THE SIMULTANEOUS APPROXIMATION ORDER BY NEURAL NETWORKS WITH A SQUASHING FUNCTION

Nahmwoo Hahm

Abstract

In this paper, we study the simultaneous approximation to functions in $C^{m}[0,1]$ by neural networks with a squashing function and the complexity related to the simultaneous approximation using a Bernstein polynomial and the modulus of continuity. Our proofs are constructive.

1. Introduction

It is well known that an approximation by neural networks is based on superpositions of a transfer function. A feedforward neural network with a transfer function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ and n neurons in the hidden layer is given by

$$
\sum_{i=1}^{n} a_{i} \sigma\left(b_{i} x+c_{i}\right)
$$

where b_{i} 's are weights and c_{i} 's are thresholds. Many researchers have proved the density results $[1,5,7]$ and the complexity results $[11,12,13]$ by neural networks. Especially, simultaneous approximations of functions and their derivatives have been studied in recent years by many authors $[2,4,6,8,9]$ since they have many applications in the fields of science and engineering. Most results in $[2,4,6,9]$ investigated the density results of simultaneous approximations by neural networks. Li and Xu [8] showed the simultaneous approximation order by neural networks with a trigonometric function. The goal of this paper is to obtain the simultaneous approximation order of functions in $C^{m}[0,1]$ and their derivatives by neural networks with a sigmoidal function. A sigmoidal function is a function $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\lim _{x \rightarrow-\infty} \sigma(x)=0 \quad \text { and } \quad \lim _{x \rightarrow \infty} \sigma(x)=1
$$

[^0]The following functions are some sigmoidal functions.

$$
\begin{array}{ll}
\text { Heaviside function : } & \sigma_{h}(x)= \begin{cases}1 & \text { if } x \geq 0 \\
0 & \text { if } x<0\end{cases} \\
\text { Squashing function: } & \sigma_{c}(x)=\frac{1}{1+c e^{-x}}, \quad c \text { is a positive constant. }
\end{array}
$$

It is well known that continuous functions on a compact subset of \mathbb{R} can be approximated well by neural networks with the Heaviside function. But, the Heaviside function is not differentiable. Therefore, in this paper, we choose a squashing function $\sigma(x)=1 /\left(1+e^{-x}\right)$ as a transfer function of neural networks. In addition, neural networks with a squashing function are important due to historical reasons [14] as a suitable model for the response characteristics of a biological neuron.

2. Preliminaries

Throughout the paper, m denotes a fixed positive integer, $c, c_{1}, c_{2}, c_{3}, \ldots$ denote positive constants and their values may be different at different occurrences.

In order to get the main result, we use a Bernstein polynomial. By the binomial theorem and the properties of a Bernstein polynomial [10], we have the following result.

Lemma 2.1. Let $n \in \mathbb{N}$ be given. Then, for any integer r with $0 \leq r \leq n$ and $x \in[0,1]$, the followings hold.
(a) $\sum_{k=0}^{n-r}\binom{n-r}{k} x^{k}(1-x)^{n-r-k}=1$.
(b) $\sum_{k=0}^{n-r}\binom{n-r}{k} k x^{k}(1-x)^{n-r-k}=(n-r) x$.
(c) $\sum_{k=0}^{n-r}\binom{n-r}{k} k^{2} x^{k}(1-x)^{n-r-k}=(n-r) x((n-r-1) x+1)$.

The following lemma can be directly obtained from Lemma 2.1.
Lemma 2.2. Let $n \in \mathbb{N}$ be given. Then, for any integer r with $0 \leq r \leq n$, we have

$$
\left\|T_{n, r}\right\|_{\infty,[0,1]} \leq \frac{n-r}{4}
$$

where $T_{n, r}(x)=\sum_{k=0}^{n-r}(k-(n-r) x)^{2}\binom{n-r}{k} x^{k}(1-x)^{n-r-k}$ for $x \in[0,1]$.

Proof. By Lemma 2.1, we have
(1) $T_{n, r}(x)=\sum_{k=0}^{n-r}(k-(n-r) x)^{2}\binom{n-r}{k} x^{k}(1-x)^{n-r-k}$

$$
\begin{aligned}
& =\sum_{k=0}^{n-r}\left\{k^{2}-2(n-r) k x+(n-r)^{2} x^{2}\right\}\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \\
& =(n-r) x\{(n-r-1) x+1-(n-r) x\} \\
& =(n-r)\left(x-x^{2}\right) .
\end{aligned}
$$

Therefore $\left|T_{n, r}(x)\right| \leq(n-r) / 4$ for any $x \in[0,1]$.
For $f \in C^{m}[0,1]$ and $\delta>0$, we define the modulus of continuity of $f^{(r)}$ for $r \in \mathbb{Z}$ with $0 \leq r \leq m$ as follows.

$$
\omega\left(f^{(r)}, \delta\right):=\sup \left\{\left|f^{(r)}(x)-f^{(r)}(y)\right|:|x-y|<\delta\right\}
$$

where $x, y \in[0,1]$. Note that $\omega\left(f^{(r)}, \delta\right)$ satisfies the followings.
(a) $\omega\left(f^{(r)}, \delta\right)$ is a non-decreasing function.
(b) $\omega\left(f^{(r)}, \alpha \delta\right) \leq(\alpha+1) \omega\left(f^{(r)}, \delta\right)$ for a positive real number α.
(c) $\omega\left(f^{(r)}, \alpha+\beta\right) \leq \omega\left(f^{(r)}, \alpha\right)+\omega\left(f^{(r)}, \beta\right)$ for positive real numbers α, β.

For any nonnegative integer n, the difference of a function f with a step h is defined by

$$
\Delta_{h}^{n} f(x):=\Delta_{h}\left(\Delta_{h}^{n-1} f(x)\right),
$$

where $\Delta_{h}^{0} f(x):=f(x)$ and $\Delta_{h} f(x):=\Delta_{h}^{1} f(x)=f(x+h)-f(x)$.

3. Main results

In this section, first, we obtain the simultaneous approximation order of functions in $C^{m}[0,1]$ by Bernstein polynomials. Then we show that Bernstein polynomials are simultaneously approximated by neural networks with a squashing function using the properties of a squashing function.

Theorem 3.1. Let $f \in C^{m}[0,1]$ and $n \in \mathbb{N}$ with $m<n$. Then, for any integer r with $0 \leq r \leq m$, we have

$$
\left\|f^{(r)}-B_{n}^{(r)}(f)\right\|_{\infty,[0,1]} \leq c_{1} \omega\left(f^{(r)}, \frac{1}{\sqrt{n-r}}\right)+\frac{c_{2}}{n}
$$

where c_{1} and c_{2} are positive constants independent of n.
Proof. For $r=0$, it is proved in [10] that

$$
\begin{equation*}
\left\|f-B_{n}(f)\right\|_{\infty,[0,1]} \leq c \omega\left(f, \frac{1}{\sqrt{n}}\right) \tag{2}
\end{equation*}
$$

where c is a positive constant independent of n. Note that
(3) $B_{n}^{\prime}(f, x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k}\left[k x^{k-1}(1-x)^{n-k}-(n-k) x^{k}(1-x)^{n-1-k}\right]$

$$
=n \sum_{k=0}^{n-1}\left[f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)\right]\binom{n-1}{k} x^{k}(1-x)^{n-1-k}
$$

$$
=n \sum_{k=0}^{n-1} \Delta_{1 / n} f\left(\frac{k}{n}\right)\binom{n-1}{k} x^{k}(1-x)^{n-1-k}
$$

By differentiating $B_{n}^{\prime}(f, x)$ and simplifying the computation, we get
(4)

$$
\begin{aligned}
& B_{n}^{\prime \prime}(f, x) \\
= & n(n-1) \sum_{k=0}^{n-2}\left[f\left(\frac{k+2}{n}\right)-2 f\left(\frac{k+1}{n}\right)+f\left(\frac{k}{n}\right)\right]\binom{n-2}{k} x^{k}(1-x)^{n-2-k} \\
= & n(n-1) \sum_{k=0}^{n-2} \Delta_{1 / n}^{2} f\left(\frac{k}{n}\right)\binom{n-2}{k} x^{k}(1-x)^{n-2-k} .
\end{aligned}
$$

Inductively, we can easily obtain
(5) $B_{n}^{(r)}(f, x)=n(n-1) \cdots(n-r+1) \sum_{k=0}^{n-r} \Delta_{1 / n}^{r} f\left(\frac{k}{n}\right)\binom{n-r}{k} x^{k}(1-x)^{n-r-k}$
for r with $1 \leq r \leq m$. According to the properties of the divided difference [3], there exists $\theta_{k, r} \in[k / n,(k+r) / n]$ such that

$$
\begin{equation*}
\Delta_{1 / n}^{r} f\left(\frac{k}{n}\right)=\left(\frac{1}{n}\right)^{r} f^{(r)}\left(\theta_{k, r}\right) \tag{6}
\end{equation*}
$$

Thus, by (6), (5) can be rewritten as

$$
\begin{equation*}
B_{n}^{(r)}(f, x)=\prod_{j=0}^{r-1}\left(1-\frac{j}{n}\right) \sum_{k=0}^{n-r} f^{(r)}\left(\theta_{k, r}\right)\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \tag{7}
\end{equation*}
$$

for r with $1 \leq r \leq m$. Now we estimate the simultaneous approximation order by a Bernstein polynomial. For $x \in[0,1]$, we have

$$
\begin{align*}
& \left|f^{(r)}(x)-B_{n}^{(r)}(f, x)\right| \\
\leq & \prod_{j=0}^{r-1}\left(1-\frac{j}{n}\right) \sum_{k=0}^{n-r}\left|f^{(r)}(x)-f^{(r)}\left(\theta_{k, r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \tag{8}\\
& +\left[1-\prod_{j=0}^{r-1}\left(1-\frac{j}{n}\right)\right]\left|f^{(r)}(x)\right| .
\end{align*}
$$

We compute the first part of the right side of (8). Note that

$$
\begin{align*}
& \prod_{j=0}^{r-1}\left(1-\frac{j}{n}\right) \sum_{k=0}^{n-r}\left|f^{(r)}(x)-f^{(r)}\left(\theta_{k, r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \\
\leq & \sum_{k=0}^{n-r}\left|f^{(r)}(x)-f^{(r)}\left(\theta_{k, r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \tag{9}\\
\leq & \sum_{k=0}^{n-r}\left|f^{(r)}(x)-f^{(r)}\left(\frac{k}{n-r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \\
& +\sum_{k=0}^{n-r}\left|f^{(r)}\left(\frac{k}{n-r}\right)-f^{(r)}\left(\theta_{k, r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k} .
\end{align*}
$$

Now we compute an upper bound of

$$
\sum_{k=0}^{n-r}\left|f^{(r)}(x)-f^{(r)}\left(\frac{k}{n-r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k}
$$

in (9). Let $\delta>0$ be given. For $x_{0}, y_{0} \in[0,1]$, we set $\alpha:=\alpha\left(x_{0}, y_{0}, \delta\right)$ an integer $\left[\left|y_{0}-x_{0}\right| / \delta\right]$, where [•] is the Gauss function. For $i=0,1,2, \ldots, \alpha+1$, we define $q_{i}=x_{0}+\left(\left(y_{0}-x_{0}\right) /(\alpha+1)\right) i$. Then

$$
\begin{equation*}
\left|f^{(r)}\left(x_{0}\right)-f^{(r)}\left(y_{0}\right)\right| \leq \sum_{i=0}^{\alpha}\left|f^{(r)}\left(q_{i+1}\right)-f^{(r)}\left(q_{i}\right)\right| \leq(\alpha+1) \omega\left(f^{(r)}, \delta\right) \tag{10}
\end{equation*}
$$

for r with $1 \leq r \leq m$. By Lemma 2.2 and (10), we have

$$
\begin{align*}
& \sum_{k=0}^{n-r}\left|f^{(r)}(x)-f^{(r)}\left(\frac{k}{n-r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \\
\leq & \omega\left(f^{(r)}, \delta\right) \sum_{k=0}^{n-r}\left[\alpha\left(x, \frac{k}{n-r}, \delta\right)+1\right]\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \\
\leq & \omega\left(f^{(r)}, \delta\right)\left[\sum_{k=0}^{n-r} \alpha\left(x, \frac{k}{n-r}, \delta\right)\binom{n-r}{k} x^{k}(1-x)^{n-r-k}+1\right] \tag{11}\\
\leq & \omega\left(f^{(r)}, \delta\right)\left[\frac{1}{\delta^{2}} \sum_{k=0}^{n-r}\left(\frac{k}{n-r}-x\right)^{2}\binom{n-r}{k} x^{k}(1-x)^{n-r-k}+1\right] \\
\leq & \omega\left(f^{(r)}, \delta\right)\left(\frac{1}{4(n-r) \delta^{2}}+1\right) .
\end{align*}
$$

If we choose $\delta=1 / \sqrt{n-r}$, then, by (11), we have
(12)

$$
\sum_{k=0}^{n-r}\left|f^{(r)}(x)-f^{(r)}\left(\frac{k}{n-r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \leq \frac{5}{4} \omega\left(f^{(r)}, \frac{1}{\sqrt{n-r}}\right)
$$

Finally, we compute an upper bound of

$$
\sum_{k=0}^{n-r}\left|f^{(r)}\left(\frac{k}{n-r}\right)-f^{(r)}\left(\theta_{k, r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k}
$$

in (9). Note that $k / n \leq k /(n-r) \leq(k+r) / n$ for r with $1 \leq r \leq m<n$ and any integer k with $0 \leq k \leq n-r$. Since $\theta_{k, r} \in[k / n,(k+r) / n]$, we have

$$
\begin{align*}
& \sum_{k=0}^{n-r}\left|f^{(r)}\left(\frac{k}{n-r}\right)-f^{(r)}\left(\theta_{k, r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \tag{13}\\
\leq & \sum_{k=0}^{n-r} \omega\left(f^{(r)}, \frac{r}{n}\right)\binom{n-r}{k} x^{k}(1-x)^{n-r-k}
\end{align*}
$$

By the properties of the modulus of continuity,

$$
\begin{equation*}
\omega\left(f^{(r)}, \frac{r}{n}\right) \leq(r+1) \omega\left(f^{(r)}, \frac{1}{n}\right) \leq(r+1) \omega\left(f^{(r)}, \frac{1}{\sqrt{n-r}}\right) \tag{14}
\end{equation*}
$$

From (12), (13) and (14), we have an upper bound of (9) such that

$$
\begin{align*}
& \prod_{j=0}^{r-1}\left(1-\frac{j}{n}\right) \sum_{k=0}^{n-r}\left|f^{(r)}(x)-f^{(r)}\left(\theta_{k, r}\right)\right|\binom{n-r}{k} x^{k}(1-x)^{n-r-k} \\
\leq & \frac{5}{4} \omega\left(f^{(r)}, \frac{1}{\sqrt{n-r}}\right)+(r+1) \omega\left(f^{(r)}, \frac{1}{\sqrt{n-r}}\right) \tag{15}\\
:= & c_{1} \omega\left(f^{(r)}, \frac{1}{\sqrt{n-r}}\right),
\end{align*}
$$

where c_{1} is a constant independent of n.
Now we compute the second part of the right side of (8). Since

$$
\begin{align*}
1-\prod_{j=0}^{r-1}\left(1-\frac{j}{n}\right)= & {\left[1-\left(1-\frac{1}{n}\right)\right]+\left[\left(1-\frac{1}{n}\right)-\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\right]+\cdots } \tag{16}\\
& +\left[\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{r-2}{n}\right)-\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{r-1}{n}\right)\right] \\
= & \sum_{i=1}^{r-1} \frac{i}{n} \prod_{j=0}^{i-1}\left(1-\frac{j}{n}\right) \\
\leq & \sum_{i=1}^{r-1} \frac{i}{n}=\frac{r(r-1)}{2 n}
\end{align*}
$$

we have

$$
\begin{equation*}
\left[1-\prod_{j=0}^{r-1}\left(1-\frac{j}{n}\right)\right]\left|f^{(r)}(x)\right| \leq \frac{r(r-1)}{2 n} M_{r}:=\frac{c_{2}}{n} \tag{17}
\end{equation*}
$$

where $M_{r}:=\left\|f^{(r)}\right\|_{\infty,[0,1]}$ for r with $1 \leq r \leq m$ and c_{2} is a constant independent of n. From (2), (15) and (17), we get

$$
\begin{equation*}
\left\|f^{(r)}-B_{n}^{(r)}(f)\right\|_{\infty,[0,1]} \leq c_{1} \omega\left(f^{(r)}, \frac{1}{\sqrt{n-r}}\right)+\frac{c_{2}}{n} \tag{18}
\end{equation*}
$$

for r with $0 \leq r \leq m$, where c_{1} and c_{2} are positive constants independent of n.

If n is sufficiently large in Theorem 3.1, we are able to obtain the improved simultaneous approximation order as follows.

Theorem 3.2. Let $f \in C^{m}[0,1]$ and $n \in \mathbb{N}$ with $2 m<n$. Then, for any integer r with $0 \leq r \leq m$, we have

$$
\left\|f^{(r)}-B_{n}^{(r)}(f)\right\|_{\infty,[0,1]} \leq c_{1} \omega\left(f^{(r)}, \frac{1}{\sqrt{n}}\right)+\frac{c_{2}}{n}
$$

where c_{1} and c_{2} are positive constants independent of n.
Proof. Since $2 m<n$, we have $n / 2=n-n / 2<n-m \leq n-r$ and so

$$
\begin{equation*}
\omega\left(f^{(r)}, \frac{1}{\sqrt{n-r}}\right)<\omega\left(f^{(r)}, \frac{\sqrt{2}}{\sqrt{n}}\right) \leq(\sqrt{2}+1) \omega\left(f^{(r)}, \frac{1}{\sqrt{n}}\right) . \tag{19}
\end{equation*}
$$

By Theorem 3.1 and (19), we complete the proof.
Note that a squashing function $\sigma(x)=1 /\left(1+e^{-x}\right)$ is a nonlinear, monotone increasing and differentiable sigmoidal function. In addition, it has a nonvanishing point in $[0,1]$ by the following two lemmas.

Lemma 3.3. Suppose that $R_{n}(\sigma):=R_{n}(\sigma, x)$ denotes a polynomial of degree $\leq n$ with respect to σ for $n \in \mathbb{N}$. Then

$$
\begin{equation*}
\sigma^{(n)}(x)=\sigma(x)(1-\sigma(x)) R_{n-1}(\sigma) \tag{20}
\end{equation*}
$$

for any $n \in \mathbb{N}$.
Proof. We prove it by the mathematical induction.
For $n=1$, it is clear that $\sigma^{\prime}(x)=\sigma(x)(1-\sigma(x))$.
Assume that (20) is true for $n=k$. That is, $\sigma^{(k)}(x)=\sigma(x)(1-\sigma(x)) R_{k-1}(\sigma)$.
Then, for $n=k+1$, we have

$$
\begin{aligned}
& \sigma^{(k+1)}(x) \\
(21)= & \sigma^{\prime}(x)\left[(1-\sigma(x)) R_{k-1}(\sigma)-\sigma(x) R_{k-1}(\sigma)+\sigma(x)(1-\sigma(x)) R_{k-1}^{\prime}(\sigma)\right] \\
= & \sigma(x)(1-\sigma(x)) R_{k}(\sigma)
\end{aligned}
$$

since $(1-\sigma(x)) R_{k-1}(\sigma), \sigma(x) R_{k-1}(\sigma)$ and $\sigma(x)(1-\sigma(x)) R_{k-1}^{\prime}(\sigma)$ are polynomials of degree $\leq k$ with respect to σ. This completes the proof.

Lemma 3.4. Let $\sigma(x)=1 /\left(1+e^{-x}\right)$. Then there exists $x_{0} \in[0,1]$ such that $\sigma^{(n)}\left(x_{0}\right) \neq 0$ for any $n \in \mathbb{N}$.

Proof. Note that $\sigma(x) \neq 0$ and $1-\sigma(x) \neq 0$ for all $x \in[0,1]$. Since $\sigma(x)$ is monotone increasing on $\mathbb{R}, R_{k}(\sigma)=0$ has at most k roots in $[0,1]$. Thus $\sigma^{(k+1)}(x)=0$ has at most k roots by (21). So $\left\{x \in[0,1]: \bigcup_{n=1}^{\infty} \sigma^{(n)}(x)=0\right\}$ is countable and hence there exists $x_{0} \in[0,1]$ such that $x_{0} \in[0,1]-\{x \in[0,1]$: $\left.\bigcup_{n=1}^{\infty} \sigma^{(n)}(x)=0\right\}$.

Similarly, we can easily show that any squashing function $\sigma_{c}(x)=1 /(1+$ $c e^{-x}$) with a positive constant c also has a non-vanishing point. Using Lemma 3.3, Lemma 3.4 and the divided difference, we now approximate monomials simultaneously by neural networks with a squashing function.

Lemma 3.5. Let σ be a squashing function and $k \in \mathbb{N} \cup\{0\}$. If $b \in[0,1]$ such that $\sigma^{(j)}(b) \neq 0$ for any $j \in \mathbb{N}$ and $h>0$, there exists a neural network

$$
N_{k, h}(\sigma, x)=\frac{1}{h^{k} \sigma^{(k)}(b)} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} \sigma(h j x+b)
$$

such that

$$
\left\|\left(x^{k}\right)^{(r)}-N_{k, h}^{(r)}\right\|_{\infty,[0,1]}=\mathcal{O}(h)
$$

for any integer r with $0 \leq r \leq m$.
Proof. For $r=0, N_{k, h}(\sigma, x)$ represents the divided difference for x^{k} and so

$$
\begin{equation*}
\left\|x^{k}-N_{k, h}\right\|_{\infty,[0,1]}=\mathcal{O}(h) \tag{22}
\end{equation*}
$$

holds. In order to compute the derivatives of $N_{k, h}(\sigma, x)$, we define

$$
\begin{equation*}
[p]_{q}=\prod_{i=0}^{q-1}(p-i) \tag{23}
\end{equation*}
$$

for $p, q \in \mathbb{N}$. For $p, s \in \mathbb{N}$, we choose $a_{q, s} \in \mathbb{R}$ for $q=1,2, \ldots, s$ so that

$$
\begin{equation*}
p^{s}=\sum_{q=1}^{s} a_{q, s}[p]_{q} . \tag{24}
\end{equation*}
$$

From (24), we get

$$
\begin{equation*}
\frac{[j]_{q}}{[k]_{q}}\binom{k}{j}=\frac{j(j-1) \cdots(j-(q-1))}{k(k-1) \cdots(k-(q-1))} \frac{k!}{j!(k-j)!}=\binom{k-q}{j-q} \tag{25}
\end{equation*}
$$

for $q, j, k \in \mathbb{N}$ with $q \leq j \leq k$. Using (24) and (25), we compute the r-th derivative of $N_{k, h}(x)$ for r with $1 \leq r \leq m$.

$$
\begin{align*}
& N_{k, h}^{(r)}(\sigma, x) \tag{26}\\
= & \frac{1}{h^{k} \sigma^{(k)}(b)} \sum_{j=0}^{k}\binom{k}{j}(-1)^{k-j} \sigma^{(r)}(h j x+b) h^{r} j^{r} \\
= & \frac{1}{h^{k-r} \sigma^{(k)}(b)} \sum_{j=1}^{k}\binom{k}{j}(-1)^{k-j} \sum_{q=1}^{r} a_{q, r}[j]_{q} \sigma^{(r)}(h j x+b) \\
= & \frac{1}{h^{k-r} \sigma^{(k)}(b)} \sum_{q=1}^{r} a_{q, r}[k]_{q} \sum_{j=q}^{k}\binom{k-q}{j-q}(-1)^{k-j} \sigma^{(r)}(h j x+b) \\
= & \frac{1}{h^{k-r} \sigma^{(k)}(b)} \sum_{q=1}^{r} a_{q, r}[k]_{q} \sum_{i=0}^{k-q}\binom{k-q}{i}(-1)^{k-i-q} \sigma^{(r)}(h i x+h q x+b) .
\end{align*}
$$

By Taylor's theorem for an integer p with $p>k-r$, we have

$$
\begin{align*}
\sigma^{(r)}(h i x+h q x+b)= & \sigma^{(r)}(h i x+b)+\sum_{l=1}^{p-1} \frac{\sigma^{(r+l)}(h i x+b)}{l!}(h q x)^{l} \tag{27}\\
& +\frac{\sigma^{(r+p)}\left(\xi_{i, q}\right)}{p!}(h q x)^{p},
\end{align*}
$$

where $\xi_{i, q}$ is a point between $h i x+b$ and $h i x+h q x+b$. Note that

$$
\begin{align*}
& \frac{1}{h^{k-r} \sigma^{(k)}(b)} \sum_{q=1}^{r} a_{q, r}[k]_{q} \sum_{i=0}^{k-q}\binom{k-q}{i}(-1)^{k-i-q} \sigma^{(r)}(h i x+b) \\
= & \sum_{q=1}^{r} a_{q, r}[k]_{q} h^{r-q} N_{k-q, h}\left(\sigma^{(r)}, x\right) \tag{28}\\
= & a_{r, r}[k]_{r} N_{k-r, h}\left(\sigma^{(r)}, x\right)+\sum_{q=1}^{r-1} a_{q, r}[k]_{q} h^{r-q} N_{k-q, h}\left(\sigma^{(r)}, x\right) \\
= & {[k]_{r} N_{k-r, h}\left(\sigma^{(r)}, x\right)+\mathcal{O}(h), }
\end{align*}
$$

since $a_{r, r}=1$ by comparing the leading coefficients in (24). Since $l+r-q \geq 1$, we have
(29)

$$
\frac{1}{h^{k-r} \sigma^{(k)}(b)} \sum_{q=1}^{r} a_{q, r}[k]_{q} \sum_{i=0}^{k-q}\binom{k-q}{i}(-1)^{k-i-q}\left[\sum_{l=1}^{p-1} \frac{\sigma^{(r+l)}(h i x+b)}{l!}(h q x)^{l}\right]
$$

$$
\begin{aligned}
& =\sum_{l=1}^{p-1} \sum_{q=1}^{r} a_{q, r}[k]_{q} h^{h+r-q}\left[\frac{1}{h^{k-q^{(k)}(b)}} \sum_{i=0}^{k-q}(-1)^{k-i-q} \sigma^{(r+l)}(h i x+b)\right] \\
& =\sum_{l=1}^{p-1} \sum_{q=1}^{r} a_{q, r}[k]_{q} h^{h+r-q}\left[x^{k-q}+\mathcal{O}(h)\right] \\
& =\mathcal{O}(h) .
\end{aligned}
$$

Moreover, since $\sigma^{(r+p)}\left(\xi_{i, q}\right)$ is bounded for $\xi_{i, q} \in[0,1]$ and $p-k+r \geq 1$, we have

$$
\begin{equation*}
\frac{1}{h^{k-r} \sigma^{(k)}(b)} \sum_{q=1}^{r} a_{q, r}[k]_{q} \sum_{i=0}^{k-q}\binom{k-q}{i}(-1)^{k-i-q} \frac{\sigma^{(r+p)}\left(\xi_{i, q}\right)}{p!}(h q x)^{p}=\mathcal{O}(h) . \tag{30}
\end{equation*}
$$

From (28), (29) and (30), we have

$$
\begin{equation*}
N_{k, h}^{(r)}(\sigma, x)=[k]_{r} N_{k-r, h}\left(\sigma^{(r)}, x\right)+\mathcal{O}(h) \tag{31}
\end{equation*}
$$

Therefore
(32) $\left\|\left(x^{k}\right)^{(r)}-N_{k, h}^{(r)}\right\|_{\infty,[0,1]}=\left\|[k]_{r} x^{k-r}-[k]_{r} N_{k-r, h}\left(\sigma^{(r)}, x\right)\right\|_{\infty,[0,1]}=\mathcal{O}(h)$ for r with $1 \leq r \leq m$. By (22) and (32), we complete the proof.

The next theorem follows from Lemma 3.5 immediately.
Theorem 3.6. Let $\epsilon>0$ be given and let σ be a squashing function. If $b \in[0,1]$ such that $\sigma^{(j)}(b) \neq 0$ for any $j \in \mathbb{N}$ and $P_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ for $n \in \mathbb{N}$, there exists a neural network
$N_{n}(\sigma, x):=\sum_{k=0}^{n} a_{k} N_{k, h}(\sigma, x)=\sum_{k=0}^{n} a_{k}\left[\frac{1}{h^{k} \sigma^{(k)}(b)} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \sigma(h j x+b)\right]$
such that

$$
\left\|P_{n}^{(r)}-N_{n}^{(r)}(\sigma)\right\|_{\infty,[0,1]}<\epsilon
$$

for sufficiently small $h>0$ and any integer r with $0 \leq r \leq m$.
By combining Theorem 3.2 and Theorem 3.6, we get the following theorem that is the main result of this paper.
Theorem 3.7. Let $f \in C^{m}[0,1]$ and $n \in \mathbb{N}$ with $2 m<n$. If σ is a squashing function and $b \in[0,1]$ such that $\sigma^{(j)}(b) \neq 0$ for any $j \in \mathbb{N}$, there exists a neural network

$$
N_{n}(\sigma, x)=\sum_{k=0}^{n} a_{k}\left[\frac{1}{h^{k} \sigma^{(k)}(b)} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} \sigma(h j x+b)\right]
$$

such that

$$
\left\|f^{(r)}-N_{n}^{(r)}(\sigma)\right\|_{\infty,[0,1]} \leq c_{1} \omega\left(f^{(r)}, \frac{1}{\sqrt{n}}\right)+\frac{c_{2}}{n}
$$

where a_{k} 's are the coefficients of the Bernstein polynomial with resect to f, and constants c_{1} and c_{2} are independent of n for sufficiently small $h>0$ and any integer r with $0 \leq r \leq m$.
Proof. By Theorem 3.2, we have

$$
\begin{equation*}
\left\|f^{(r)}-B_{n}^{(r)}(f)\right\|_{\infty,[0,1]} \leq c_{1} \omega\left(f^{(r)}, \frac{1}{\sqrt{n}}\right)+\frac{c_{2}}{n} \tag{33}
\end{equation*}
$$

for r with $0 \leq r \leq m$, where c_{1} and c_{2} are positive constants independent of n. For a given $\epsilon>0$, we get, by Theorem 3.6,

$$
\begin{equation*}
\left\|B_{n}^{(r)}(f)-N_{n}^{(r)}(\sigma)\right\|_{\infty,[0,1]}<\epsilon \tag{34}
\end{equation*}
$$

for sufficiently small $h>0$ and r with $0 \leq r \leq m$. Therefore

$$
\begin{aligned}
& \left\|f^{(r)}-N_{n}^{(r)}(\sigma)\right\|_{\infty,[0,1]} \\
\leq & \left\|f^{(r)}-B_{n}^{(r)}(f)\right\|_{\infty,[0,1]}+\left\|B_{n}^{(r)}(f)-N_{n}^{(r)}(\sigma)\right\|_{\infty,[0,1]} \\
\leq & c_{1} \omega\left(f^{(r)}, \frac{1}{\sqrt{n}}\right)+\frac{c_{2}}{n}+\epsilon
\end{aligned}
$$

Since $\epsilon>0$ is arbitrarily small, we complete the proof.

References

[1] R. M. Burton and H. G. Dehling, Universal approximation in p-mean by neural networks, Neural Networks 11 (1998), 661-667.
[2] P. Cardaliaguet and G. Euvrard, Approximation of a function and its derivative with a neural network, Neural Networks 5 (1992), 207-220.
[3] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer Verlag, Heidelberg, 1993.
[4] A. R. Gallant and H. White, On learning the derivatives of an unknown mapping with multilayer feedforward networks, Lett. Math. Phys. 5 (1992), 129-138.
[5] B. Gao and Y. Xu, Univariant approximation by superpositions of a sigmoidal function, J. Math. Anal. Appl. 178 (1993), no. 1, 221-226.
[6] Y. Ito, Simultaneous L_{p}-approximations of polynomials and dervatives on the whole space, Arti. Neural Networks Conf. (1999), 587-592.
[7] G. Lewicki and G. Marino, Approximation of functions of finite variation by superpositions of a sigmoidal function, Appl. Math. Lett. 17 (2004), no. 10, 1147-1152.
[8] F. Li and Z. Xu, The essential order of simultaneous approximation for neural networks, Appl. Math. Comput. 194 (2007), no. 1, 120-127.
[9] X. Li, Simultaneous approximation of a multivariate functions and their derivatives by neural networks with one hidden layer, Neurocomputing 12 (1996), 327-343.
[10] G. G. Lorentz, Bernstein Polynomials, Chelsea, Engelwood Cliffs, 1986.
[11] B. Malakooti and Y. Q. Zhou, Approximation polynomial functions by feedforward artificial neural networks : capacity analysis and design, Appl. Math. and Comp. 90 (1998), 27-51.
[12] M. V. Medvedeva, On sigmoidal functions, Moscow Univ. Math. Bull. 53 (1998), no. 1, 16-19.
[13] H. N. Mhaskar and N. Hahm, Neural networks for functional approximation and system identification, Neural Computation 9 (1997), no. 1, 143-159.
[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel Distributed Processing : explorations in the microstructure of cognition, MIT Press, Massachusetts, 1986.

Department of Mathematics
University of Incheon
Incheon 402-749, Korea
E-mail address: nhahm@incheon.ac.kr

[^0]: Received September 8, 2008.
 2000 Mathematics Subject Classification. Primary 41A10, 41A29, 65D15.
 Key words and phrases. simultaneous approximation, Bernstein polynomial, squashing function, neural network.

