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THE SIMULTANEOUS APPROXIMATION ORDER BY
NEURAL NETWORKS WITH A SQUASHING FUNCTION

NAHMWOO HAHM

ABSTRACT. In this paper, we study the simultaneous approximation to
functions in C™[0, 1] by neural networks with a squashing function and
the complexity related to the simultaneous approximation using a Bern-
stein polynomial and the modulus of continuity. Our proofs are construc-
tive.

1. Introduction

It is well known that an approximation by neural networks is based on
superpositions of a transfer function. A feedforward neural network with a
transfer function ¢ : R — R and n neurons in the hidden layer is given by

n
Z aio(bix + ¢;),
i=1

where b;’s are weights and c¢;’s are thresholds. Many researchers have proved
the density results [1, 5, 7] and the complexity results [11, 12, 13] by neural net-
works. Especially, simultaneous approximations of functions and their deriva-
tives have been studied in recent years by many authors [2, 4, 6, 8, 9] since they
have many applications in the fields of science and engineering. Most results in
[2, 4, 6, 9] investigated the density results of simultaneous approximations by
neural networks. Li and Xu [8] showed the simultaneous approximation order
by neural networks with a trigonometric function. The goal of this paper is to
obtain the simultaneous approximation order of functions in C™[0, 1] and their
derivatives by neural networks with a sigmoidal function. A sigmoidal function
is a function o : R — R such that
lim o(z)=0 and lim o(z)=1.
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The following functions are some sigmoidal functions.

1 ifx>0
Heaviside function : op(x) = o
0 ifz<0.
. . 1 . .
Squashing function : o.(x) = ————, ¢ s a positive constant.
1+ ce®

It is well known that continuous functions on a compact subset of R can be
approximated well by neural networks with the Heaviside function. But, the
Heaviside function is not differentiable. Therefore, in this paper, we choose
a squashing function o(x) = 1/(1 + e~ %) as a transfer function of neural net-
works. In addition, neural networks with a squashing function are important
due to historical reasons [14] as a suitable model for the response characteristics
of a biological neuron.

2. Preliminaries

Throughout the paper, m denotes a fixed positive integer, c¢,cq,co,c3, ...
denote positive constants and their values may be different at different occur-
rences.

In order to get the main result, we use a Bernstein polynomial. By the
binomial theorem and the properties of a Bernstein polynomial [10], we have
the following result.

Lemma 2.1. Let n € N be given. Then, for any integer r with 0 <r <n and
x € 10,1], the followings hold.

@ 5z (") e,
(b) Yy (" . 7"> k(1 — 2)—"F = (n — )z,
n—r (ML—T 2.k n—r—k
() k_O( k >kx(1—$) =(n-rz((n—r—-1z+1).
The following lemma can be directly obtained from Lemma 2.1.

Lemma 2.2. Let n € N be given. Then, for any integer r with 0 < r <n, we
have

n—r

4 )

||Tn,r||oo,[0,1} <

where Ty, o (x) =33 —g (k— (n — r)x)2 (n ; T) k(1 — )" "% for z €]0,1].
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Proof. By Lemma 2.1, we have

(1) Toplw) = Yok~ (0= )y (n k ) (1 — g)nrk
k

3 O

n—

- Z{k2 —9(n— ke + (n — 7’)2:02} (“ N ’“) (1 gy

k=0
= (n—r)x{(n—r—l)m—i—l—(n—r)x}
=(n—r)(z —z?).
Therefore |T, - (z)| < (n—r)/4 for any x € [0, 1]. O

For f € C™[0,1] and § > 0, we define the modulus of continuity of f(") for
r € Z with 0 < r < m as follows.

w(f™,5) = sup{|f(")(:c) — W) e —yl < 5}7

where z,y € [0,1]. Note that w(f("),§) satisfies the followings.
(a) w(f),6) is a non-decreasing function.
() w(fM, ad) < (a+ 1Dw(f),§) for a positive real number a.
(¢) w(fM a+p) <w(f",a)+w(f),B) for positive real numbers a, 3.
For any nonnegative integer n, the difference of a function f with a step h
is defined by

(@) = A(ART f(2),
where AY f(z) := f(z) and Ay f(z) := A} f(z) = f(x + h) — f(x).

3. Main results

In this section, first, we obtain the simultaneous approximation order of
functions in C™[0,1] by Bernstein polynomials. Then we show that Bern-
stein polynomials are simultaneously approximated by neural networks with a
squashing function using the properties of a squashing function.

Theorem 3.1. Let f € C™[0,1] and n € N with m < n. Then, for any integer
r with 0 < r < m, we have

1 c
) < (r) e
150 = B (Pllcos < 1o (10, =) + 2,

where ¢1 and co are positive constants independent of n.

Proof. For r =0, it is proved in [10] that

2) I = BuDlson) < (£, 7=).
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where c is a positive constant independent of n. Note that

3) Zf< )( ) {’f R — )R — (= k)2t (1 — z) R

n”i{ H(50) G0 e

B () (5o

By differentiating B; (f, ) and simplifying the computation, we get

(4)
B, (f,)

() (2 s (] (7 -

(-1 A2 f (i) (n;2> O

k=0

[\.’)O

Inductively, we can easily obtain

(5) BO(f.2) = n(n—1)--- (n—r+1) ZAl/n ( )( k) EE—

for r with 1 <r < m. According to the properties of the divided difference [3],
there exists 0y, € [k/n, (k +7)/n] such that

©) Dnf (5) = (3) 100

Thus, by (6), (5) can be rewritten as

(1) BU(fx)= T]__[: <1 - i) :Z:f(r)(@k’r) (” . T) (1 — gk

for r with 1 < r < m. Now we estimate the simultaneous approximation order
by a Bernstein polynomial. For z € [0, 1], we have

| () — BY(f, )l

= :H: (1 a fz) :z_:: 1 (@) = £ Ok <n ; r) (1 — )k
fi-Tlo- D)o

Jj=0

(8)



SIMULTANEOUS APPROXIMATION ORDER 705

We compute the first part of the right side of (8). Note that

Jﬁo (1 - ) Z £ ™) (O )| (” . ) 21— gk

< S Tlf("( ) = £ (O] (n;r) aF(1— )7k
9) o
— r r k n—r n—r—
< - ()| (7)o
S (Yo n=T\ k(_ pyn-re
B ()| (1772

Now we compute an upper bound of

n—r

>

k=0

FO@) 1O

r

(” . T) 2 (1 — )Tk

in (9). Let 6 > 0 be given. For zg,yo € [0, 1], we set o := «a(xg,yo,0) an
integer [|yo — xo|/d], where [] is the Gauss function. For i =0,1,2,...,a+ 1,
we define ¢; = 0 + ((yo — zo)/(a + 1))i. Then

(10) £ (o) — £ (yo)| < Z 1 (qig1) — F(q)] < (a4 Dw(fT),6)

i=0
for r with 1 <7 < m. By Lemma 2.2 and (10), we have

n—r f(r) (gj) - f(r) (n ﬁ r)‘ (TL ; T> Z'k(]. _ I)nfrfk

k=0
< w(f(T),(S):Z;[a (x, ﬁr’(S) +1} (n;r) 2F(1 — z)nrk
(11) < w(fM,8) nz_foz(x, kr,5> (nk?"> P (1 =) k-&-l}
k=0
<w(f(r)’§){512:¥_:<nﬁrz> <”;T> (1 — 2 k+1]

If we choose § = 1/y/n — r, then, by (11), we have

(12)
g0 ()| (57 oo e ),

n—r

D

k=0
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Finally, we compute an upper bound of

f(?") (k) _ f(r)(ng)

n—r

n—r

kzz;) (n ; 7‘) xk(l _ x)n—r—k

in (9). Note that k/n < k/(n—r) < (k+r)/n for r with 1 <7 < m < n and
any integer k with 0 < k <mn —r. Since 0, € [k/n, (k + r)/n], we have

£ (L) — 10 (6,) <” . ’") I

< z;w (f(r)7 %) (” ; 7’) (1 = z)rh

By the properties of the modulus of continuity,

1) o (/0.5 < e (19, 5) < (10, 2= ),

vn—r
From (12), (13) and (14), we have an upper bound of (9) such that
r—1

I1 (1 B i) kZ_O £ @) = 17 (60| (” . ) L

0

J
(15) < Zw (f(”, ! > +(r+ 1w (f("), 1)

Jnor

where ¢ is a constant independent of n.
Now we compute the second part of the right side of (8). Since

(16)

1O O O M [ R GG R
R RO R )

i=1 " j=0
< Tﬁli _ r(r— 1)’
- n 2n
i=1
we have
r—1 .
J o r(r—1) e
17 1— 12 < M, =2,
") I (-2) o= T :
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where M, = || f")||o 0,1) for r with 1 < r < m and c; is a constant independent
of n. From (2), (15) and (17), we get
1 c
18 (r _ g < ( (r) 7) e
( ) ||f n (f)HOO,[O,l] S W f 9 \/m + n

for r with 0 < r» < m, where ¢; and ¢y are positive constants independent of
n. O

If n is sufficiently large in Theorem 3.1, we are able to obtain the improved
simultaneous approximation order as follows.

Theorem 3.2. Let f € C™[0,1] and n € N with 2m < n. Then, for any
integer r with 0 < r < m, we have

1 c
(r) _ Rp(r) < () 2
If By (Fllss,jo,) < clw(f ’T/ﬁ) 4 =,

where ¢1 and co are positive constants independent of n.

Proof. Since 2m < n, we have n/2=n—-n/2 <n—m <n—r and so

1 V2 1
19 ( W,i) < ( W,—) < (V2+1 ( <’“>77).
19) W =) <e(f" ) s (V2D (17, =
By Theorem 3.1 and (19), we complete the proof. O

Note that a squashing function o(z) = 1/(1+e~*) is a nonlinear, monotone
increasing and differentiable sigmoidal function. In addition, it has a non-

vanishing point in [0, 1] by the following two lemmas.

Lemma 3.3. Suppose that R,(0) := R,(0,x) denotes a polynomial of degree
< n with respect to o for n € N. Then

(20) o (z) = o()(1 = 0(2)) Ry—1(0)
for any n € N.

Proof. We prove it by the mathematical induction.
For n =1, it is clear that ¢/'(x) = o(z)(1 — o(x)).
Assume that (20) is true for n = k. That is, 0 (2) = o(2)(1 — o(2))R_1(0).
Then, for n = k + 1, we have
g(k+1)(1~)

(21) = o'(2)[(1 — o(2))Rp-1(0) — o(2)Ri-1(0) + o(2)(1 = o(2)) R}, (0)]

= o(z)(1 - o(z))Ri(0),
since (1 —o(x))Ri—1(0),0(x)Ri—1(0) and o(z)(1 — o(x))R},_, (o) are polyno-
mials of degree < k with respect to o. This completes the proof. (I

Lemma 3.4. Let o(x) = 1/(1 4+ e *). Then there exists xo € [0,1] such that
o™ (20) # 0 for any n € N.
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Proof. Note that o(z) # 0 and 1 — o(z) # 0 for all € [0,1]. Since o(x)
is monotone increasing on R, Ry(c) = 0 has at most k roots in [0,1]. Thus
ok+1)(z) = 0 has at most & roots by (21). So {z € [0,1] : 2, o™ (z) = 0} is
countable and hence there exists o € [0, 1] such that zo € [0,1] — {z € [0,1] :
Unzy o™ () =0} 0

Similarly, we can easily show that any squashing function o.(z) = 1/(1 +
ce~ ") with a positive constant c also has a non-vanishing point. Using Lemma
3.3, Lemma 3.4 and the divided difference, we now approximate monomials
simultaneously by neural networks with a squashing function.

Lemma 3.5. Let o be a squashing function and k € NU{0}. If b € [0,1] such
that O'(j)(b) #0 for any j € N and h > 0, there exists a neural network

k
B 1 k —j .
such that
1@ = N loo 0.1y = O(R)

for any integer r with 0 < r < m.

Proof. For r = 0, Ny 5 (0, ) represents the divided difference for z* and so
(22) 12" = Nialloo,0,1) = O(h)
holds. In order to compute the derivatives of Ny, (o, x), we define

(23) o= [0

=0

for p,q € N. For p,s € N, we choose a,s € R for ¢ =1,2,...,5 so that
(24) p° = Zaq,s[p]q'

qg=1
From (24), we get

(25) %‘;(?)j(j_l):@_(q—m k! (k—q>
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for q,j,k € N with ¢ < j < k. Using (24) and (25), we compute the r-th
derivative of Ny (z) for r with 1 <r < m.

(26) ;% z)

k
— k r T
= hka(k) Z( > Io™ (hjz + b)h"j

=0
k
-ty £ S
T k
Ye=i o)
= e ro-(k) Z qZ(j_() o) (hjz +b)

k— PR
= ke Tg(k) Z klq - < i q) (*1)’c 151 )(hzx+hqx+b).

=

<.

By Taylor’s theorem for an integer p with p > k — r, we have

Pl (r41) hi b
o) (hiz + hq +b) = o (hiz +b) + 3 %

(27) =1
a(rtp) (g,
p!(ﬁ ) (hqz)P,

(hqx)'

+

where &; ; is a point between hix 4 b and hix 4+ hgx 4+ b. Note that

k— g (1)1
e rg(k) Zaq, Z ( ; q) (—1)"" 90" (hiz + b)

=0

— ag.r| r—q U(T),SC
(28) Z 7, Ni—q.n( )

= [k N (0, +Zaq, W Ny g (0", )

= [k Ng—rn (0, ) + (’)(h),
since a,,, = 1 by comparing the leading coefficients in (24). Since | +r—¢g > 1,
we have
(29)

k—q p—1 (r+1) .
i o hiz + b)
iy St 2 (4 1) (e [ G gy
ql

=0 =1
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k— q

p—1 r
— Zzaqm[k]th+rq|:hk e k)() k i— . r+l)(hlx+b)

=1 q=1 1:0

T [xk—q T O(h)]

=1 qg=1

= O(h).

Moreover, since o"*P)(¢; ;) is bounded for &, € [0,1] and p — k + 7 > 1, we
have
(30)

r s ly o9 (g )
e paHCH ( 1) (a0 gy — o)

i=

From (28), (29) and (30), we have

(31) Nin(o,2) = K], Nieri (0, 2) + O(h).

Therefore

(32) 11" = Nloo o) = K" = [k Niern(0", 2) o fo.1) = O(h)
for r with 1 <r < m. By (22) and (32), we complete the proof. O

The next theorem follows from Lemma 3.5 immediately.

Theorem 3.6. Let € > 0 be given and let o be a squashing function. Ifb € [0, 1]
such that W) (b) # 0 for any j € N and P, (x) = Y p_, ara® for n € N, there
erists a neural network

n k
x) = Zaka,h(a,x Zak Z ( ) o(hjz +b)
k=0

]:O
such that
||P7$T) - NT(LT)(O)HOO,[OJ] <e€
for sufficiently small h > 0 and any integer r with 0 < r < m.

By combining Theorem 3.2 and Theorem 3.6, we get the following theorem
that is the main result of this paper.

Theorem 3.7. Let f € C™[0,1] and n € N with 2m < n. If o is a squashing
function and b € [0,1] such that 0 (b) # 0 for any j € N, there exists a neural
network

k
Zak o (5 Z ( > o(hjz +b)
]:O
such that
17 = N (@)l o, < 100, =) + 2,
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where ay,’s are the coefficients of the Bernstein polynomial with resect to f, and
constants ¢y and cy are independent of n for sufficiently small h > 0 and any
integer r with 0 < r < m.

Proof. By Theorem 3.2, we have

r r r 1 C2
(33) 150 = B Dlloe oy < exwr (£, =) + 5

for r with 0 < r < m, where ¢; and ¢y are positive constants independent of n.
For a given € > 0, we get, by Theorem 3.6,

(34) IBE(f) = N(0)|ow,f0,1) < €
for sufficiently small A > 0 and r with 0 < r < m. Therefore
£ = N (0) oo, 0,11

(35) < [l - Br(zT)(f)”OO,[O,l] +[IBI(f) - Ng)(a)noo,[o,u
1
< clw(f(r), ﬁ> + %2 +e
Since € > 0 is arbitrarily small, we complete the proof. (I
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