r)
n (f)||∞,[0,1] ≤ c1ω

(
f (r),

1√
n− r

)
+

c2

n
(18)

for r with 0 ≤ r ≤ m, where c1 and c2 are positive constants independent of
n. ¤

If n is sufficiently large in Theorem 3.1, we are able to obtain the improved
simultaneous approximation order as follows.

Theorem 3.2. Let f ∈ Cm[0, 1] and n ∈ N with 2m < n. Then, for any
integer r with 0 ≤ r ≤ m, we have

‖f (r) −B(r)
n (f)‖∞,[0,1] ≤ c1ω

(
f (r),

1√
n

)
+

c2

n
,

where c1 and c2 are positive constants independent of n.

Proof. Since 2m < n, we have n/2 = n− n/2 < n−m ≤ n− r and so

(19) ω
(
f (r),

1√
n− r

)
< ω

(
f (r),

√
2√
n

)
≤ (

√
2 + 1)ω

(
f (r),

1√
n

)
.

By Theorem 3.1 and (19), we complete the proof. ¤

Note that a squashing function σ(x) = 1/(1+ e−x) is a nonlinear, monotone
increasing and differentiable sigmoidal function. In addition, it has a non-
vanishing point in [0, 1] by the following two lemmas.

Lemma 3.3. Suppose that Rn(σ) := Rn(σ, x) denotes a polynomial of degree
≤ n with respect to σ for n ∈ N. Then

(20) σ(n)(x) = σ(x)(1− σ(x))Rn−1(σ)

for any n ∈ N.

Proof. We prove it by the mathematical induction.
For n = 1, it is clear that σ′(x) = σ(x)(1− σ(x)).
Assume that (20) is true for n = k. That is, σ(k)(x) = σ(x)(1− σ(x))Rk−1(σ).
Then, for n = k + 1, we have

σ(k+1)(x)

= σ′(x)
[
(1− σ(x))Rk−1(σ)− σ(x)Rk−1(σ) + σ(x)(1− σ(x))R′k−1(σ)

]

= σ(x)(1− σ(x))Rk(σ),

(21)

since (1− σ(x))Rk−1(σ), σ(x)Rk−1(σ) and σ(x)(1− σ(x))R′k−1(σ) are polyno-
mials of degree ≤ k with respect to σ. This completes the proof. ¤

Lemma 3.4. Let σ(x) = 1/(1 + e−x). Then there exists x0 ∈ [0, 1] such that
σ(n)(x0) 6= 0 for any n ∈ N.
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Proof. Note that σ(x) 6= 0 and 1 − σ(x) 6= 0 for all x ∈ [0, 1]. Since σ(x)
is monotone increasing on R, Rk(σ) = 0 has at most k roots in [0, 1]. Thus
σ(k+1)(x) = 0 has at most k roots by (21). So {x ∈ [0, 1] :

⋃∞
n=1 σ(n)(x) = 0} is

countable and hence there exists x0 ∈ [0, 1] such that x0 ∈ [0, 1]− {x ∈ [0, 1] :⋃∞
n=1 σ(n)(x) = 0}. ¤

Similarly, we can easily show that any squashing function σc(x) = 1/(1 +
ce−x) with a positive constant c also has a non-vanishing point. Using Lemma
3.3, Lemma 3.4 and the divided difference, we now approximate monomials
simultaneously by neural networks with a squashing function.

Lemma 3.5. Let σ be a squashing function and k ∈ N∪ {0}. If b ∈ [0, 1] such
that σ(j)(b) 6= 0 for any j ∈ N and h > 0, there exists a neural network

Nk,h(σ, x) =
1

hkσ(k)(b)

k∑

j=0

(
k
j

)
(−1)k−jσ(hjx + b)

such that

||(xk)(r) −N
(r)
k,h||∞,[0,1] = O(h)

for any integer r with 0 ≤ r ≤ m.

Proof. For r = 0, Nk,h(σ, x) represents the divided difference for xk and so

(22) ||xk −Nk,h||∞,[0,1] = O(h)

holds. In order to compute the derivatives of Nk,h(σ, x), we define

(23) [p]q =
q−1∏

i=0

(p− i)

for p, q ∈ N. For p, s ∈ N, we choose aq,s ∈ R for q = 1, 2, . . . , s so that

(24) ps =
s∑

q=1

aq,s[p]q.

From (24), we get

(25)
[j]q
[k]q

(
k
j

)
=

j(j − 1) · · · (j − (q − 1))
k(k − 1) · · · (k − (q − 1))

k!
j!(k − j)!

=
(

k − q
j − q

)
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for q, j, k ∈ N with q ≤ j ≤ k. Using (24) and (25), we compute the r-th
derivative of Nk,h(x) for r with 1 ≤ r ≤ m.

N
(r)
k,h(σ, x)(26)

=
1

hkσ(k)(b)

k∑

j=0

(
k
j

)
(−1)k−jσ(r)(hjx + b)hrjr

=
1

hk−rσ(k)(b)

k∑

j=1

(
k
j

)
(−1)k−j

r∑
q=1

aq,r[j]qσ(r)(hjx + b)

=
1

hk−rσ(k)(b)

r∑
q=1

aq,r[k]q
k∑

j=q

(
k − q
j − q

)
(−1)k−jσ(r)(hjx + b)

=
1

hk−rσ(k)(b)

r∑
q=1

aq,r[k]q
k−q∑

i=0

(
k − q

i

)
(−1)k−i−qσ(r)(hix + hqx + b).

By Taylor’s theorem for an integer p with p > k − r, we have

σ(r)(hix + hqx + b) = σ(r)(hix + b) +
p−1∑

l=1

σ(r+l)(hix + b)
l!

(hqx)l

+
σ(r+p)(ξi,q)

p!
(hqx)p,

(27)

where ξi,q is a point between hix + b and hix + hqx + b. Note that

1
hk−rσ(k)(b)

r∑
q=1

aq,r[k]q
k−q∑

i=0

(
k − q

i

)
(−1)k−i−qσ(r)(hix + b)

=
r∑

q=1

aq,r[k]qhr−qNk−q,h(σ(r), x)

= ar,r[k]rNk−r,h(σ(r), x) +
r−1∑
q=1

aq,r[k]qhr−qNk−q,h(σ(r), x)

= [k]rNk−r,h(σ(r), x) +O(h),

(28)

since ar,r = 1 by comparing the leading coefficients in (24). Since l+ r− q ≥ 1,
we have

1
hk−rσ(k)(b)

r∑
q=1

aq,r[k]q
k−q∑

i=0

(
k − q

i

)
(−1)k−i−q

[p−1∑

l=1

σ(r+l)(hix + b)
l!

(hqx)l

]
(29)



710 NAHMWOO HAHM

=
p−1∑

l=1

r∑
q=1

aq,r[k]qhl+r−q

[
1

hk−qσ(k)(b)

k−q∑

i=0

(−1)k−i−qσ(r+l)(hix + b)
]

=
p−1∑

l=1

r∑
q=1

aq,r[k]qhl+r−q

[
xk−q +O(h)

]

= O(h).

Moreover, since σ(r+p)(ξi,q) is bounded for ξi,q ∈ [0, 1] and p − k + r ≥ 1, we
have

1
hk−rσ(k)(b)

r∑
q=1

aq,r[k]q
k−q∑

i=0

(
k − q

i

)
(−1)k−i−q σ(r+p)(ξi,q)

p!
(hqx)p = O(h).

(30)

From (28), (29) and (30), we have

(31) N
(r)
k,h(σ, x) = [k]rNk−r,h(σ(r), x) +O(h).

Therefore

(32) ||(xk)(r) −N
(r)
k,h||∞,[0,1] = ||[k]rxk−r − [k]rNk−r,h(σ(r), x)||∞,[0,1] = O(h)

for r with 1 ≤ r ≤ m. By (22) and (32), we complete the proof. ¤
The next theorem follows from Lemma 3.5 immediately.

Theorem 3.6. Let ε > 0 be given and let σ be a squashing function. If b ∈ [0, 1]
such that σ(j)(b) 6= 0 for any j ∈ N and Pn(x) =

∑n
k=0 akxk for n ∈ N, there

exists a neural network

Nn(σ, x) :=
n∑

k=0

akNk,h(σ, x) =
n∑

k=0

ak


 1

hkσ(k)(b)

k∑

j=0

(−1)k−j

(
k
j

)
σ(hjx + b)




such that
||P (r)

n −N (r)
n (σ)||∞,[0,1] < ε

for sufficiently small h > 0 and any integer r with 0 ≤ r ≤ m.

By combining Theorem 3.2 and Theorem 3.6, we get the following theorem
that is the main result of this paper.

Theorem 3.7. Let f ∈ Cm[0, 1] and n ∈ N with 2m < n. If σ is a squashing
function and b ∈ [0, 1] such that σ(j)(b) 6= 0 for any j ∈ N, there exists a neural
network

Nn(σ, x) =
n∑

k=0

ak


 1

hkσ(k)(b)

k∑

j=0

(−1)k−j

(
k
j

)
σ(hjx + b)




such that
||f (r) −N (r)

n (σ)||∞,[0,1] ≤ c1ω
(
f (r),

1√
n

)
+

c2

n
,
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where ak’s are the coefficients of the Bernstein polynomial with resect to f , and
constants c1 and c2 are independent of n for sufficiently small h > 0 and any
integer r with 0 ≤ r ≤ m.

Proof. By Theorem 3.2, we have

‖f (r) −B(r)
n (f)‖∞,[0,1] ≤ c1ω

(
f (r),

1√
n

)
+

c2

n
(33)

for r with 0 ≤ r ≤ m, where c1 and c2 are positive constants independent of n.
For a given ε > 0, we get, by Theorem 3.6,

(34) ||B(r)
n (f)−N (r)

n (σ)||∞,[0,1] < ε

for sufficiently small h > 0 and r with 0 ≤ r ≤ m. Therefore

‖f (r) −N (r)
n (σ)‖∞,[0,1]

≤ ‖f (r) −B(r)
n (f)‖∞,[0,1] + ‖B(r)

n (f)−N (r)
n (σ)‖∞,[0,1]

≤ c1ω
(
f (r),

1√
n

)
+

c2

n
+ ε.

(35)

Since ε > 0 is arbitrarily small, we complete the proof. ¤
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