• 제목/요약/키워드: Scalar Curvature

검색결과 191건 처리시간 0.023초

화염 곡률과 스칼라 소산율에 따른 층류부상화염의 화염전파속도에 관한 연구 (A Study on The Flame Propagation Velocity of Laminar Lifted Flame with Flame Curvatur e and Scalar Dissipation Rate)

  • 김경호;김태권;박정;하지수
    • 한국가스학회지
    • /
    • 제15권2호
    • /
    • pp.47-56
    • /
    • 2011
  • 삼지화염의 화염안정화 메커니즘 중 중요한 한 가지는 화염전파속도이다. 화염전파속도의 정량적인 규명을 위해 Bilger는 층류 유동이론에 근거하여 혼합분율 기울기에 비선형적으로 연관된 삼지화염전파속도를 제시하였다. 그러나 지금까지의 연구에서는 화염의 곡률 반경과 스칼라소산율 및 삼지화염의 화염전파속도에 관한 직접적인 관계에 관하여 제시된 바가 없었다. 본 논문은 실험과 수치해석에 따른 수치해석 결과를 검증하고, 수치해석을 통해 스칼라소산율에 따른 화염전파속도를 확인하였다. 그리고 화염스트레치 분석을 통하여 화염전파속도의 곡률반경 및 스칼라소산율에 따른 의존도를 명확히 하였다.

STRUCTURE JACOBI OPERATOR OF SEMI-INVARINAT SUBMANIFOLDS IN COMPLEX SPACE FORMS

  • KI, U-HANG;KIM, SOO JIN
    • East Asian mathematical journal
    • /
    • 제36권3호
    • /
    • pp.389-415
    • /
    • 2020
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (𝜙, ξ, η, g) in a complex space form Mn+1(c), c ≠ 0. We denote by Rξ and R'X be the structure Jacobi operator with respect to the structure vector ξ and be R'X = (∇XR)(·, X)X for any unit vector field X on M, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξ𝜙 = 𝜙Rξ and at the same time R'ξ = 0, then M is a Hopf real hypersurfaces of type (A), provided that the scalar curvature ${\bar{r}}$ of M holds ${\bar{r}}-2(n-1)c{\leq}0$.

MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE

  • Kim, Jongsu
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1087-1098
    • /
    • 2013
  • We find a $C^{\infty}$-continuous path of Riemannian metrics $g_t$ on $\mathbb{R}^k$, $k{\geq}3$, for $0{\leq}t{\leq}{\varepsilon}$ for some number ${\varepsilon}$ > 0 with the following property: $g_0$ is the Euclidean metric on $\mathbb{R}^k$, the scalar curvatures of $g_t$ are strictly decreasing in $t$ in the open unit ball and $g_t$ is isometric to the Euclidean metric in the complement of the ball. Furthermore we extend the discussion to the Fubini-Study metric in a similar way.

MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE SCALAR CURVATURE IN 3 DIMENSION

  • Kang, Yu-Tae;Kim, Jong-Su;Kwak, Se-Ho
    • 대한수학회보
    • /
    • 제49권3호
    • /
    • pp.581-588
    • /
    • 2012
  • We find a $C^{\infty}$ one-parameter family of Riemannian metrics $g_t$ on $\mathbb{R}^3$ for $0{\leq}t{\leq}{\varepsilon}$ for some number ${\varepsilon}$ with the following property: $g_0$ is the Euclidean metric on $\mathbb{R}^3$, the scalar curvatures of $g_t$ are strictly decreasing in t in the open unit ball and $g_t$ is isometric to the Euclidean metric in the complement of the ball.

STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS IN A COMPLEX SPACE FORM II

  • Ki, U-Hang;Kim, Soo Jin
    • East Asian mathematical journal
    • /
    • 제38권1호
    • /
    • pp.43-63
    • /
    • 2022
  • Let M be a semi-invariant submanifold of codimension 3 with almost contact metric structure (φ, ξ, η, g) in a complex space form Mn+1(c). We denote by Rξ the structure Jacobi operator with respect to the structure vector field ξ and by ${\bar{r}}$ the scalar curvature of M. Suppose that Rξ is φ∇ξξ-parallel and at the same time the third fundamental form t satisfies dt(X, Y) = 2θg(φX, Y) for a scalar θ(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that if it satisfies Rξφ = φRξ, then M is a Hopf hypersurface of type (A) in Mn+1(c) provided that ${\bar{r}-2(n-1)c}$ ≤ 0.

COMMUTING STRUCTURE JACOBI OPERATOR FOR SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN COMPLEX SPACE FORMS

  • KI, U-Hang;SONG, Hyunjung
    • East Asian mathematical journal
    • /
    • 제38권5호
    • /
    • pp.549-581
    • /
    • 2022
  • Let M be a semi-invariant submanifold with almost contact metric structure (𝜙, 𝜉, 𝜂, g) of codimension 3 in a complex space form Mn+1(c), c≠ 0. We denote by S and R𝜉 be the Ricci tensor of M and the structure Jacobi operator in the direction of the structure vector 𝜉, respectively. Suppose that the third fundamental form t satisfies dt(X, Y) = 2𝜃g(𝜙X, Y) for a certain scalar 𝜃(≠ 2c) and any vector fields X and Y on M. In this paper, we prove that M satisfies R𝜉S = SR𝜉 and at the same time R𝜉𝜙 = 𝜙R𝜉, then M is a Hopf hypersurface of type (A) provided that the scalar curvature s of M holds s - 2(n - 1)c ≤ 0.

BACH ALMOST SOLITONS IN PARASASAKIAN GEOMETRY

  • Uday Chand De;Gopal Ghosh
    • 대한수학회보
    • /
    • 제60권3호
    • /
    • pp.763-774
    • /
    • 2023
  • If a paraSasakian manifold of dimension (2n + 1) represents Bach almost solitons, then the Bach tensor is a scalar multiple of the metric tensor and the manifold is of constant scalar curvature. Additionally it is shown that the Ricci operator of the metric g has a constant norm. Next, we characterize 3-dimensional paraSasakian manifolds admitting Bach almost solitons and it is proven that if a 3-dimensional paraSasakian manifold admits Bach almost solitons, then the manifold is of constant scalar curvature. Moreover, in dimension 3 the Bach almost solitons are steady if r = -6; shrinking if r > -6; expanding if r < -6.

Sasakian manifolds with cyclic-parallel ricci tensor

  • Lee, Sung-Baik;Kim, Nam-Gil;Han, Seung-Gook;Ahn, Seong-Soo
    • 대한수학회보
    • /
    • 제33권2호
    • /
    • pp.243-251
    • /
    • 1996
  • In a Sasakian manifold, a C-Bochner curvature tensor is constructed from the Bochner curvature tensor in a Kaehlefian manifold by the fibering of Boothby-wang[2]. Many subjects for vanishing C-Bocher curvature tensor with constant scalar curvature were studied in [3], [6], [7], [9], [10], [11] and so on.

  • PDF

Scalar curvatures of invariant metrics

  • Park, Joon-Sik;Oh, Won-Tae
    • 대한수학회지
    • /
    • 제31권4호
    • /
    • pp.629-632
    • /
    • 1994
  • Let (M, g) be a Riemannian manifold. The relation between a (pointwise) conformal metric of the metric g and the scalar curvature of this new metrics is investigated by Kazdan, Warner and Schoen (cf. [1, 4]).

  • PDF