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COMMUTING STRUCTURE JACOBI OPERATOR FOR

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN

COMPLEX SPACE FORMS

U - Hang KI and Hyunjung SONG∗

Abstract. Let M be a semi-invariant submanifold with almost contact

metric structure (ϕ, ξ, η, g) of codimension 3 in a complex space form
Mn+1(c), c ̸= 0. We denote by S and Rξ be the Ricci tensor of M

and the structure Jacobi operator in the direction of the structure vec-

tor ξ, respectively. Suppose that the third fundamental form t satisfies
dt(X,Y ) = 2θg(ϕX, Y ) for a certain scalar θ(̸= 2c) and any vector fields

X and Y on M . In this paper, we prove that M satisfies RξS = SRξ and

at the same time Rξϕ = ϕRξ, then M is a Hopf hypersurface of type (A)
provided that the scalar curvature s of M holds s− 2(n− 1)c ≤ 0.

1. Introduction

A submanifold M is called a CR submanifold of a Kaehlerian manifold M̃
with complex structure J if there exists a differentiable distribution △ : p →
△p ⊂ Mp on M such that △ is J-invariant and the complementary orthogonal
distribution△⊥ is totally real, whereMp denotes the tangent space at each point
p in M ([1], [27]). In particular, M is said to be a semi-invariant submanifold
provided that dim△⊥ = 1. The unit normal in J△⊥ is called the distinguished
normal to the semi-invariant submanifold ([4], [25]). In this case, M admits an
induced almost contact metric structure (ϕ, ξ, η, g). A typical example of a semi-
invariant submanifold is real hypersurfaces. And new examples of nontrivial
semi-invariant submanifolds in a complex projective space PnC are constructed
in [16] and [22]. Therefore we may expect to generalize some results which are
valid in a real hypersurface to a semi-invariant submanifold.

An n-dimensional complex space form M̃n(c) is a Kaehlerian manifold of
constant holomorphic sectional curvature 4c. As is well known, complete and
simply connected complex space forms are isometric to a complex projective
space PnC, or a complex hyperbolic space HnC according as c > 0 or c < 0.
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For the real hypersurface of M̃n(c), c ̸= 0, many results are known. One
of them, Takagi([23], [24]) classified all the homogeneous real hypersurfaces of
PnC as six model spaces which are said to be A1, A2, B,C,D and E, and Cecil-
Ryan ([5]) and Kimura ([17]) proved that they are realized as the tubes of
constant radius over Kaehlerian submanifolds when the structure vector field ξ
is principal.

On the other hand, real hypersurfaces in HnC have been investigated by
Berndt [2], Montiel and Romero [18] and so on. Berndt [2] classified all real
hypersurfaces with constant principal curvatures in HnC and showed that they
are realized as the tubes of constant radius over certain submanifolds. Also such
kinds of tubes are said to be real hypersurfaces of type A0, A1, A2 or type B.

Let M be a real hypersurface of type A1 or type A2 in a complex projective
space PnC or that of type A0, A1 or A2 in a complex hyperbolic space HnC.
Now, hereafter unless otherwise stated, such hypersurfaces are said to be of type
(A) for our convenience sake.

Characterization problems for a real hypersurface of type (A) in a complex
space form were studied by many authors ([7], [8], [13], [18], [20] etc.).

Two of them, we introduce the following characterization theorems due to
Okumura [20] for c > 0 and Montiel and Romero [18] for c < 0 respectively.

Theorem O. Let M be a real hypersurface of PnC, n ≥ 2. If it satisfies

g((Aϕ− ϕA)X,Y ) = 0 (1.1)

for any vector fields X and Y , then M is locally congruent to a tube of radius
r over one of the following Kaehlerian submanifolds :

(A1) a hyperplane Pn−1C, where 0 < r < π/2,
(A2) a totally geodesic PkC (1 ≤ k ≤ n− 2), where 0 < r < π/2.

Theorem MR. Let M be a real hypersurface of HnC, n ≥ 2. If it satisfies
(1.1), then M is locally congruent to one of the following hypersurface :

(A0) a horosphere in HnC, i.e., a Montiel tube,
(A1) a geodesic hypersphere, or a tube over a hyperplane Hn−1C,
(A2) a tube over a totally geodesic HkC (c ≤ k ≤ n− 2).

Denoting by R the curvature tensor of the submanifold, we define the Jacobi
operator Rξ = R(·, ξ)ξ with respect to the structure vector ξ. Then Rξ is a self
adjoint endomorphism on the tangent space of a CR submanifold.

Using several conditions on the structure Jacobi operator Rξ, characteriza-
tion problems for real hypersurfaces of type (A) have recently studied (cf. [7],
[8], [19]). In the previous paper [7], Cho and one of the present authors gave an-
other characterization of real hypersurface of type (A) in a complex projective
space PnC.
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Ki, Nagai and Takagi ([13]) proved the following characterizing homogeneous
real hypersurfaces of type (A) and some special classes of Hopf hypersurfaces.

Theorem KNT([13]). Let M be a real hypersurface in a nonflat complex
space form Mn(c), n ≥ 2. If M satisfies Rξϕ = ϕRξ and at the same time
satisfies RξS = SRξ, then M is a Hopf hypersurface. Further, M is locally
congruent to one of homogeneous real hypersurfaces of type A0, A1, A2, or to a
Hopf hypersurface with g(Aξ, ξ) = 0, where S denote the Ricci tensor of M .

On the other hand, semi-invariant submanifolds of codimension 3 in a com-
plex projective space Pn+1C have been studied in [10]∼ [12], [14]∼ [16] and so
on by using properties of induced almost contact metric structure and those of
the third fundamental form of the submanifold. In the preceding work, Takagi
and the present authors assert the following:

Theorem KST([16]). Let M be a real (2n−1)-dimensional semi-invariant sub-
manifold of codimension 3 in a complex projective space Pn+1C with constant
holomorphic sectional curvature 4c. If the structure vector ξ is an eigenvec-
tor for the shape operator in the direction of the distinguished normal and the
third fundamental form t satisfies dt = 2θω for a certain scalar θ(< 2c), where
ω(X,Y ) = g(ϕX, Y ) for any vectors X and Y on M , then M is a Hopf real
hypersurface in a complex projective space PnC.

In this paper, we discuss the version with respect to semi-invariant sub-
manifolds of Theorem KNT, that is, we consider a semi-invariant submanifold
M of codimension 3 in a complex space form Mn+1(c), c ̸= 0 which satisfies
Rξϕ = ϕRξ and at the same time RξS = SRξ such that the third fundamental
form t satisfies dt = 2θω for a certain scalar θ( ̸= 2c). In this case, we prove
that M is a real hypersurface is of type (A) in Mn(c) provided that the scalar
curvature s of M satisfies s− 2(n− 1)c ≤ 0.

All manifolds in the present paper are assumed to be connected and of class
C∞ and the semi-invariant are supposed to be orientable.

2. Preliminaries

Let M̃ be a real 2(n+1)-dimensional Kaehlerian manifold with parallel almost
complex structure J and a Riemannian metric tensor G. Let M be a real
(2n − 1)-dimensional Riemannian manifold isometrically immersed in M̃ . We

denote by g the Riemannian metric tensor on M from that of M̃ .
We denote by ∇̃ the operator of covariant differentiation with respect to the

metric tensor G on M̃ and by ∇ the one on M . Then the Gauss and Weingarten
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formulas are given respectively by

∇̃XY = ∇XY + g(AX,Y )C + g(KX,Y )D + g(LX, Y )E, (2.1)

∇̃XC = −AX + l(X)D +m(X)E,

∇̃XD = −KX − l(X)C + t(X)E,

∇̃XE = −LX −m(X)C − t(X)D

(2.2)

for any vector fields X and Y tangent to M and any vector field C,D and
E normal to M , where A,K,L are called the second fundamental forms with
respect to the normal vector C,D and E respectively, and l,m and t being the
third fundamental forms.

As is well-known, a submanifold of a Kaehlerian manifold is said to be a
CR submanifold ([1], [27]) if it is endowed with a pair of mutually orthogonal
and complementary differentiable distribution (∆,∆⊥) such that for any point
p ∈ M we have J∆p = ∆p, J∆

⊥
p ⊂ ∆⊥

p M , where ∆⊥
p M denote the normal

space of M at p. In particular, M is said to be semi-invariant submanifold
provided that dim∆⊥ = 1([4], [25]). In this case the unit vector field in J∆⊥ is
called a distinguished normal to the semi-invariant submanifold and denote by
C([4], [25]).

More precisely, we choose an orthonormal basis e1, · · · , e2n−2, ξ of Mp in such
a way that e1, e2, · · · , e2n−2 ∈ ∆, where Mp denotes the tangent space to M at
each point p in M . Then we see that

G(Jξ, ei) = −G(ξ, Jei) = 0

for i = 1, · · · , 2n− 2.
From now on we consider M is a real (2n − 1)-dimensional semi-invariant

submanifold of a Kaehlerian manifold M̃ of real dimension 2(n + 1). Then we
can write ([4], [26])

JX = ϕX + η(X)C, JC = −ξ, JD = −E, JE = D, (2.3)

where we have put g(ϕX, Y ) = G(JX, Y ), η(X) = G(JX, C) for any vector
fields X and Y tangent to M .

By the Hermitian property of J , we see, using (2.3), that the aggregate
(ϕ, ξ, η, g) is an almost contact metric structure on M , that is, we have

ϕ2X = −X+η(X)ξ, ϕξ = 0, η(ξ) = 1, η(X) = g(ξ,X),

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )
(2.4)

for any vectors X and Y on M .
In the sequel, we denote the normal components of ∇̃XC by ∇⊥C. The

distinguished normal C is said to be parallel in the normal bundle if we have
∇⊥C = 0, that is, l and m vanish identically.
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From the Kaehler condition ∇̃J = 0 and take account of the Gauss and
Weingarten formulas,we obtain from (2.3)

∇Xξ = ϕAX, (2.5)

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ, (2.6)

KX = ϕLX −m(X)ξ, (2.7)

LX = −ϕKX + l(X)ξ (2.8)

for any vectors X and Y on M . The last two relationships give

l(X) = g(Lξ,X), m(X) = −g(Kξ,X), (2.9)

m(ξ) = −k, l(ξ) = TrL, (2.10)

where, we have put k = TrK.
We notice here that there is no loss of generality such that we may assume

TrL = 0. Therefore we have by (2.10)

l(ξ) = 0. (2.11)

Applying (2.8) by ϕ and using (2.7), we find

−g(KX,Y )−m(X)η(Y ) = g(ϕKX,ϕY )− η(X)l(ϕY ).

If we take the skew-symmetric part of this with respect to X and Y , then we
obtain

−m(X)η(Y ) +m(Y )η(X) = η(X)l(ϕY )− η(Y )l(ϕX),

which together with (2.10) gives

l(ϕX) = m(X) + kη(X). (2.12)

Similarly we have

m(ϕX) = −l(X) (2.13)

because of (2.10).
Transforming (2.7) by L and using (2.8) and (2.9), we obtain

g(KLX,Y ) + g(LKX,Y ) = −l(X)m(Y )− l(Y )m(X). (2.14)

In the rest of this paper we shall suppose that M̃ is a Kaehlerian manifold
of constant holomorphic sectional curvature 4c, which is called a complex space
form and denote by Mn+1(c). Then equations of the Gauss and Codazzi are
given by

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

− 2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY

+ g(KY,Z)KX − g(KX,Z)KY + g(LY,Z)LX − g(LX,Z)LY,

(2.15)



554 U-H. KI AND H. SONG

(∇XA)Y − (∇Y A)X − l(X)KY + l(Y )KX

−m(X)LY +m(Y )LX = c{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},
(2.16)

(∇XK)Y − (∇Y K)X + l(X)AY − l(Y )AX − t(X)LY + t(Y )LX = 0, (2.17)

(∇XL)Y − (∇Y L)X +m(X)AY −m(Y )AX

+ t(X)KY − t(Y )KX = 0,
(2.18)

where R is the Riemann-Christoffel curvature tensor on M , and those of the
Ricci by

(∇X l)Y − (∇Y l)X + g(KAX,Y )− g(AKX,Y )

+m(X)t(Y )−m(Y )t(X) = 0,
(2.19)

(∇Xm)Y − (∇Y m)X + g(LAX, Y )− g(ALX, Y )

+ t(X)l(Y )− t(Y )l(X) = 0,
(2.20)

(∇Xt)Y − (∇Y t)X + g(LKX,Y )− g(KLX,Y )

+ l(X)m(Y )− l(Y )m(X) = 2cg(ϕX, Y ).
(2.21)

In what follows, to write our formulas in a convention form, we denote by
α = η(Aξ), β = η(A2ξ), γ = η(A3ξ), T rA = h, TrK = k, Tr(tAA) = h(2) and
for a function f we denote by ∇f the gradient vector field of f .

Now, we put ∇ξξ = U in the sequel. Then U is orthogonal to ξ because of
(2.5). From now on we put

Aξ = αξ + µW, (2.22)

where W is a unit vector field orthogonal to ξ. Then we have

U = µϕW (2.23)

because of (2.5). So, W is orthogonal to U . Further, we have

µ2 = β − α2. (2.24)

From (2.22) and (2.23) we have

ϕU = −Aξ + αξ, (2.25)

which together with (2.5) and (2.22) yields

g(∇Xξ, U) = µg(AW,X), µg(∇XW, ξ) = g(AU,X) (2.26)

because W is orthogonal to ξ.
Differentiating (2.25) covariantly along M and using (2.5) and (2.6), we find
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(∇XA)ξ = −ϕ∇XU + g(AU +∇α,X)ξ −AϕAX + αϕAX, (2.27)

which enables us to obtain

(∇ξA)ξ = 2AU +∇α− 2kLξ. (2.28)

Because of (2.5), (2.26) and (2.27), we verify that

∇ξU = 3ϕAU + αAξ − βξ + ϕ∇α− 2k(Kξ − kξ). (2.29)

Finally, we introduce the Jacobi operator Rξ with respect to the structure
vector field ξ which is defined by RξX = R(X, ξ)ξ for any vector X.

If we transform (2.8) by L and take account of (2.7) and (2.9), then we get

L2X −K2X = l(X)Lξ −m(X)Kξ.

Because of (2.9), (2.10) and this, it is seen from (2.15) that

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + kKX

−m(X)Kξ − l(X)Lξ.
(2.30)

Suppose that Rξϕ = ϕRξ holds on M . Then from (2.30) we have

α(ϕAX −AϕX) = g(Aξ,X)U + g(U,X)Aξ + 2kLX

− 2k{l(X)ξ + η(X)Lξ},
(2.31)

where we have used (2.5), (2.8) and (2.12).

3. The third fundamental forms of semi-invariant submanifolds

In this section we shall suppose that M is a semi-invariant submanifold of
codimension 3 in a complex space form Mn+1(c), c ̸= 0 and that the third
fundamental form t satisfies

dt = 2θω, ω(X,Y ) = g(ϕX, Y ) (3.1)

for a certain scalar θ and any vectors X and Y , where d denotes the exterior
differential operator. Then we have from (2.14) and (2.21)

g(LKX,Y ) + l(X)m(Y ) = −(θ − c)g(ϕX, Y ), (3.2)

which together with (2.9)∼(2.11) implies that

KLξ = kLξ, LKξ = 0. (3.3)

Differentiating (3.1) covariantly alongM and using (2.6) and the first Bianchi
identity, we find
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(Xθ)ω(Y, Z) + (Y θ)ω(Z,X) + (Zθ)ω(X,Y ) = 0,

which implies (n− 2)Xθ = 0. Thus θ(≥ c) is constant if n > 2.
For the case where θ = c in (3.1) we have dt = 2cω. In this case, the normal

connection of M is said to be L-flat([10]).

Lemma 3.1. Let M be a semi-invariant submanifold with L-flat normal con-
nection in Mn+1(c), c ̸= 0. If Aξ = αξ, then we have ∇⊥C = 0 and K = L = 0.

Proof. From (3.2) we have

Tr(
tKK)− ∥kξ∥2 + ∥Lξ∥2 = 2(n− 1)(θ − c)

because of (2.7), (2.9) and (2.12), which implies

∥K − kη ⊗ ξ∥2 + ∥Lξ∥2 = 2(n− 1)(θ − c),

where ∥F∥2 = g(F, F ) for any vector field F on M . Thus, by our hypothesis
θ = c, we have K = kη ⊗ ξ.

In the same way, we see from (2.8), (2.10), (2.13) and (3.2) that L = 0. And
hence m(X) = −kη(X) and l = 0 because of (2.9). Therefore, it suffices to
show that k = 0. Using these facts, (2.19) reformed as

k{η(X)Aξ − g(Aξ,X)ξ} = k{η(X)t− t(X)ξ},
which together with Aξ = αξ gives

k{t− t(ξ)ξ} = 0. (3.4)

We also have from (2.18)

k{η(X)(AY + t(Y )ξ)− η(Y )(AX + t(X)ξ)} = 0,

which implies k(h − α) = 0. Form this and (3.4) we verify that k = 0. This
completes the proof. □

Applying (3.2) by ϕ and taking account of (2.7) and (2.13), we find

K2X + η(X)K2ξ + l(X)Lξ = (θ − c){X − η(X)ξ}, (3.5)

which implies η(X)K2ξ − g(K2ξ,X)ξ = 0. Thus, it follows that

K2ξ = (∥Kξ∥2)ξ (3.6)

by virtue of (2.9). Thus, (3.5) becomes

K2X + l(X)Lξ + ∥Kξ∥2η(X)ξ = (θ − c)(X − η(X)ξ).

Putting X = Lξ in (2.8) and taking account of (2.12) and (3.3), we obtain
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L2ξ = kKξ + (∥Kξ∥2 + k2)ξ. (3.7)

If we put X = Lξ in (3.2) and make use of (2.13) and (3.2), we find

(θ − c− ∥Kξ∥2)Lξ = 0.

Similarly, we verify, using (3.2) and (3.7), that

(θ − c− ∥Lξ∥2 − k2)(∥Kξ∥2 − k2) = 0.

Let ∥Lξ∥ ≠ 0 at every point of M and suppose that this subset does not
void. Then we have ∥Kξ∥2 = θ− c and ∥Lξ∥2+k2 = θ− c on the subset. Using
these facts, we can verify that ( for detail, see (2.22) and (2.24) of [16])

∇k = 2ALξ, (3.8)

∇XLξ = t(X)Kξ −AKX − kAX (3.9)

on the set. Differentiating (3.8) covariantly and taking the skew-symmetric part
obtained, we find

(θ − 2c){η(X)Kξ −m(X)ξ} = 0,

where we have used (2.12), (2.16), (3.3) and (3.9), which shows that (θ −
2c)(m(X) + kη(X)) = 0 and hence θ = 2c on this subset.
Thus, from the first equation of (2.3) we have the following :

Lemma 3.2. Let M be a semi-invariant submanifold of codimension 3 in
Mn+1(c), c ̸= 0 satisfying (3.1). If θ − 2c ̸= 0, then ∇⊥C = −kξE on M .

In the following we assume that M satisfies (3.1) with θ − 2c ̸= 0. Then we
have

Lξ = 0, Kξ = kξ (3.10)

because of (2.9). It is, using (3.10), clear that (2.7), (2.8) and (3.2) are reduced
respectively to

ϕLX = KX − kη(X)ξ, (3.11)

L = Kϕ, (3.12)

g(LKX,Y ) + (θ − c)g(ϕX, Y ) = 0. (3.13)

From the last two equations, we obtain

L2X = (θ − c)(X − η(X)ξ). (3.14)
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Further, if we take account of (3.10), then the other structure equations
(2.16)∼(2.21) reformed as

(∇XA)Y − (∇Y A)X

= k{η(Y )LX − η(X)LY }+ c{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},
(3.15)

(∇XK)Y − (∇Y K)X = t(X)LY − t(Y )LX, (3.16)

(∇XL)Y − (∇Y L)X = k{η(X)AY − η(Y )AX} − t(X)KY + t(Y )KX, (3.17)

KAX −AKX = k{η(X)t− t(X)ξ}, (3.18)

LAX −ALX = (Xk)ξ − η(X)∇k + k(ϕAX +AϕX), (3.19)

where we have used (2.5).

Putting X = ξ in (3.18) and using (3.10), we find

KAξ = kAξ + k{t′ − t(ξ)ξ}, (3.20)

where g(t′, X) = t(X) for any vector X. From now on we will use the same
letter t instead of t′.

Replacing X by ξ in (3.19) and using (2.5), (3.10) and (3.12), we get

KU = (ξk)ξ −∇k + kU. (3.21)

If we apply (3.20) by ϕ and make use of (2.22) (3.11) and (3.12), then we
find

KU = k(tϕ− U), (3.22)

which together with (3.21) yields

∇k = (ξk)ξ + k(−tϕ+ 2U). (3.23)

If we transform (3.19) by ϕ and take account of (2.22), (3.11) and the last
equation, then we obtain

ϕALX−KAX = −k{(t−t(ξ)ξ)η(X)+2µη(X)W+2g(Aξ,X)ξ−AX+ϕAϕX},
which connected to (3.18) gives

ϕAL = −LAϕ. (3.24)

Since θ is constant if n > 2, differentiating (3.14) covariantly, we find

(∇XL2)Y = (c− θ){η(Y )ϕAX + g(ϕAX, Y )ξ},
or, using (3.13) and (3.17), it is verified that (see, [16])
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2(∇XL)LY =(θ − c){2t(X)ϕY − η(Y )(ϕA+Aϕ)X + g((Aϕ− ϕA)X,Y )ξ

− η(X)(ϕA−Aϕ)Y } − k{η(Y )(AL+ LA)X

− g((AL+ LA)X,Y )ξ − η(X)(LA−AL)Y },

which together with (3.10) and (3.22) yields

(θ − c)(Aϕ− ϕA)X + (k2 + θ − c)(u(X)ξ + η(X)U)

+ k{(AL+ LA)X + k{−t(ϕX)ξ + η(X)ϕ ◦ t} = 0,
(3.25)

where u(X) = g(U,X) for any vector X.
In the following we consider the case where (2.22) with µ = 0, that is Aξ =

αξ. Differentiating this covariantly and using (2.5), we find

(∇XA)ξ = −AϕAX + αϕAX + (Xα)ξ,

which together with (3.10) and (3.15) gives

−2AϕAX + α(ϕA+Aϕ)X + 2cϕX = η(X)∇α− (Xα)ξ. (3.26)

If we put X = ξ in this and using (2.22) with µ = 0, we find

∇α = (ξα)ξ. (3.27)

Differentiating the second equation of (3.10) covariantly along M , and using
(2.5), we find ∇Xm = −(Xk)ξ+kϕAX, from which taking the skew-symmetric
part and making use of (2.20) with l = 0,

LAX −ALX − k(ϕAX +AϕX) = (Xk)ξ − η(X)∇k.

Since Aξ = αξ was assumed, then we have

∇k = (ξk)ξ (3.28)

because of (3.10). From the last two equations, it follows that

LA−AL = k(ϕA+Aϕ). (3.29)

If we put X = ξ in (3.18) and remember (2.21) with µ = 0 and (3.10), then
we get

k{t(X)− t(ξ)η(X)} = 0. (3.30)

Since we have Aξ = αξ, differentiating (3.28) covariantly, and taking the
skew-symmetric part obtained, we get

(ξk)(Aϕ+ ϕA) = 0. (3.31)

From this and (3.27) we can write (3.26) as α(A2ϕ+ cϕ) = 0. By the properties
of the almost contact metric structure, it follows that
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ξk{h(2) − α2 + 2(n− 1)c} = 0,

which implies ξk = 0 if c > 0.

4. Semi-invariant submanifolds satisfying Rξϕ = ϕRξ

We will continue our arguments under the same hypotheses dt = 2θω for a
scalar θ(̸= 2c) as those stated in section 3. Further suppose, throughout this
paper, that Rξϕ = ϕRξ, which means that the eigenspace of the structure Jacobi
operator Rξ is invariant by the structure operator ϕ. Then (2.31) reformed as

α(ϕAX −AϕX) = g(Aξ,X)U + g(U,X)Aξ + 2kLX (4.1)

by virtue of (3.10).
Transforming this by A, and taking the trace obtained, we have g(A2ξ, U) = 0

because of (3.26), which together with (2.22) yields

µg(AW,U) = 0. (4.2)

Applying (4.1) by L and using (2.25), (3.11) and (3.19), we find

α{AKX − kη(X)Aξ − ϕALX}+ g(LU,X)Aξ + g(KU,X)U

= −2kL2X,
(4.3)

which together with (3.18) and (3.22) yields

kα{t(X)ξ − η(X)t+ g(Aξ,X)ξ − η(X)Aξ}
+ g(LU,X)Aξ − g(Aξ,X)LU − u(X)KU + g(KU,X)U = 0,

where u(X) = g(U,X) for any vector X. If we take the inner product with ξ to
this and use (3.10), then we get

kα{t(X)− t(ξ)η(X) + g(Aξ,X)− αη(X)}+ αg(LU,X) = 0. (4.4)

Combining the last two equations and taking account of (2.24), we obtain

µ{w(X)LU − g(LU,X)W}+ u(X)KU − g(KU,X)U = 0, (4.5)

where w(X) = g(W,X) for any vector X.

We notice here that the following fact :
Remark 4.1. α ̸= 0 on Ω.

In fact, if not, then we have α = 0 on this subset. We discuss our arguments
on such a place. So (4.1) reformed as

µ{w(X)U + u(X)W}+ 2kLX = 0 (4.6)



COMMUTING STRUCTURE JACOBI OPERATORS 561

because of (2.22) with α = 0. Putting X = U or W in this we have respectively

LU = −µβ

2k
W, LW = − µ

2k
U (4.7)

by virtue of (2.24) with α = 0. Using this and (3.14), we can write (4.3) as

−β2

2k
w(X)W + g(KU,X)U = −2k(θ − c)(X − η(X)ξ).

Taking the inner product with W to this, we obtain β2 = 4k2(θ − c).
On the other hand, combining (4.6) and (4.7) to (3.14) we also have β2 =

4(n− 1)k2(θ− c), which implies (n− 2)(θ− c)k = 0, a contradiction because of
our assumption and Lemma 2.1. Thus, α = 0 is not impossible on Ω.

Now, putting X = U in (4.4) and remembering Remark 4.1, we find kt(U)+
g(LU,U) = 0.

By the way, replacing X by U in (4.1) and using (2.22) and (2.25), we find

α(ϕAU + µAW ) = µ2Aξ + 2kLU.

If we take the inner product with U and make use of (4.2) and Lemma 3.3, then
we obtain g(LU,U) = 0 and hence t(U) = 0.

By putting X = U in (4.5), we then have

KU = τU, (4.8)

where τ is given by τµ2 = g(KU,U) by virtue of Lemma 3.3. Applying this by
ϕ and using (3.12), we find

LU = τµW. (4.9)

It is, using (4.8) and (4.9), seen that

τ2 = θ − c. (4.10)

because of (3.13).

Remark 4.2. Ω = ∅ if θ = c.
Since we have θ = c, then (3.14) gives L = 0 and thus KX = kη(X)ξ by

virtue of (3.11). Hence, (3.17) reformed as

k{η(X)AY − η(Y )AX + η(X)t(Y )ξ − t(X)η(Y )ξ} = 0,

which shows k(t(X)+ g(Aξ,X)−ση(X)) = 0, where we have put σ = α+ t(ξ).
Thus, the last two equations imply

AX = η(X)Aξ + g(Aξ,X)ξ − αη(X)ξ.

Since U is orthogonal to ξ and W , it is clear that AU = 0 and AW = µξ.
If we put X = µW in (4.1) and remember (2.23) and the fact that L = 0,

then we obtain µ2U = 0 and hence Aξ = αξ. Owing to Lemma 3.1, we conclude
that k = 0 and thus Ω = ∅.
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By Remark 4.2, we may only consider the case where τ ̸= 0 on Ω. Because
of (3.22) and (4.9) we have

t(ϕX) = (1 +
τ

k
)g(U,X). (4.11)

Therefore, by (2.4), it is clear that

t = t(ξ)ξ − µ(1 +
τ

k
)W. (4.12)

Using (2.22), we can write (3.20) as

µKW = kµW + k(t− t(ξ)ξ),

which together with (4.12) implies that

KW = −τW (4.13)

because of Lemma 3.3.
If we take account of (3.25) and (4.11), then we find

τ2(AϕX − ϕAX) + τ(τ − k)(u(X)ξ + η(X)U) + k(ALX + LAX) = 0. (4.14)

Differentiating (4.8) covariantly along Ω, we find

(∇XK)U +K∇XU = τ∇XU,

which together with (3.16) and (4.9) yields

µτ{t(X)w(Y )− t(Y )w(X)}+ g(K∇XU, Y )− g(K∇Y U,X)

= τ{g(∇XU, Y )− g(∇Y U,X)}.
(4.15)

By the way, because of (2.22) and (2.24), we can write (2.29) as

∇ξU = 3ϕAU + αµW − µ2ξ + ϕ∇α. (4.16)

Replacing X by ξ in (4.15) and taking account of the last two relationships,
we find

µ2(τ − k)ξ + µτ(t(ξ)− 2α)W + µ(k − τ)AW

+ 3(LAU − τϕAU) = τϕ∇α− L∇α,
(4.17)

where we have used the first equation of (2.26).
In a direct consequence of (3.12) and (4.8), we obtain

µLW = τU (4.18)

because of µ ̸= 0 on Ω.
In the same way as above, we see from (4.13)
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τ

µ
{t(X)u(Y )− t(Y )u(X)}+ g(K∇XW,Y )− g(K∇Y W,X)

= τ{g(∇Y W,X)− g(∇XW,Y )}.
(4.19)

In the next place, from (2.22) and (2.25) we have ϕU = −µW . Differentiating
this covariantly and using (2.6), we find

g(AU,X)ξ − ϕ∇XU = (Xµ)W + µ∇XW.

Putting X = ξ in this and making use of (2.29), we get

µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (ξµ)W, (4.20)

which enables us to obtain

Wα = ξµ. (4.21)

From now on we assume that

A2ξ = ρAξ + (β − ρα)ξ. (4.22)

From this, and (2.22) and (2.24) we see that

AW = µξ + (ρ− α)W. (4.23)

In the next place, differentiating (4.23) covariantly along Ω, we find

(∇XA)W +A∇XW = (Xµ)ξ + µ∇Xξ +X(ρ− α)W + (ρ− α)∇XW. (4.24)

By taking the inner product with W to this and using (2.26) and (4.23), we
obtain

g((∇XA)W,W ) = −2g(AU,X) +Xρ−Xα (4.25)

because W is a unit orthogonal vector to ξ.
Applying (4.24) by ξ and using (2.26), we also obtain

µg((∇XA)W, ξ) = (ρ− 2α)g(AU,X) + µ(Xµ), (4.26)

which connected to (3.15) gives

µ(∇ξA)W = (ρ− 2α)AU + µ∇µ− kµLW − cU, (4.27)

or, using (3.10), (3.15) and (4.26),

µ(∇WA)ξ = (ρ− 2α)AU − 2cU + µ∇µ. (4.28)

Putting X = ξ in (4.25) and taking account of (4,26), we have

Wµ = ξρ− ξα. (4.29)

Replacing X by ξ in (4.24) and using (4.27), we find
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(ρ− 2α)AU − kµLW − cU + µ∇µ+ µ(A∇ξW − (ρ− α)∇ξW )

= µ(ξµ)ξ + µ2U + µ(ξρ− ξα)W.

Substituting (4.20) and (4.21) into this and making use of (4.18), we find

3A2U − 2ρAU + (αρ− β − c− kτ)U +A∇α+
1

2
∇β − ρ∇α

= 2µ(Wα)ξ + (2α− ρ)(ξα)ξ + µ(ξρ)W.
(4.30)

On the other hand, if we put X = µW in (4.1) and take account of (2.23),
(2.24) and (4.23), then we find αAU + (β − ρα+ 2kτ)U = 0, which shows

AU = λU, (4.31)

where the function λ is defined, using Remark 4.1, by

αλ = ρα− β − 2kτ. (4.32)

Differentiating (4.31) covariantly along Ω, we find

(∇XA)U +A∇XU = (Xλ)U + λ∇XU.

If we take the skew-symmetric part of this, then we get

µ(kτ − c)(η(Y )w(X)− η(X)w(Y )) + g(A∇XU, Y )− g(A∇Y U,X)

= (Xλ)u(Y )− (Y λ)u(X) + λ{g(∇XU, Y )− g(∇Y U,X)},

where we have used (2.22), (2.25), (3.15) and (4.9). Replacing X by U in this
and using (4.31), we get

A∇UU − λ∇UU = (Uλ)U − µ2∇λ. (4.33)

Taking the inner product with W to this and remembering (4.23), we obtain

µg(ξ,∇UU) + µ2(Wλ) + (ρ− α− λ)g(W,∇UU) = 0. (4.34)

By the way, from KU = τU , we have

(∇XK)U +K∇XU = τ∇XU, (4.35)

which implies that g((∇XK)U,U) = 0. Because of (3.16), (4.9) and the last
relationship give (∇UK)U = 0, which connected to (4.13) and (4.35) yields
g(W,∇UU) = 0. Thus, (4.34) reformed as

µg(ξ,∇UU) + µ2(Wλ) = 0.

However, the first term of this vanishes identically because of (2.26) and (4.23),
which shows µ(Wλ) = 0 and hence
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Wλ = 0. (4.36)

In the same way, we verify, using (2.26) and (4.23), that

ξλ = 0. (4.37)

Now, differentiating (2.25) covariantly and using (2.5), we find

(∇XA)ξ +AϕAX = (Xα)ξ + αϕAX + (Xµ)W + µ∇XW.

If we put X = µW in this and use (4.23), (4.28) and (4.31), then we find

µ2∇WW −µ∇µ = (2ρλ− 3αλ+α2−αρ− 2c)U −µ(Wα)ξ−µ(Wµ)W. (4.38)

5. Semi-invariant submanifolds satisfying RξS = SRξ

We will continue our arguments under the same hypotheses Rξϕ = ϕRξ and
dt = 2θω for a scalar θ(̸= 2c) as those in section 4. Further, we assume that

RξS = SRξ (5.1)

holds on M .
From (2.15) the Ricci tensor S of type (1,1) of M is given by

SX = c{(2n+ 1)X − 3η(X)ξ}+ hAX −A2X + kKX −K2X − L2X

by virtue of (3.10).
By the way, we see, using (3.5) and (3.10), that

K2X = (θ − c)(X − η(X)ξ) + k2η(X)ξ. (5.2)

Substituting this and (3.14) into the last equation and using (4.10), we obtain

SX = {(2n+1)c−2(θ−c)}X+(2(θ−c)−k2−3c)η(X)ξ+hAX−A2X+kKX,
(5.3)

which connected to (3.10) yields

Sξ = 2(n− 1)cξ + hAξ −A2ξ. (5.4)

Because of (3.10), we can write (2.30) as

RξX = cX − (k2 + c)η(X)ξ + αAX − η(AX)Aξ + kKX.

Combining this to (5.3), the condition (5.1) gives
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(k2 + c){η(X)Sξ − g(Sξ,X)ξ}+ α(AS − SA)X + k(KS − SK)X

+ g(SAξ,X)Aξ − g(Aξ,X)SAξ = 0.
(5.5)

On the other hand, from (5.4) we have

g(Sξ,X)ξ − η(X)Sξ = h{g(Aξ,X)ξ − η(X)Aξ}+ η(X)A2ξ − g(A2ξ,X)ξ.

Because of (3.18) and (3.20) we also have

(A2K −KA2)X = k{t(X)Aξ − g(Aξ,X)t}+ k{t(AX)ξ − η(X)At},
which together with (5.3) implies that

(SK −KS)X = kh{t(X)ξ − η(X)t}+ k{g(Aξ,X)t− t(X)Aξ}
+ k{η(X)At− t(AX)ξ}.

However, we see from (3.20) and (5.3)

SAξ = {(2n+ 1)c− 2τ2 + k2}Aξ + k2(t− t(ξ)ξ)− α(k2 − τ2)ξ

+ hA2ξ −A3ξ,

which enables us to obtain

g(SAξ,X)Aξ − g(Aξ,X)SAξ

= k2{t(X)Aξ − g(Aξ,X)t} − {α(k2 − τ2) + t(ξ)k2}(η(X)Aξ − g(Aξ,X)ξ)

+ h{g(A2ξ,X)Aξ − g(Aξ,X)A2ξ}+ g(Aξ,X)A3ξ − g(A3ξ,X)Aξ.

Substituting above three equations into (5.5), we find

g(A3ξ,X)Aξ − g(Aξ,X)A3ξ

= {hAξ − (k2 + c)ξ}g(A2ξ,X)− {hg(Aξ,X)− (k2 + c)η(X)}A2ξ

+ k2{η(X)At− t(AX)ξ}+ k2(h− α)(t(X)ξ − η(X)t)

+ {h(k2 + c) + t(ξ)k2}(g(Aξ,X)ξ − η(X)Aξ).

(5.6)

Putting X = ξ in this, we have

γAξ − αA3ξ = β{hAξ − (k2 + c)ξ} − (hα− k2 − c)A2ξ (5.7)

+k2(At−t(AX)ξ)+k2(h−α)(t(ξ)ξ−t)+{h(k2+c)+t(ξ)k2}(αξ−Aξ).

By the way, we see from (2.22) and (4.12)

k(t− t(ξ)ξ) = (k + τ)(αξ −Aξ),

which tells us that
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kAt = {kt(ξ) + α(k + τ)}Aξ − (k + τ)A2ξ. (5.8)

Using these facts, (5.7) reformed as

αA3ξ = (hα+ kτ − c)A2ξ+ {γ−βh+h(c− kτ)}Aξ+(β−hα)(c− kτ)ξ. (5.9)

Substituting this and (5.8) into (5.6), we find

(kτ − c){g(A2ξ,X)Aξ − g(Aξ,X)A2ξ}
= α(kτ − c){g(A2ξ,X)ξ − η(X)A2ξ}+ y{g(Aξ,X)ξ − η(X)Aξ}

for some function y, which connected to (2.22) implies that

µ(kτ − c){w(X)A2ξ − g(A2ξ,X)W} = xµ{w(X)ξ − η(X)W}
for some function x. If we put X = Aξ in this, then we get

(kτ − c){µ2A2ξ − µγW} = xµ(µξ − αW ). (5.10)

We notice here that kτ − c ̸= 0.
In fact, if not, then we have kτ−c = 0 and hence k is a constant on this subset.

Thus (3.23) implies that t(ϕX) = 2u(X) for any vector X, which together with
(4.12) gives k − τ = 0 on the set. And consequently we have τ2 − c = 0, a
contradiction because θ − 2c ̸= 0 was assumed.
Therefore (5.10) yields

A2ξ = ρAξ + (β − ρα)ξ (5.11)

on Ω, where we have used (2.22), and have put µρ = g(A2ξ,W ). Thus, (5.1)
implies (4.22) and hence (4.23). From (4.22) we have

αA3ξ = α(ρ2 + β − ρα)Aξ + ρα(β − ρα)ξ.

Comparing this with (5.9), we obtain

(h− ρ)(β − ρα+ kτ − c) = 0. (5.12)

From (4.8), we can write (3.21) as

∇k = (ξk)ξ + (k − τ)U. (5.13)

On the other hand, if we put X = µW in (4.14) and take account of (2.23)
and (4.23), then we get

(θ − c){AU − (ρ− α)U}+ kτ{AU + (ρ− α)U} = 0,

which connected to (4.31) yields

λ(k + τ) + (ρ− α)(k − τ) = 0. (5.14)

In the next place, we will prove the following lemma :
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Lemma 5.1. If M satisfies (4.1), (4.23) and dt = 2θω for a scalar θ(̸= 2c),
then we have k − τ ̸= 0 on Ω.

Proof. If not, then we have k − τ = 0 on an open subset of Ω. We discuss our
argument on such a place. Then we have λ = 0 because of (5.14) and Remark
4.2. So (4.31) and (4.32) turn out respectively to

AU = 0, (5.15)

β − ρα+ 2τ2 = 0. (5.16)

We also have from (4.11) t = t(ξ)ξ − 2ϕU , which shows t(Y ) = t(ξ)η(Y ) −
2g(ϕU, Y ) for any vector Y . Differentiating this covariantly and using (2.5),
(2.6) and (5.15), we find

(∇Xt)Y = X(t(ξ))η(Y ) + t(ξ)g(ϕAX, Y )− 2g(ϕ∇XU, Y ),

from which, taking the skew-symmetric part with respect to X and Y and using
(3.1),

2θg(ϕX, Y ) = X(t(ξ))η(Y )− Y (t(ξ))η(X) + t(ξ){g(ϕAX, Y )− g(ϕAY,X)}
+ 2{g(ϕ∇Y U,X)− g(ϕ∇XU, Y )}.

On the other hand, we verify from (2.27) that

g(ϕ∇XU, Y )− g(ϕ∇Y U,X) + (Xα)η(Y )− (Y α)η(X)

= −2cg(ϕX, Y )− 2g(AϕAX, Y ) + α{g(ϕAX, Y )− g(ϕAY,X)}.
Combining the last two equations, it follows that

2(θ − 2c)g(ϕX, Y ) + t(ξ){g(ϕAX, Y )− g(ϕAY,X)}
= X(t(ξ))η(Y )− Y (t(ξ))η(X) + 2{2g(AϕAX, Y ) + α(g(ϕAX, Y )

− g(ϕAY,X)) + (Xα)η(Y )− (Y α)η(X)}.

Putting Y = ξ in this and remembering (5.15), we find

X(t(ξ)) + 2(Xα) = {ξ(t(ξ)) + 2ξα}η(X) + (t(ξ) + 2α)u(X). (5.17)

Substituting this into the last equation, we obtain

2(θ − 2c)g(ϕX, Y ) = (t(ξ) + 2α){u(X)η(Y )− u(Y )η(X)

+ g(ϕAX, Y )− g(ϕAY,X)}+ 4g(AϕAX, Y ).

If we put X = µW in this and take account of (2.23), (4.23) and (5.15), then
we get

2(θ − 2c) = (t(ξ) + 2α)(ρ− α). (5.18)
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In the next step, differentiating (4.13) covariantly, we find

(∇XK)W +K∇XW + τ∇XW = 0,

from which, taking the skew-symmetric part and using (3.16) and (4.9),

τ

µ
{t(Y )u(X)− t(X)u(Y )}+ g(K∇XW,Y )− g(K∇Y W,X)

= τ{(∇Y W )X − (∇XW )Y }.
(5.19)

If we put X = ξ in this and make use of (2.26), (4.13), (4.20) and (5.15),
then we find

K∇α+ τ∇α = 2τ(ξα)ξ + τ(2α+ t(ξ))U. (5.20)

Replacing X by W in (5.19) and making use of (4.38), we have

µ(K∇µ+ τ∇µ) = 2τ(µ2 − α2 + ρα+ 2c)U + 2µτ(Wα)ξ.

If we take the inner product with U to this and take account of (4.8), then
we obtain µ(Uµ) = (µ2−α2+ρα+2c)µ2, which together with (2.24) and (5.16)
gives

µ(Uµ) = 2(µ2 + τ2 + c)µ2. (5.21)

On the other hand, differentiating (5.15) covariantly with respect to ξ, we
find (∇ξA)U+A∇ξU = 0, which together with (4.16), (5.11) and (5.15) implies
that

(∇ξA)U + (αρ− β)Aξ − α(β − ρα)ξ +Aϕ∇α = 0.

Applying by ϕ, we have

ϕ(∇ξA)U + (αρ− β)U + ϕAϕ∇α = 0. (5.22)

Since we see from (3.15)

(∇UA)ξ − (∇ξA)U = µ(τ2 + c)W

by virtue of (2.25), (3.10) and (4.9), it follows that

ϕ(∇UA)ξ = ϕ(∇ξA)U + (τ2 + c)U. (5.23)

We also have from (2.27)

∇XU + g(A2ξ,X)ξ = ϕ(∇XA)ξ + ϕAϕAX + αAX,

which connected to (5.15) gives ∇UU = ϕ(∇UA)ξ. Thus, (5.23) reformed as

∇UU = ϕ(∇ξA)U + (τ2 + c)U.

Combining this to (5.22) and using (5.16), it follows that
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∇UU = (c− τ2)U − ϕAϕ∇α. (5.24)

If we apply by A and take account of (4.33) with λ = 0 and (5.15), then we
have AϕAϕ∇α = 0.

Now, taking the inner product with U to (4.30) and making use of (2.22) ∼
(2.25) and (4.23), we obtain

µ(Uµ) = (c− τ2)µ2 + (ρ− α)Uα. (5.25)

However, applying (5.20) by U and using (4.8), we find 2Uα = (t(ξ)+2α)µ2,
which connected to (5.18) gives (ρ − α)Uα = (θ − 2c)µ2. Substituting (5.21)
and this into (5.25), we find 2µ2+3c+3τ2 = θ, which together with (4.10) gives
µ2 + τ2 + c = 0 and consequently µ is a constant. Thus, we see, using (2.24)
and (5.16), that

α(ρ− α) = τ2 − c. (5.26)

Therefore, α(ρ− α) = const. Differentiation gives

(ρ− α)∇α+ α(∇ρ−∇α) = 0,

which connected to (4.29) implies that (ρ − α)ξα = 0, where we have used
µ = const. Accordingly we have ξα = 0 by virtue of (5.26) and the fact that
θ − 2c ̸= 0.

Using (4.10) and (5.26), we can write (5.18) as

2(θ − 2c)α = (θ − 2c)(t(ξ) + 2α).

Thus, it follows that t(ξ) = 0 provided that θ− 2c ̸= 0. Hence, (5.17) turns out
to be ∇α = αU , which implies du = 0. Therefore, it is clear that ∇UU = 0
because of µ = const, which connected to (5.24) yields (c− τ2)U = αϕAϕU . So
we have c− τ2 = α(ρ−α), where we have used (2.23), (2.25) and (4.23). From
this and (5.26) it follows that θ− 2c = 0, a contradiction. Hence, Lemma 5.1 is
proved. □

Lemma 5.2. Under the same hypotheses as those in Lemma 5.1, we have on
Ω

∇k = (k − τ)U. (5.27)

Proof. Differentiating (5.13) covariantly along Ω, we find

Y (Xk) = Y (ξk)η(X) + (ξk)g(ϕAX, Y ) + (Y k)u(X) + (k − τ)∇Y u(X),

from which, taking the skew-symmetric part, it follows that
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η(X)Y (ξk)−η(Y )X(ξk) + (ξk){η(Y )u(X)− η(X)u(Y )

+ g(ϕAY,X)− g(ϕAX, Y )} = (k − τ)du(X,Y ),
(5.28)

where d denotes the operator of the exterior derivative.
Now, we assumed that β − ρα + kτ − c ̸= 0 on Ω. Then we have ρ = h

because of (5.12), So (5.14) reformed as λ(k + τ) + (h− α)(k − τ) = 0.
Differentiation this with respect to ξ gives

(h− α+ λ)ξk + (k − τ)(ξh− ξα) = 0, (5.29)

where we have used (4.37).
On the other hand, we take an orthonormal frame filed {e0 = ξ, e1 =

W, e2, · · · , en−1, en = ϕe1 = 1
µU, en+1 = ϕe2, · · · , e2n−2 = ϕen−1} of M . Taking

the trace of (2.27), we obtain

2n−2∑
i=0

g(ϕ∇eiU, ei) = ξα− ξh.

Putting X = ϕei and Y = ei in (5.28) and summing up for i = 1, 2, · · · , n−1,
we have

(k − τ)

2n−2∑
i=0

du(ϕei, ei) = ξk(α− h),

where we have used (2.22), (2.25), (4.23) and (4.31). Combining the last two
relationships, we get

(h− α)ξk = (k − τ)(ξh− ξα).

From this and (5.29) we see that (2h− 2α+ λ)ξk = 0.
If ξk ̸= 0 on Ω, then we have λ = 2(α − h), which together with (5.14)

implies that (h − α)(k + 3τ) = 0 on this subset. We discuss our arguments on
such a place. So we have h − α = 0 from the last equation and hence λ = 0.
Consequently we have µ2 + 2kτ = 0 by virtue of (2.24) and (4.32) with ρ = h.
Differentiation with respect to ξ gives µ(ξµ) + τ(ξk) = 0.

However, if we take the inner product with U to (4.28) and remember (2.24),
(4.31) and the fact that h−α = 0 and λ = 0, then we have µ∇µ = (µ2+kτ+c)U
and consequently ξµ = 0. Hence we have τ(ξk) = 0, a contradiction. Thus, we
have (5.27) provided that h = ρ.

Accordingly, we may only consider that the case where

β − ρα = c− kτ (5.30)

because of (5.12). Combining this to (4.32), we obtain

αλ+ kτ + c = 0. (5.31)
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Because of (5.30) and (5.31) we can write (5.14) as

(k − τ)(β − α2) + (k − τ)(kτ − c) = (k + τ)(kτ + c),

which together with (2.24) yields (k − τ)µ2 = k(τ2 + τ + 2c). Differentiation
gives

2µ(k − τ)∇µ = {2(τ2 + c)− µ2}∇k,

which connected to (5.13) and Lemma 5.1 gives

Wµ = 0. (5.32)

Since we have already showed that g(W,∇UU) = 0, it is seen that du(W,U) =
0 because of (5.32). So if we put X = U and Y = W in (5.28) and make use of
(4.23) and (4.31), then we obtain ξk(λ + ρ − α) = 0 and hence λ + ρ − α = 0
if ξk ̸= 0, which together with (5.14) gives λ = 0. From this and (5.31) we see
that kτ + c = 0, a contradiction. This completes the proof of Lemma 5.2. □

Owing to Lemma 5.1 and Lemma 5.2, we verify from (5.28) that du = 0.
Hence we have du(ξ,X) = 0 for any vector X on Ω, which together with (2.5),
(2.26), (4.16) and (4.31) implies that

3λϕU +Aξ − βξ + ϕ∇α+ µAW = 0,

or, using (2.22), (2.23) and (5.14)

∇α = (ξα)ξ + (ρ− 3λ)U. (5.33)

We are now going to prove that ξα = 0.
Differentiation (5.14) with respect to ξ gives ξρ − ξα = 0 with the aid of

(4.37), Lemma 5.1 and Lemma 5.2.
Using (4.31), (5.33) and this fact, we can write (4.30) as

1

2
∇β + (2ρλ+ αρ− β − c− kτ − ρ2)U = {2µ(Wα) + α(ξα)}ξ. (5.34)

Since we have Wµ = 0 because of (4.29), if we take the inner product W to
the last equation and take account of (2.24), then we obtain α(Wα) = 0 and
hence Wα = 0 by virtue of Remark 4.1.

Differentiating (4.32) with respect to ξ and making use of (4.37), Lemma 5.1
and the fact that ξρ− ξα = 0, we find ξβ = (ρ+ α− λ)ξα.

On the other hand, if we differentiate (2.24) with respect to ξ and remem-
ber Wα = 0 and (4.21), then we have ξβ = 2α(ξα). From this and the last
relationship we get (λ+ α− ρ)ξα = 0.

Now, if ξα ̸= 0 on Ω, the we have λ = ρ − α on this subset. We discuss
our arguments on this subset. Then (5.14) yields λk = 0 and hence λ = 0 and
ρ− α = 0. So (5.33) and (5.34) are reduced respectively to
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∇α = (ξα)ξ + αU,
1

2
∇β = α(ξα)ξ + (β + kτ + c)U.

We also have from (4.32) β = α2 − 2kτ , which together with (5.27) yields
∇β = 2α∇α− 2τ(k − τ)U . Combining above equations, it follows that τ2 = c,
that is, θ − 2c = 0, a contradiction. Thus, (5.33) reformed as

∇α = (ρ− 3λ)U. (5.35)

6. Main theorem

First of all, we will prove the following lemma.

Lemma 6.1. Let M be a real (2n−1)-dimensional semi-invariant submanifold
of codimension 3 in a complex space form Mn+1(c), c ̸= 0 satisfying dt = 2θω
for a scalar θ(̸= 2c). Suppose that M satisfies Rξϕ = ϕRξ and at the same time
RξS = SRξ. Then the distinguished normal is parallel in the normal bundle,
where S denotes the Ricci tensor of M .

Proof. We already know that du = 0. So we have from (4.35)

g(K∇XU, Y )− g(K∇Y U,X) + µτ{t(X)w(Y )− t(Y )w(X)} = 0,

where we have used (3.16) and (4.9). Putting X = ξ in this and using (2.25),
(2.26), (4.16) and (4.31), we find

K(3λµW + αAξ − βξ + ϕ∇α) + kµAW + µτt(ξ)W = 0,

which connected to (2.22), (3.10), (3.12), (4.13), (4.23) and (5.35) gives

τt(ξ) + (ρ− α)(k + τ) = 0, (6.1)

or, using (5.14)

τ(k − τ)t(ξ) = λ(k + τ)2. (6.2)

On the other hand, differentiating (4.12) covariantly along Ω, and taking
account of (2.5), (2.6), (4.31) and (5.27), we get

(∇Xt)Y = X(t(ξ))η(Y ) + t(ξ)g(ϕAX, Y ) +
τ

k2
(k − τ)µu(X)w(Y )

− (1 +
τ

k
){λu(X)− g(ϕ∇XU, Y ) + t(∇XY ),

from which taking the skew-symmetric part and using (2.25) and (3.1),
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2θg(ϕX, Y ) +
τ

k2
(k − τ)µ(u(Y )w(X)− u(X)w(Y )) (6.3)

= X(t(ξ))η(Y )− Y (t(ξ))η(X) + t(ξ){g(ϕAX, Y )− g(ϕAY,X)}

− (1 +
τ

k
){λ(u(X)η(Y )− u(Y )η(X))− g(ϕ∇XU, Y ) + g(ϕ∇Y U,X)}.

By the way, we have from (2.27) and (3.15)

g(ϕ∇XU, Y )− g(ϕ∇Y U,X) + (ρ+ λ− 3α)(u(X)η(Y )− u(Y )η(X))

= −2cg(ϕX, Y )− 2g(AϕAX, Y ) + α(g(ϕAX, Y )− g(ϕAY,X)),

where we have used (3.10), (4.31) and (5.35).
Combining the last two equations, we obtain

2θg(ϕX, Y ) +
τ

k2
(k − τ)µ{u(Y )w(X)− u(X)w(Y )} − t(ξ){g(ϕAX, Y )− g(ϕAY,X)}

= X(t(ξ))η(Y )− Y (t(ξ))η(X) + (1 +
τ

k
){2cg(ϕX, Y ) + (ρ− 3λ)(u(X)η(Y )

−u(Y )η(X))− 2g(AϕAX, Y ) + α(g(ϕAX, Y )− g(ϕAY,X))}.

Putting Y = ξ in this and making use of (2.5) and (4.31), we find

X(t(ξ)) = ξ(t(ξ))η(X) + {t(ξ) + (1 +
τ

k
)(λ+ α− ρ)}u(X), (6.4)

which together with (6.1) yields

X(t(ξ)) = ξ(t(ξ))η(X) + (1 +
τ

k
)(λ+ t(ξ))u(X).

Substituting this into the last equation and using (5.14), we find

2θg(ϕX, Y ) +
τ

k2
µ(k − τ){w(X)u(Y )− w(Y )u(X)} (6.5)

= (1 +
τ

k
){(ρ− 2λ+ t(ξ))(u(X)η(Y )− u(Y )η(X))

+2cg(ϕX, Y )+2g(AϕAX, Y )+(ρ+t(ξ))(g(ϕAX, Y )−g(ϕAY,X))}.
Differentiating (6.1) covariantly and remembering (5.27), we find

τX(t(ξ)) = (α− ρ)(k − τ)u(X) + (k + τ)(Xα−Xρ),

which connected to (5.14) yields

τX(t(ξ)) = (k + τ)(Xα−Xρ+ λu(X)). (6.6)

By the way, we see already that ξρ− ξα = 0. Thus, from the last equation,
it follows that ξ(t(ξ)) = 0 and hence (6.4) can be written as

X(t(ξ)) = {t(ξ) + (1 +
τ

k
)(λ− ρ+ α)}u(X),

which together with (6.1) gives
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τX(t(ξ)) = {(k + 2τ +
τ2

k
)(α− ρ) + τλ(1 +

τ

k
)}u(X).

Combining this to (6.6), we get

(k + τ)(∇α−∇ρ+ λU) = (1 +
τ

k
){(k + τ)(α− ρ) + τλ}U,

which together with (5.14) gives

k(∇α−∇ρ) = 2τ(λ+ α− ρ)U, (6.7)

where we have used k + τ ̸= 0.
If we differentiate (6.2) and take account of Lemma 5.1 and itself, we find

λ(k + τ)2U + τ(k − τ)∇t(ξ) = (k + τ)2∇λ+ 2λ(k2 − τ2)U,

which together with (6.6), and Lemma 5.1 and Lemma 5.2 implies that (k +
τ)∇λ = (k − τ)(∇α−∇ρ) + 2τλU , or using (5.14) and (6.7),

(k + τ)∇λ = 6τλU. (6.8)

Now, if we put X = U and Y = W in (6.5) and using (2.23), (4.23) and
(4.31), then we find

2θ +
τ

k2
(k − τ)µ2 = (1 +

τ

k
){2c− 2λ(ρ− α) + (t(ξ) + ρ)(λ+ ρ− α)}.

By the way, it is seen, using (4.32) and (5.14), that (k − τ)2µ2 + 2k(αλ +
τk − τ2) = 0. Thus, the last equation can be written as

θk(k − τ)− ταλ(k − τ)− τ2(k − τ)2

= c(k2 − τ2) + λ2(k + τ)2 − τλ(k + τ)(t(ξ) + ρ).

If we multiply k− τ to this and take account of (4.10), (5.14) and (6.2), then
we obtain

λ2(k + τ)2 + 2ταλ(k − τ) + (k − τ)2(τ2 − c) = 0. (6.9)

Differentiating this covariantly and using (5.27) and (6.8), we find

(k − τ)∇(αλ) = λ{α(k − τ)− 4λ(k + τ)}U.
From this and (5.14) and (5.35), we have

α(k − τ)∇λ+ 6τλ2U = 0,

which together with (6.8) yields λ{α(k − τ) + λ(k + τ)} = 0. Thus, it follows
that α(k− τ) + λ(k+ τ) = 0 by virtue of (6.9), which connected to (5.14) gives
ρ = 2α. Further, we have from the last relationship (k+ τ)∇λ+(k− τ)∇α = 0,
which together with (5.35) and (6.8) gives 6τλ + (k − τ)(2α − 3λ) = 0. Thus,
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it follows that (8τ − 5k)λ = 0, and hence 5k = 8τ because of (6.9).
So, we see, using (5.27), that k is a constant on Ω and hence U = 0, a contra-
diction. This completes the proof. □

According to Lemma 6.1 we prove the following :

Lemma 6.2. Under the same hypotheses as those in Lemma 6.1, we have
K = L = 0, provided that the scalar curvature s of M satisfies

s− 2(n− 1)c ≤ 0.

Remark 6.3. This lemma proved in [16] for the case where θ − 2c < 0 and
c > 0. But, we need the condition s − 2(n − 1)c ≤ 0 for the case where c < 0,
where s is the scalar curvature of M . So we introduce the outline of the proof.

The sketch of Proof. By Lemma 2.2 and Lemma 6.1, we have k = 0 and hence
m = 0 on M because of (3.10). Thus, (3.15)∼(3.20) turn out to be

(∇XA)Y − (∇Y A)X = c{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ}, (6.10)

(∇XK)Y − (∇Y K)X = t(X)LY − t(Y )LX, (6.11)

(∇XL)Y − (∇Y L)X = 0, (6.12)

KA−AK = 0, LA−AL = 0, (6.13)

Since we have Kξ = 0 because of (3.10), differentiating Kξ = 0 covariantly
along M and using (2.5) and (3.12), we find

(∇XK)ξ = −LAX. (6.14)

Since k = 0, (5.2) reformed as

K2X = τ ′(X − η(X)ξ)., (6.15)

where τ ′ = θ − c.
Differentiating (6.15) covariantly along M and using (2.5), we find

(∇XK)KY +K(∇XK)Y = −τ ′{η(Y )ϕAX + g(ϕAX, Y )ξ}.
Using the quite same method as those used to (3.14), we can derive from the

last equation the following :

2(∇XK)KY = τ ′{−2t(X)ϕY + η(X)(ϕA−Aϕ)Y

+ g((ϕA−Aϕ)X,Y )ξ) + η(Y )(ϕA+Aϕ)X},
(6.16)
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where we have used (3.13) and (6.11), which together with (2.5), (3.11) and
(6.11) implies that τ ′U = 0 and hence Aξ = αξ.
Therefore, if we take account of Lemma 5.3 and (3.26), then we obtain

τ ′(Aϕ− ϕA) = 0. (6.17)

In the following, we assume that τ ′ ̸= 0 on M . Then, from this and (6.10)
we can verify the following (cf. [6]) :

A2 = αA+ c(I − η ⊗ ξ), (6.18)

(∇XA)Y = −c{η(Y )ϕX + g(ϕX, Y )ξ}. (6.19)

Using (6.17), we can write (6.16) as

K(∇XK)Y = τ ′{−t(X)ϕY + η(X)ϕAY + g(ϕAX, Y )ξ}.
If we transform this by K and make use of (3.12), (6.11), (6.14) and (6.15),

then we have

(∇XK)Y = t(X)LY − η(X)ALX − η(Y )LAX − g(ALX, Y )ξ. (6.20)

Differentiating (3.12) covariantly along M and using (2.6) and the last equa-
tion, we find

(∇XL)Y = −t(X)KY + η(X)AKY + η(Y )AKX + g(AKX,Y )ξ. (6.21)

If we take the trace of L in this and remember (3.20) and the fact that
TrK = TrL = 0 and Aξ = αξ, we verify that

Tr(AK) = 0, (6.22)

which connected to (6.18) gives

Tr(A2K) = 0. (6.23)

Differentiating (6.20) covariantly along M and using (6.22), (6.23) and the
previously obtained formulas and the Ricci indentity for K, we have (for detail,
see (4.19) of [16]).

(h+ 3α)AL = 2{(n+ 1)θ − 2(n+ 2)c}L,
which connected to (3.14) yields

(h+ 3α)(AX − αη(X)ξ) = 2{(n+ 1)θ − 2(n+ 2)c}(X − η(X)ξ).

Taking the trace of this, we have

(h+ 3α)(h− α) = 4(n− 1){(n+ 1)θ − 2(n+ 2)c}, (6.24)
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where we put

δ = 4(n− 1){(n+ 1)θ − 2(n+ 2)c}, (6.25)

In the same way as above, we also obtain (for detail, see (4.21) of [16])

(4θ − 12c− h(2) − 3α2)AK = {4cα− (θ − 2c)(h− α)}K,

which connected to (6.15) yields

(4θ − 12c− h(2) − 3α2)(h− α) = 2(n− 1){4cα− (θ − 2c)(h− α)}. (6.26)

Since we have h(2) = αh+ 2(n− 1)c from (6.18), combining (6.24) to (6.26),
we obtain

(θ − 3c)(h− α) = 2(n− 1)α(θ − 2c). (6.27)

On the other hand, from (5.3) we verify that the scalar curvature s of M is
given by

s = 4(n2 − 1)c− 4(n− 1)τ ′ + h2 − h(2),

which connected to (6.18) gives

s = 2(n− 1)(2n+ 1)c− 4(n− 1)τ ′ + h(h− α). (6.29)

By the way, it is seen, using (4.10), that θ − 3c ̸= 0 for c < 0. But we also
have θ − 3c ̸= 0 for c > 0 if s− 2(n− 1)c ≤ 0.

In fact, if not, then we have θ = 3c on this open subset of M . We discuss
our arguments on such a place. So we have α = 0 because of (6.28). Hence
(6.18) and (6.25) reformed respectively as h(2) = 2(n − 1)c, h2 = 4(n − 1)2c.
Using these facts and (4.10), we can write (6.29) as s−2(n−1)c = 4(n−1)(2n−
3)c, a contradiction because s− 2(n− 1)c ≤ 0.
Thus, we can write (6.27) as

h− α =
2(n− 1)

θ − 3c
(θ − 2c)α.

Substituting this into (6.24), we obtain

4(n− 1)(θ − 2c){(n+ 1)θ − 2(n+ 2)c}α ∗ 2 = δ(θ − 3c)2.

which together (6.25) gives

δ{(θ − 3c)2 − (θ − 2c)α2} = 0. (6.30)

We notice here that δ ̸= 0 if c < 0. We also see that δ ̸= 0 for c > 0. In fact.
if not, them we have δ = 0. Then we have by (6.25)

θ − c =
n+ 3

n+ 1
c.
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Using this fact and (6.24), we can write (6.29) as

s− 2(n− 1)c =
4(n− 1)

n+ 1
(n2 − 3)c+ ϵ2,

where ϵ2 = 0 or 12α2, a contradiction because c > 0 and s− 2(n− 1)c ≤ 0 was
assumed. Therefore (6.30) turns out to be

(θ − 3c)2 = (θ − 2c)α2 = 0. (6.31)

Thus, if we combine (6.27) to (6.31). then we obtain α(h−α) = 2(n−1)(θ−
3c), which together with (6.24) yields

h(h− α) = 2(n− 1)(2n− 1)τ ′ − 4n(n− 1)c.

Using this, we can write (6.29) as

s− 2(n− 1)c = 2(n− 1)(2n− 3)τ ′.

Therefore we have τ ′ = 0 if s − 2(n − 1)c ≤ 0. This completes the proof of
Lemma 6.2. □

Let N0(p) = {v ∈ T⊥
p (M) : Av = 0} and H0(p) be the maximal J-invariant

subspace of N0(p). As a consequence of Lemma 6.2, we have K = L = 0,
the orthogonal complement of H0(p) is invariant under parallel translation with
respect to the normal connection because of ∇⊥C = 0. Thus, by the reduction
theorem in [9], [21] and by Lemma 3.2 and Lemma 3.3, we conclude that

Theorem 6.4. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex space form Mn+1(c), c ̸= 0 with
constant holomorphic sectional curvature 4c such that the third fundamental
form t satisfies dt = 2θω for a scalar θ(̸= 2c), where ω(X,Y ) = g(ϕX, Y ) for
any vector fields X and Y on M . If M satisfies Rξϕ = ϕRξ and at the same
time RξS = SRξ, then M is a real hypersurface in a complex space form Mn(c),
c ̸= 0, provided that s− 2(n− 1)c ≤ 0, where s denotes the scalar curvature of
M .

Since we have ∇⊥C = 0, we can write (2.16) and (4.1) as

(∇XA)Y − (∇Y A)X = c{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},
α(ϕAX −AϕX)− g(Aξ,X)U − g(U,X)Aξ = 0

respectively. Making use of (2.5), (2.6) and the above equations, it is prove in
[16] that g(U,U) = 0, that is, M is a Hopf real hypersuface. Hence, we conclude
that α(Aϕ − ϕA) = 0 and hence Aξ = 0 or Aϕ = ϕA. Here, we note that the
case α = 0 correspond to the case of tube of radius π/4 in PnC([5],[6]). But, in
the case HnC it is known that α never vanishes for Hopf hypersurfaces (cf. [3])
Thus, owing to Theorem 6.4, Theorem O and Theorem MR, we have
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Main Theorem. Let M be a real (2n− 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex space form Mn+1(c), c ̸= 0 with
constant holomorphic sectional curvature 4c such that the Ricci tensor S satisfies
RξS = SRξ and the third fundamental form t satisfies dt = 2θω for a scalar
θ(̸= 2c) where, S denotes the Ricci tensor of M . Then Rξϕ = ϕRξ holds on
M if and only if Aξ = 0 or M is locally congruent to one of the following
hypersurfaces :

(I) in case that Mn(c) = PnC with η(Aξ) ̸= 0 if s− 2(n− 1)c ≤ 0,
(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and r ̸= π/4,
(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, ..., n−

2}, where 0 < r < π/2 and r ̸= π/4;
(II) in case that Mn(c) = HnC if s− 2(n− 1)c ≤ 0,

(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-

plane Hn−1C,
(A2) a tube over a totally geodesic HkC for some k ∈ {1, ..., n− 2},

where, s denotes the scalar curvature of M .
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