• Title/Summary/Keyword: Simulation of Threshold Voltage Shift

Search Result 34, Processing Time 0.043 seconds

Implementation of Stretched-Exponential Time Dependence of Threshold Voltage Shift in SPICE (Stretched-Exponential 형태의 문턱전압 이동 모델의 SPICE구현)

  • Jung, Taeho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2020
  • Threshold voltage shift occurring during operation is implemented in a SPICE simulation tool. Among the shift models the stretched-exponential function model, which is frequently observed from both single-crystal silicon and thin-film transistors regardless of the nature of causes, is selected, adapted to transient simulation, and added to BSIM4 developed by BSIM Research Group at the University of California, Berkeley. The adaptation method used in this research is to select degradation and recovery models based on the comparison between the gate and threshold voltages. The threshold voltage shift is extracted from SPICE transient simulation and shows the stretched-exponential time dependence for both degradation and recovery situations. The implementation method developed in this research is not limited to the stretched-exponential function model and BSIM model. The proposed method enables to perform transient simulation with threshold voltage shift in situ and will help to verify the reliability of a circuit.

Modeling and Simulation of Threshold Voltage Shift in Organic Thin-film Transistors (유기박막 트랜지스터에서 문턱전압 이동의 모델링 및 시뮬레이션)

  • Jung, Taeho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • In this paper the author proposes a method of implementing a numerical model for threshold voltage ($V_{th}$) shift in organic thin-film transistors (OTFTs) into SPICE tools. $V_{th}$ shift is first numerically modeled by dividing the shift into sequentially ordered groups. The model is then used to derive a simulations model which takes into simulation parameters and calculation complexity. Finally, the numerical and simulation models are implemented in AIM-SPICE. The SPICE simulation results agree well with the $V_{th}$ shift obtained from an OTFT fabricated without any optimization. The proposed method is also used to implement the stretched-exponential time dependent $V_{th}$ shift in AIM-SPICE and the results show the proposed method is applicable to various types of $V_{th}$ shifts.

Simulation Method of Temperature Dependent Threshold Voltage Shift in Metal Oxide Thin-film Transistors (온도에 의한 산화물 박막트랜지스터의 문턱전압 이동 시뮬레이션 방안)

  • Kwon, Seyong;Jung, Taeho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.154-159
    • /
    • 2015
  • In this paper, we propose a numerical method to model temperature dependent threshold voltage shift observed in metal oxide thin-film transistors (TFTs). The proposed model is then implemented in AIM-SPICE circuit simulation tool. The proposed method consists of modeling the well-known stretched-exponential time dependent threshold voltage shift and their temperature dependent coefficients. The outputs from AIM-SPICE tool and the stretched-exponential model at different temperatures in the literature are compared and they show a good agreement. Since metal oxide TFTs are the promising candidate for flat panel displays, the proposed method will be a good stepping stone to help enhance reliability of fast-evolving display circuits.

Subthreshold Current Model for Threshold Voltage Shift Analysis in Junctionless Cylindrical Surrounding Gate(CSG) MOSFET (무접합 원통형 게이트 MOSFET에서 문턱전압이동 분석을 위한 문턱전압이하 전류 모델)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.789-794
    • /
    • 2017
  • Subthreshold current model is presented using analytical potential distribution of junctionless cylindrical surrounding-gate (CSG) MOSFET and threshold voltage shift is analyzed by this model. Junctionless CSG MOSFET is significantly outstanding for controllability of gate to carrier flow due to channel surrounded by gate. Poisson's equation is solved using parabolic potential distribution, and subthreshold current model is suggested by center potential distribution derived. Threshold voltage is defined as gate voltage corresponding to subthreshold current of $0.1{\mu}A$, and compared with result of two dimensional simulation. Since results between this model and 2D simulation are good agreement, threshold voltage shift is investigated for channel dimension and doping concentration of junctionless CSG MOSFET. As a result, threshold voltage shift increases for large channel radius and oxide thickness. It is resultingly shown that threshold voltage increases for the large difference of doping concentrations between source/drain and channel.

A New AMOLED Pixel Circuit Compensating for Threshold Voltage Shift of OTFT (유기 박막 트랜지스터의 문턱전압 변화를 보상하기 위한 새로운 구조의 AMOLED 화소 회로에 관한 연구)

  • Choi, Jong-Chan;Shin, A-Ram;Lee, Jae-In;Yoon, Bong-No;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.95-96
    • /
    • 2008
  • A new voltage-driven pixel circuit using soluble-processed organic thin film transistors (OTFTs) for an active matrix organic light emitting diode (AMOLED) is proposed. The proposed circuit is composed of four switching TFTs, one driving TFT and one storage capacitor. The proposed circuit can compensate for the degradation of OLED current caused by the threshold voltage shift of the OTFT. The simulation results show that the variation of OLED current corresponding to a 3V threshold voltage shift is decreased by 30% compared to the conventional 2TlC structure.

  • PDF

A Driving Method for Large-Size AMOLED Displays Using a-Si:H TFTs

  • Min, Ung-Gyu;In, Hai-Jung;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.517-520
    • /
    • 2008
  • A voltage-programming pixel circuit, which compensates the threshold voltage shift of TFTs and the degradation of OLED, is proposed for large sized a-Si:H active matrix organic light emitting diode (AMOLED) applications. Considering threshold voltage variation (or shift), OLED degradation and reverse bias annealing, HSPICE simulation results indicate that luminance error of every gray level is less than 0.4 LSB under the condition of +1V threshold voltage shift and from -0.2 LSB to 2.6 LSB within 30% degradation of OLED in the case of 40-inch full HDTV condition.

  • PDF

Robust Two-Phase Clock Oxide TFT Shift Register over Threshold Voltage Variation and Clock Coupling Noises

  • Nam, Hyoungsik;Song, Eunji
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.321-324
    • /
    • 2014
  • This letter describes a two-phase clock oxide thin-film transistor shift register that executes a robust operation over a wide threshold voltage range and clock coupling noises. The proposed circuit employs an additional Q generation block to avoid the clock coupling noise effects. A SMART-SPICE simulation shows that the stable shift register operation is established for the clock coupling noises and the threshold voltage variation from -4 V to 5 V at a line time of $5{\mu}s$. The magnitude of coupling noises on the Q(15) node and Qb(15) node of the 15th stage is respectively -12.6 dB and -26.1 dB at 100 kHz in the proposed circuit, compared to 6.8 dB and 10.9 dB in a conventional one. In addition, the estimated power consumption is 1.74 mW for the proposed 16-stage shift registers at $V_{TH}=-1.56V$, compared to 11.5 mW for the conventional circuits.

Study on the Reliability of an OLED Pixel Circuit Using Transient Simulation (과도상태 시뮬레이션을 사용한 OLED 픽셀 회로의 신뢰성 분석 방안 연구)

  • Jung, Taeho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.141-145
    • /
    • 2021
  • The brightness of the Organic Light Emitting Diode (OLED) display is controlled by thin-film transistors (TFTs). Regardless of the materials and the structures of TFTs, an OLED suffers from the instable threshold voltage (Vth) of a TFT during operation. When designing an OLED pixel with circuit simulation tool such as SPICE, a designer needs to take Vth shift into account to improve the reliability of the circuit and various compensation methods have been proposed. In this paper, the effect of the compensation circuits from two typical OLED pixel circuits proposed in the literature are studied by the transient simulation with a SPICE tool in which the stretched-exponential time dependent Vth shift function is implemented. The simulation results show that the compensation circuits improve the reliability at the beginning of each frame, but Vth shifts from all TFTs in a pixel need to be considered to improve long-time reliability.

Simulation of Threshold Voltages for Charge Trap Type SONOS Memory Devices as a Function of the Memory States (기억상태에 따른 전하트랩형 SONOS 메모리 소자의 문턱전압 시뮬레이션)

  • Kim, Byung-Cheul;Kim, Hyun-Duk;Kim, Joo-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.981-984
    • /
    • 2005
  • This study is to realize its threshold voltage shift after programming operation in charge trap type SONOS memory by simulation. SONOS devices are charge trap type nonvolatile memory devices in which charge storage takes place in traps in the nitride-blocking oxide interface and the nitride layer. For simulation of their threshold voltage as a function of the memory states, traps in the nitride layer have to be defined. However, trap models in the nitride layer are not developed in commercial simulator. So, we propose a new method that can simulate their threshold voltage shift by an amount of charges induced to the electrodes as a function of a programming voltages and times as define two electrodes in the tunnel oxide-nitride interface and the nitride-blocking oxide interface of SONOS structures.

  • PDF

Simulation Method of Threshold Voltage Shift in Thin-film Transistors (박막트랜지스터의 문턱전압 이동 시뮬레이션 방안)

  • Jung, Taeho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.341-346
    • /
    • 2013
  • Threshold voltage shift caused by trapping and release of charge carriers in a thin-film transistor (TFT) is implemented in AIM-SPICE tool. Turning on and off voltages are alternatively applied to a TFT to extract charge trapping and releasing process. Each process is divided into sequentially ordered processes, which are numerically modeled and implemented in a computer language. The results show a good agreement with the experimental data, which are modeled. Since the proposed method is independent of TFT's behavior models implemented in SPICE tools, it can be easily added to them.