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A STUDY OF SIMULTANEOUS
APPROXIMATION BY NEURAL NETWORKS

N. Haum'anp B. 1. Hong*

ABSTRACT. This paper shows the degree of simultaneous neural network ap-
proximation for a target function in C™[—1,1] and its first derivative. We use the
Jackson’s theorem for differentiable functions to get a degree of approximation to
a target function by algebraic polynomials and trigonometric polynomials. We
also make use of the de La Vallée Poussin sum to get an approximation order
by algebraic polynomials to the derivative of a target function. By showing that
the divided difference with a generalized translation network can be arbitrarily
closed to algebraic polynomials on [—1, 1], we obtain the degree of simultaneous
approximation.
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1. Introduction

This paper is related to the problem of simultaneous approximation by a three
layered feedforward neural network. A three layered feed forward network has
an input layer, a hidden layer and an output layer. A feedforward network with
one hidden layer is of the form

ic,":/)(ai:r-l- bi) (1.1)

i=]

where the weight a;, the threshold b; and ¢; are real numbers for 1 < < n and
% is an activation function. For a natural number n, ¥y, ,, denotes the set of all
such functions.
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Most papers related to the neural network approximation investigate the den-
sity problems and complexity problem. The density problem was proved in the
many papers [5, 6]. In [5], Leshno, Lin, Pinkus and Schocken proved a com-
plete characterization of the activation function. Under some weak conditions
for an activation function, any continuous functions on a compact set can be
approximated arbitrarily closed by neural networks.

Recently, the complexity problem was discussed in many papers 3, 7, 11].
Those papers investigated the relation between the number of neurons and its
approximation capacity.

More recently, the simultaneous approximation of a function and its deriva-
tives was also investigated by many researchers [1, 6, 12]. In [6], Li proved that
a function and its derivatives on a compact set can be simultaneously approxi-
mated by neural networks. On the other hand, Cao, Xu and Li [1] proved the
degree of simultaneous approximation by neural networks in the pointwise sense,
but the pointwise convergence is not so useful in the applications. In this pa-
per, we show the degree simultaneous approximation by neural networks in the
uniform sense.

2. Preliminaries

Throughout the paper, n, m, r and k are natural numbers. For each n, we
denote the class of all algebraic polynomials of degree not exceeding n by 1I,
and the class of all trigonometric polynomials of degree not exceeding n by II7.
In each case, we define

E.(f):= Pigrﬁ,. Hf = Pll(oo,[-1,1)) (2.1)
and
En(g) = P,ig%; llg — P*|l(o0,(~,1) (2.2)

for f € C[-1,1] and a 27 periodic function g € C[—m, 7], respectively. Jackson’s
theorems for differentiable functions are the followings [2].

Theorem 2.1. (1) For f € CT[-1,1] with || f||(c0,(~1,1)) < 0,

where the constant C, is independent of n.
(2) For a 27 periodic function g € C™[—n, w| with Hg(")||(°°,[_.,,,,,]) < 00,

c

E*(g) <
n(9) < o
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where the constant C; is independent of n.
Note that ¢’ € C™~[~m, 7] for g € C"[~n, 7] and so we get

ok
G

Ei9) < ==

(2.3)

For a 2r periodic function g € C[—m, 7], Sn(g,t) := Sn(t) denotes the nth
partial sum of its Fourier series. For each n, the de La Vallée Poussin sum 7, is

defined by
2n-—-1

n(9,1) :=Tn(g) = 'rlz, Z Si(t).
Note that the de La Vallée Poussin sum 7, of a 27 periodic function g has the
following properties [8, 9].
(1) Ima(g,2)| < max|g(t)| for t € [-m, ).
(2) lmn(9) = gll(oo,j~r, =) < 4E;(9).
(3) Tnlg:t) = Ta(9', 1)
In addition, 7,(T%,t) = Tk(t) for any trigonometric polynomial Tj(t) for k < n.

3. Main results

First of all, we get the degree of simultaneous approximation by algebraic
polynomials. The basic idea comes from Theorem 2.1.

Theorem 3.1. Assume that f € C"[~1,1] with ||f™||(c0,(-1,1)) < 00. For each
n, there is an algebraic polynomial Poy,..1 € llop-.1 such that

* > ok

C
1f = Pan-1l(oo,j-1,1)) £ w and |{|f' ~ Ppy_tll(o0,-1,1)) £

e (3.1)

where C* and C** are the positive constants which are independent of n.

Proof. In [9], there exists an extension f € C™ of f on [—2,2] such that f(z) =
f(z) for z € [~1,1]. For z € [-2, 2], we define

9(t) == F(2cost) = fi(x).
Then g € C"[—m, . From the elementary differentiation

df (z) _ df (2 cost) dt ) - 1
dr di dz 9 —2sint’

fl(z)=
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we obtain, for some C,

, 1
g —2sint

1 eesnm = 7],

< Cl9" Ml (oo, j=,m))-
(00,[%!2_:;[])
(3.2)

By (2.3) and the properties (2) and (3) of the de La Vallée Poussin sum, we have

(o0,{— 11]

||gl - T’Il‘l(g)”(OO,["’r,'lr]) = ”gl - Tn(g,)”(wr[‘"v"])
< GiEL(d)
C**

(3.3)

We define the algebraic polynomial P, by

sz_l(f,ac) := P(f,2cost) = m(g,1).

Then Py,_; € Il3,—;. From Theorem 2.1 and the property (2) of the de La
Vallée Poussin sum,

”f - P2n-1“(oo,{—l,1]) < ”f— P2n—1”(o<>,[—2,2])
= llg - Tn(g)“(oo,[—vr,‘lr])
< CRE;(9) (34)
<<
n"‘

In addition, we get the following result from (3.3).

lf" = Prnillioo,i=1.1) < llg" = 7 (9)ll(c0,[~m,m1)
< C3E;(9")
C**

(3.5)

This completes the proof. ]

Now, we show that any polynomials can be simultaneously approximated by
neural networks.

Theorem 3.2. Suppose that ¢ € C=(R) and there erists b € R in some open
interval (b — 6,b+ 8) in R such that

p®E(b) #0
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for any k. For f € CT[-1,1] with Hf(')ll(w,[_l,ll) < oo and a natural number k,
there erists a neural network Ny p € Uy i such that

lle* — Nelloo, -1, < M* A and “(xk)’ - Nl’c,hll(m,[—l,l]) < M™-h (3.6)
where M™* and M™* are positive constants.

Proof. We follow the idea in [7] For each natural number k, the neural network

Niw(9,2) = ¢(k) 0 hF Z (k W] ( ) ¢(hjz +b) (3.7)

represents a divided difference for w’“. Thus, as it is proved in [7],

|Gi,n(d, ) — xkl|(oo,[~1,1]) <M*-h (3.8)
for some positive constant M*. Note that
Nl,c,h(¢1 .Z')
k
1 1 Sk
= (k—3)
- g L0 (§) otz oy
B F £
1k o=, e (k-1 . (3.9)
- @) (b) h*-T Z%(—l)( 7) (j _ 1) ¢'(hjz +b)
J:
1k K

(=1)(k=3—1) (’“ ; 1) ¢'(h(j + 1)z + b).

Using Taylor theorem for an integer m with m > k — 1, the equation (3.9) can
be written as

— ¢l (hjz + b)

¢ (h(j + 1)z +b) = ¢'(hjz+ )+ Y . (he)’
i=(1 ) v (3.10)
m+1 :
+ ¢ (h]x+b+€)(h$)m

m!
where ¢ is a value between hjz + b and h(j + 1)z + b. Thus, the equation (3.9)
can be rewritten as

Nin(o,2)
1 kS, i (=1
- g 0 (57 ) gz
7=0
kN pymimn (B= 1Y) (R 85D (hjz +b) o
(k) E‘"“ZO -1 ( j )(2; 2l ('””))
j= i=
1 k& iy (k=1 (6™ D (hiz+b+ ),
=¢(k>(b)ﬁc‘—7j:0( D 1)( j )( m! (ha) )

(3.11)
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The second part of (3.11) is

ko

1 -1

¢(*)(b) R¥

a“k— (- 1)"“""”(k;1)¢'<hjz+b)-—-k~Nk~1,h(¢',m>. (3.12)

¥
=}

J

The third part of (3.11) is

1 3 _ - glH( hﬂ:+b)
- ( 1)(k j—1) ( hz 1.)
s S (1) (B4

m—1 1 k k—1 k—1 (
_ i AN - _ k—j—1) 1(i+1) -
’;h (¢(k>(b pE=1 Z( i )( DI bz +4)) (3.13)

m—1 )

=Y hi(ka*"1 + M, - h)
i=1

<M;-h

where M) and M» are positive constants.
The last part of (3.11) is

1 ok = (k- ¢ (hjiz + b+ €)
—1)(k—i-1) m
¢®) (b) hF-1 ;0( ) ( J )( m! (o) ) (3.14)

<Ms3-h

since m —k+1 > 0. From (3.12), (3.13) and (3.14), we have
lI(z*)' — Ni plloo-1,1)) < M** - h. (3.15)

By (3.8) and (3.15), we completes the proof. 0O

The following is the main theorem of this paper.

Theorem 3.3. Suppose that ¢y € C®(R) and there exists b € R in some open
interval (b—6,b+ 6) in R such that

$®)(b) #0

for any k. For f € CT[~1,1] with ||f(')||(°°,[_1,1]) < 00 and a natural number
n, there exists a neural network Ny € Y4 n such that

D D
lf = Nanlloo,-1,1) < ;{} and ||f' = N allooyf-1,1)) < n,._21 (3.16)
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where Dy and Dy are positive constants which are independent of n.

Proof. Let n > 2 be given. We choose the largest integer m such that 2m < n.
By Theorem 3.1, there exists an algebraic polynomial Py,,—1 € Il —1 such that

K

C*
If = Pem—tll(o-1,1 € — and [If' = Parm—tll(oo,-1,1) S o

where C* and C** are constants which are independent of n. We set Pypm—1(z) =
2m-—1

Z aja:j. For each j with 0 < j < 2m — 1, we choose h; so small that
j=0

E,

. E, .
5N (oot 1) € e — iy —N! o € e
127 = Ni,hsll o0,1-1,11) < T 1) =Nl o0, f-1,11) < S Tag T

where F; and Fy are constants which are independent of m. Now, we set

2m-1
N, = Z Njh; € ¥yom C ¥y n.
j=0
47‘
Since -1— < l . l < 1 < z for n > 2, L < —. Therefore, from (3.4)
n"2 m T n-1 n mr n’

and (3.8), we have

[1f = Nalloo,(~1.1) < IIf = Pam—1lltoo,(=1,1]) + |P2m—1 — Nall(so,(-1,1])
¢ B D,
mr mT‘ - nr

<

and also have

F ~ Npllooi-1,1) < 1 = Pom—1lltoo,=1,11) + 11 Pam—1 = Nall(so,~1,1))

c* E D
< b < 2
mr—1 mr—1 = pr—1

from (3.5) and (3.15). This completes the proof. a
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