BACH ALMOST SOLITONS IN PARASASAKIAN GEOMETRY

Uday Chand De and Gopal Ghosh

Abstract

If a paraSasakian manifold of dimension $(2 n+1)$ represents Bach almost solitons, then the Bach tensor is a scalar multiple of the metric tensor and the manifold is of constant scalar curvature. Additionally it is shown that the Ricci operator of the metric g has a constant norm. Next, we characterize 3-dimensional paraSasakian manifolds admitting Bach almost solitons and it is proven that if a 3-dimensional paraSasakian manifold admits Bach almost solitons, then the manifold is of constant scalar curvature. Moreover, in dimension 3 the Bach almost solitons are steady if $r=-6$; shrinking if $r>-6$; expanding if $r<-6$.

1. Introduction

ParaSasakian (in short, ps) manifolds were introduced by Adati and Matsumoto in 1977 [1] as a special case of an almost paracontact (in short, apc) manifold introduced by Sato [26]. However, in [21] Kaneyuki and Kozai defined an apc manifold on pseudo-Riemannian manifold \mathcal{N} of dimension $(2 n+1)$ and constructed the almost paracomplex shape on $\mathcal{N}^{2 n+1} \times \mathbb{R}$. The primary difference among an apc manifold within the sense of Sato [26] and Kaneyuki et al. [22] is the signature of the metric. In 2009, Zamkovoy [29] defined a ps manifold as a normal paracontact manifold by taking pseudo-Riemannian metric and the author obtains a condition for a paracontact manifold to be a paraSasakian manifold.

Bach tensor was introduced [2] by Bach to observe conformal geometry in early 1920's and showed that Bach tensor is a trace-free tensor of rank 2 which is conformally invariant in dimension 4. Therefore, as an alternative of the Hilbert-Einstein functional, one chooses the functional

$$
\begin{equation*}
\mathcal{W}(g)=\int_{\mathcal{N}}\|\mathbf{C}\|_{g}^{2} d \mu_{g} \tag{1}
\end{equation*}
$$

Received May 28, 2022; Revised November 5, 2022; Accepted November 22, 2022.
2020 Mathematics Subject Classification. Primary 53C15, 53C25.
Key words and phrases. Bach tensor, Cotton tensor, paraSasakian manifold.
for a 4-dimensional manifold, where \mathbf{C} denotes the Weyl tensor of type $(1,3)$ defined by

$$
\begin{align*}
\mathbf{C}\left(Z_{1}, Z_{2}\right) Z_{3}= & \mathbf{R}\left(Z_{1}, Z_{2}\right) Z_{3}-\frac{1}{2 n-1}\left[\mathbf{S}\left(Z_{2}, Z_{3}\right) Z_{1}-\mathbf{S}\left(Z_{1}, Z_{3}\right) Z_{2}\right. \tag{2}\\
& \left.+g\left(Z_{2}, Z_{3}\right) \mathbf{Q} Z_{1}-g\left(Z_{1}, Z_{3}\right) \mathbf{Q} Z_{2}\right] \\
& +\frac{r}{2 n(2 n-1)}\left[g\left(Z_{2}, Z_{3}\right) Z_{1}-g\left(Z_{1}, Z_{3}\right) Z_{2}\right]
\end{align*}
$$

where \mathbf{R} denotes the Riemannian curvature tensor, \mathbf{S} being the Ricci tensor and \mathbf{Q} indicates the Ricci operator defined by $g\left(\mathbf{Q} Z_{1}, Z_{2}\right)=\mathbf{S}\left(Z_{1}, Z_{2}\right)$ for all smooth vector fields Z_{1}, Z_{2} and Z_{3}. On any Riemannian manifold (\mathcal{N}, g) of dimension $(2 n+1)$, the Bach tensor \mathcal{B} of type $(0,2)$ is defined by

$$
\begin{align*}
\mathcal{B}\left(Z_{1}, Z_{2}\right)= & \frac{1}{2 n-2} \sum_{i, j=1}^{n}\left(\left(\nabla_{v_{i}} \nabla_{v_{j}} \mathbf{C}\right)\left(Z_{1}, v_{i}\right) v_{j}, Z_{2}\right) \tag{3}\\
& +\frac{1}{2 n-1} \sum_{i, j=1}^{n} \mathbf{S}\left(v_{i}, v_{j}\right) \mathbf{C}\left(Z_{1}, v_{i}, v_{j}, Z_{2}\right),
\end{align*}
$$

$\left\{v_{i}\right\}_{i=1}^{2 n+1}$ being a local orthonormal basis of the tangent space at each point of the manifold.

Utilizing the expression of Cotton tensor [28]

$$
\begin{align*}
\mathbf{C}_{0}\left(Z_{1}, Z_{2}\right) Z_{3}= & \left(\nabla_{Z_{1}} \mathbf{S}\right)\left(Z_{2}, Z_{3}\right)-\left(\nabla_{Z_{2}} \mathbf{S}\right)\left(Z_{1}, Z_{3}\right) \tag{4}\\
& -\frac{1}{4 n}\left[\left(Z_{1} r\right) g\left(Z_{2}, Z_{3}\right)-\left(Z_{2} r\right) g\left(Z_{1}, Z_{3}\right)\right]
\end{align*}
$$

and the Weyl tensor (2), the Bach tensor can be expressed as

$$
\begin{equation*}
\left.\mathcal{B}\left(Z_{1}, Z_{2}\right)=\frac{1}{2 n-1} \sum_{i=1}^{n}\left[\left(\nabla_{v_{i}} \mathbf{C}_{0}\right)\left(v_{i}, Z_{1}\right) Z_{2}\right)+\mathbf{S}\left(v_{i}, v_{i}\right) \mathbf{C}\left(Z_{1}, v_{i}, v_{i}, Z_{2}\right)\right] \tag{5}
\end{equation*}
$$

for all smooth vector fields Z_{1} and Z_{2}.
For more information about Bach tensor, we confer the reader ([5, 12, 14, 16, 18,27]) and references therein.

In [11], Das and Kar investigate the various aspects of Bach flows on product manifolds. They compare their results with Ricci flow. In general relativity, such flow is proposed in [4] to characterize the Harava-Lifschitz gravity and short time existence of such flow was investigated by Bahuaud and Helliwell in [3]. In 2013, Cao and Chen published their work on Bach flat gradient shrinking Ricci solitons in [10]. Later, the author Ho [20] studied depthly the solitons of the Bach flow and bach flows on a four dimensional Lie group. On four dimension the Bach flow was also characterized by Helliwell on locally homogeneous product manifolds in 2020 [19]. Recently Ghosh [17] studied Bach almost solitons in Riemannian geometry, defined by

$$
\begin{equation*}
\left(£_{V} g\right)\left(Z_{1}, Z_{2}\right)+2 \mathcal{B}\left(Z_{1}, Z_{2}\right)=2 \lambda g\left(Z_{1}, Z_{2}\right) \tag{6}
\end{equation*}
$$

$£_{V}$ being the Lie derivative along the vector field V and V is the potential vector field; λ is the soliton constant.

The present paper is structured as follows: Section 2, contains some basic formulas of paraSasakian manifolds. Section 3 deals with the study of Bach almost solitons in a paraSasakian manifold. Finally, we consider 3-dimensional paraSasakian manifolds admitting Bach almost solitons.

2. ParaSasakian manifolds

Let $\mathcal{N}^{2 n+1}$ be a $(2 n+1)$-dimensional smooth manifold. If there exit a tensor field ϕ of type (1,1), a vector field ζ and a 1-form τ on $\mathcal{N}^{2 n+1}$ fulfilling the following relation ([6, 7, 26])

$$
\begin{equation*}
\phi^{2}=I-\tau \otimes \zeta, \quad \eta(\zeta)=1, \phi \zeta=0, \tau \circ \phi=0 \tag{7}
\end{equation*}
$$

where I is the identity transformation, then the triplet (ϕ, ζ, τ) is an apc structure and the manifold is an apc manifold.

If an apc manifold $\mathcal{N}^{2 n+1}$ with an apc structure (ϕ, ζ, τ) admits a pseudoRiemannian metric g such that [21]

$$
\begin{equation*}
g\left(Z_{1}, Z_{2}\right)=-g\left(\phi Z_{1}, \phi Z_{2}\right)+\tau\left(Z_{1}\right) \tau\left(Z_{2}\right) \tag{8}
\end{equation*}
$$

for all vector fields Z_{1} and Z_{2}, then we say that $\mathcal{N}^{2 n+1}$ is an apc structure (ϕ, ζ, τ, g) and such a metric g is called a compatible metric. The fundamental 2 -form of $\mathcal{N}^{2 n+1}$ is defined by

$$
\Phi\left(Z_{1}, Z_{2}\right)=g\left(Z_{1}, \phi Z_{2}\right)
$$

An apc metric structure becomes a paracontact metric structure if

$$
d \tau\left(Z_{1}, Z_{2}\right)=g\left(Z 1, \phi Z_{2}\right)
$$

for all vector fields Z_{1} and Z_{2}, where

$$
d \tau\left(Z_{1}, Z_{2}\right)=\frac{1}{2}\left[Z_{1} \tau\left(Z_{2}\right)-Z_{2} \tau\left(Z_{1}\right)-\tau\left(\left[Z_{1}, Z_{2}\right]\right)\right]
$$

[Z_{1}, Z_{2}] being the Lie bracket of Z_{1} and Z_{2}.
Paracontact manifolds have been studied by numerous authors such as Calvaruso ([8, 9]), Mertin-Molina [25], Kaneyuki and Willams [22], Zamkovoy et al. [30] and lots of others.

An apc manifold is called normal $([23,29])$ if and only if the tensor $N_{\phi}-$ $2 d \tau \otimes \xi$ vanishes identically, N_{ϕ} being the Nijenhuis tensor of $\phi: N_{\phi}\left(Z_{1}, Z_{2}\right)=$ $[\phi, \phi]\left(Z_{1}, Z_{2}\right)=\phi^{2}\left[Z_{1}, Z_{2}\right]+\left[\phi Z_{1}, \phi Z_{2}\right]-\phi\left[\phi Z_{1}, Z_{2}\right]-\phi\left[Z_{1}, \phi Z_{2}\right]$. A normal paracontact metric manifold is known as a paraSasakian manifold. It is known [29] that an apc manifold is a paraSasakian manifold if and only if

$$
\begin{equation*}
\left(\nabla_{Z_{1}} \phi\right) Z_{2}=-g\left(Z_{1}, Z_{2}\right) \zeta+\tau\left(Z_{2}\right) Z_{1} \tag{9}
\end{equation*}
$$

for all vector fields Z_{1}, Z_{2}, where ∇ is the Levi-Civita connection of the pseudoRiemannian metric. From the above equation it follows that

$$
\begin{equation*}
\nabla_{Z_{1}} \zeta=-\phi Z_{1} . \tag{10}
\end{equation*}
$$

Moreover, in a ps manifold the curvature tensor \mathbf{R}, the Ricci tensor \mathbf{S} and the Ricci operator \mathbf{Q} defined by $g\left(\mathbf{Q} Z_{1}, Z_{2}\right)=\mathbf{S}\left(Z_{1}, Z_{2}\right)$ satisfy [29]

$$
\begin{gather*}
\mathbf{R}\left(Z_{1}, Z_{2}\right) \zeta=-\left(\tau\left(Z_{2}\right) Z_{1}-\tau\left(Z_{1}\right) Z_{2}\right) \tag{11}\\
\mathbf{R}\left(\zeta, Z_{1}\right) Z_{2}=-g\left(Z_{1}, Z_{2}\right)+\tau\left(Z_{2}\right) Z_{1} \tag{12}\\
\mathbf{S}\left(Z_{1}, \zeta\right)=-2 n \tau\left(Z_{1}\right), \tag{13}\\
\mathbf{Q} \zeta=-2 n \zeta . \tag{14}
\end{gather*}
$$

ParaSasakian manifolds have been studied by several authors such as Ghosh et al. [13], De and Sarkar [15], Erken [24], Zamkovoy [29] and many others.

Zamkovoi [29] proved the following:
Proposition 2.1. Let $\mathcal{N}^{2 n+1}$ be a paraSasakian manifold. Then

$$
\begin{equation*}
\boldsymbol{S}\left(Z_{1}, \phi Z_{2}\right)=-\boldsymbol{S}\left(\phi Z_{1}, Z_{2}\right)-g\left(Z_{1}, \phi Z_{2}\right) \tag{15}
\end{equation*}
$$

for all smooth vector fields Z_{1} and Z_{2}.

3. Bach almost solitons and paraSasakian manifolds

Let (g, ζ, λ) be a Bach almost solitons in a $(2 n+1)$-dimensional ps manifold \mathcal{N}. Then

$$
\begin{equation*}
\left(£_{\zeta} g\right)\left(Z_{1}, Z_{2}\right)+2 B\left(Z_{1}, Z_{2}\right)=2 \lambda g\left(Z_{1}, Z_{2}\right) \tag{16}
\end{equation*}
$$

Using (10), we obtain

$$
\begin{equation*}
\left(£_{\zeta} g\right)\left(Z_{1}, Z_{2}\right)=g\left(\nabla_{Z_{1}} \zeta, Z_{2}\right)+g\left(Z_{1}, \nabla_{Z_{2}} \zeta\right)=0 . \tag{17}
\end{equation*}
$$

Using (17) in (16) yields

$$
B\left(Z_{1}, Z_{2}\right)=\lambda g\left(Z_{1}, Z_{2}\right)
$$

This leads to the following:
Theorem 3.1. Let (g, ζ, λ) be a Bach almost solitons in a $(2 n+1)$-dimensional paraSasakian manifold \mathcal{N}. Then the Bach tensor is a scalar multiple of the metric tensor.

Setting Z_{3} by ζ in (2) yields
(18) $\mathbf{C}\left(Z_{1}, Z_{2}\right) \zeta=\mathbf{R}\left(Z_{1}, Z_{2}\right) \zeta-\frac{1}{2 n-1}\left[\mathbf{S}\left(Z_{2}, \zeta\right) Z_{1}-\mathbf{S}\left(Z_{1}, \zeta\right) Z_{2}+\tau\left(Z_{2}\right) \mathbf{Q} Z_{1}\right.$

$$
\left.-\tau\left(Z_{1}\right) \mathbf{Q} Z_{2}\right]+\frac{r}{2 n(2 n-1)}\left[\tau\left(Z_{2}\right) Z_{1}-\tau\left(Z_{1}\right) Z_{2}\right]
$$

for all smooth vector fields Z_{1} and Z_{2}.
Operating \mathbf{Q} on both sides of (18) and using (11), (13), we have

$$
\begin{align*}
\mathbf{Q}\left(\mathbf{C}\left(Z_{1}, Z_{2}\right) \zeta\right)= & {\left[1-\frac{2 n}{2 n-1}+\frac{r}{2 n(2 n-1)}\right]\left(\tau\left(Z_{2}\right) \mathbf{Q} Z_{1}-\tau\left(Z_{1}\right) \mathbf{Q} Z_{2}\right) } \tag{19}\\
& -\frac{1}{2 n-1}\left(\tau\left(Z_{2}\right) \mathbf{Q}^{2} Z_{1}-\tau\left(Z_{1}\right) \mathbf{Q}^{2} Z_{2}\right) .
\end{align*}
$$

Taking an orthonormal basis $\left\{v_{i}\right\}$ and replacing Z_{2} and Z_{4} by v_{i}, we obtain

$$
\begin{equation*}
\sum_{i=1}^{2 n+1} g\left(\mathbf{Q}\left(\mathbf{C}\left(Z_{1}, v_{i}\right) \zeta\right), v_{i}\right)=-\frac{r^{2}-4 n^{2}}{2 n(2 n-1)} \tau\left(Z_{1}\right)+\left[\frac{|\mathbf{Q}|^{2}-4 n^{2}}{2 n-1}\right] \tau\left(Z_{1}\right) \tag{20}
\end{equation*}
$$

Substituting ζ for Z_{3} in (4) we get

$$
\begin{align*}
\mathbf{C}_{0}\left(Z_{1}, Z_{2}\right) \zeta= & g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) Z_{2}, \zeta\right)-g\left(\left(\nabla_{Z_{2}} \mathbf{Q}\right) Z_{1}, \zeta\right) \tag{21}\\
& -\frac{1}{4 n}\left[\left(Z_{1} r\right) \tau\left(Z_{2}\right)-\left(Z_{2} r\right) \tau\left(Z_{1}\right)\right] .
\end{align*}
$$

From Proposition 2.1, it follows that

$$
\begin{equation*}
\phi \mathbf{Q} Z_{1}=\mathbf{Q} \phi Z_{1}-\phi Z_{1} . \tag{22}
\end{equation*}
$$

Combining (10) and (14), we have

$$
\begin{equation*}
\left(\nabla_{Z_{1}} \mathbf{Q}\right) \zeta=2 n \phi Z_{1}+\mathbf{Q} \phi Z_{1} . \tag{23}
\end{equation*}
$$

From the preceding equation, it follows that

$$
\begin{equation*}
g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) Z_{2}, \zeta\right)=2 n g\left(\phi Z_{1}, Z_{2}\right)+g\left(\mathbf{Q} \phi Z_{1}, Z_{2}\right) . \tag{24}
\end{equation*}
$$

Using (24) in (21) yields

$$
\begin{align*}
\mathbf{C}_{0}\left(Z_{1}, Z_{2}\right) \zeta= & 2 n g\left(\phi Z_{1}, Z_{2}\right)+g\left(\mathbf{Q} \phi Z_{1}, \phi Z_{2}\right) \tag{25}\\
& -2 n g\left(\phi Z_{2}, Z_{1}\right)-g\left(\mathbf{Q} \phi Z_{2}, Z_{1}\right)+g\left(\mathbf{Q} Z_{2}, \phi Z_{1}\right) \\
& +g\left(Z_{2}, \phi Z_{1}\right)-\frac{1}{4 n}\left[\left(Z_{1} r\right) \tau\left(Z_{2}\right)-\left(Z_{2} r\right) \tau\left(Z_{1}\right)\right] .
\end{align*}
$$

Differentiating (25) along the vector field Z_{4}, provides

$$
\begin{align*}
\left(\nabla_{Z_{4}} \mathbf{C}_{0}\right)\left(Z_{1}, Z_{2}\right) \zeta= & \nabla_{Z_{4}} \mathbf{C}_{0}\left(Z_{1}, Z_{2}\right) \zeta-\mathbf{C}_{0}\left(\nabla_{Z_{4}} Z_{1}, Z_{2}\right) \zeta \tag{26}\\
& -\mathbf{C}_{0}\left(Z_{1}, \nabla_{Z_{4}} Z_{2}\right) \zeta-\mathbf{C}_{0}\left(Z_{1}, Z_{2}\right) \nabla_{Z_{4}} \zeta
\end{align*}
$$

Utilizing (10) and (25) in (26), we obtain

$$
\begin{align*}
\left(\nabla_{Z_{4}} \mathbf{C}_{0}\right)\left(Z_{1}, Z_{2}\right) \zeta= & 2 n g\left(\left(\nabla_{Z_{4}} \phi\right) Z_{1}, Z_{2}\right)-g\left(\left(\nabla_{Z_{4}} \mathbf{Q}\right) Z_{1}, \phi Z_{2}\right) \tag{27}\\
& -g\left(\mathbf{Q} X,\left(\nabla_{Z_{4}} \phi\right) Z_{2}\right)-g\left(Z_{1},\left(\nabla_{Z_{4}} \phi\right) Z_{2}\right) \\
& -2 n g\left(\left(\nabla_{Z_{4}} \phi\right) Z_{2}, Z_{1}\right)+g\left(\left(\nabla_{Z_{4}} \mathbf{Q}\right) Z_{2}, \phi Z_{4}\right) \\
& +g\left(\mathbf{Q} Z_{2},\left(\nabla_{Z_{4}} \phi\right) Z_{1}\right)+g\left(Z_{2},\left(\nabla_{Z_{4}} \phi\right) Z_{1}\right) \\
& -\frac{1}{4 n}\left[g\left(\nabla_{Z_{4}} D r, Z_{1}\right) \tau\left(Z_{2}\right)-g\left(\nabla_{Z_{4}} D r, Z_{2}\right) \tau\left(Z_{1}\right)\right. \\
& \left.-g\left(\phi Z_{4}, Z_{2}\right)\left(Z_{1} r\right)+g\left(\phi Z_{4}, Z_{1}\right)\left(Z_{2} r\right)\right],
\end{align*}
$$

where D denotes the gradient operator.
From (25) we can easily obtain the following

$$
\begin{align*}
\mathbf{C}_{0}\left(\nabla_{Z_{4}} Z_{1}, Z_{2}\right) \zeta= & 2 n g\left(\phi \nabla_{Z_{4}} Z_{1}, Z_{2}\right)-g\left(\mathbf{Q} \nabla_{Z_{4}} Z_{1}, \phi Z_{2}\right) \tag{28}\\
& -g\left(\nabla_{Z_{4}} Z_{1}, \phi Z_{2}\right)-2 n g\left(\phi Z_{2}, \nabla_{Z_{4}} Z_{1}\right) \\
& +g\left(\mathbf{Q} Z_{2}, \phi \nabla_{Z_{4}} Z_{1}\right)+g\left(Z_{2}, \phi \nabla_{Z_{4}} Z_{1}\right)
\end{align*}
$$

$$
-\frac{1}{4 n}\left[\left(\left(\nabla_{Z_{4}} Z_{1}\right) r\right) \tau\left(Z_{2}\right)-\left(Z_{2} r\right) \tau\left(\nabla_{Z_{4}} Z_{1}\right)\right]
$$

Similarly, from (25), we can obtain

$$
\begin{align*}
\mathbf{C}_{0}\left(Z_{1}, \nabla_{Z_{4}} Z_{2}\right) \zeta= & 2 n g\left(\phi Z_{1}, \nabla_{Z_{4}} Z_{2}\right)-g\left(\mathbf{Q} Z_{1}, \phi \nabla_{Z_{4}} Z_{2}\right) \tag{29}\\
& -g\left(Z_{1}, \phi \nabla_{Z_{4}} Z_{2}\right)-2 n g\left(\phi \nabla_{Z_{4}} Z_{2}, Z_{1}\right) \\
& +g\left(\mathbf{Q} \nabla_{Z_{4}} Z_{2}, \phi Z_{1}\right)+g\left(\nabla_{Z_{4}} Z_{2}, \phi Z_{1}\right) \\
& -\frac{1}{4 n}\left[\left(Z_{1} r\right) \tau\left(\nabla_{Z_{4}} Z_{2}\right)-\left(\left(\nabla_{Z_{4}} Z_{2}\right) r\right) \tau\left(Z_{1}\right)\right] .
\end{align*}
$$

Again from (4), we infer

$$
\begin{align*}
\mathbf{C}_{0}\left(Z_{1}, Z_{2}\right) \nabla_{Z_{4}} \zeta= & \left(\nabla_{Z_{1}} \mathbf{S}\right)\left(Z_{2}, \phi Z_{4}\right)-\left(\nabla_{Z_{2}} \mathbf{S}\right)\left(Z_{1}, \phi Z_{4}\right) \tag{30}\\
& -\frac{1}{4 n}\left[\left(Z_{1} r\right) g\left(Z_{2}, \phi Z_{4}\right)-\left(Z_{2} r\right) g\left(Z_{1}, \phi Z_{4}\right)\right] .
\end{align*}
$$

Utilizing (27), (28), (29) and (30) in (26) we have

$$
\begin{align*}
& \left(\nabla_{Z_{4}} \mathbf{C}_{0}\right)\left(Z_{1}, Z_{2}\right) \zeta \tag{31}\\
= & 2 n g\left(\left(\nabla_{Z_{4}} \phi\right) Z_{1}, Z_{2}\right)-g\left(\left(\nabla_{Z_{4}} \mathbf{Q}\right) Z_{1}, \phi Z_{2}\right) \\
& -g\left(\mathbf{Q} Z_{1},\left(\nabla_{Z_{4}} \phi\right) Z_{2}\right)-g\left(Z_{1},\left(\nabla_{Z_{4}} \phi\right) Z_{2}\right)-2 n g\left(\left(\nabla_{Z_{4}} \phi\right) Z_{2}, Z_{1}\right) \\
& +g\left(\left(\nabla_{Z_{4}} \mathbf{Q}\right) Z_{2}, \phi Z_{1}\right)+g\left(\mathbf{Q} Z_{2},\left(\nabla_{Z_{4}} \phi\right) Z_{1}\right)+g\left(Z_{2},\left(\nabla_{Z_{4}} \phi\right) Z_{1}\right) \\
& -\frac{1}{4 n}\left[g\left(\nabla_{Z_{4}} D r, Z_{1}\right) \tau\left(Z_{2}\right)-g\left(\nabla_{Z_{4}} D r, Z_{2}\right) \tau\left(Z_{1}\right)-g\left(\phi Z_{4}, Z_{2}\right)\left(Z_{1} r\right)\right. \\
& \left.+g\left(\phi Z_{4}, Z_{1}\right)\left(Z_{2} r\right)\right]-2 n g\left(\phi \nabla_{Z_{4}} Z_{1}, Z_{2}\right)+g\left(\mathbf{Q} \nabla_{Z_{4}} Z_{1}, \phi Z_{2}\right) \\
& +g\left(\nabla_{Z_{4}} Z_{1}, \phi Z_{2}\right)+2 n g\left(\phi Z_{2}, \nabla_{Z_{4}} Z_{1}\right)-g\left(\mathbf{Q} Z_{2}, \phi \nabla_{Z_{4}} Z_{1}\right) \\
& -g\left(Z_{2}, \phi \nabla_{Z_{4}} Z_{1}\right)+\frac{1}{4 n}\left[\left(\left(\nabla_{Z_{4}} Z_{1}\right) r\right) \tau\left(Z_{2}\right)-\left(Z_{2} r\right) \tau\left(\nabla_{Z_{4}} Z_{1}\right)\right] \\
& -2 n g\left(\phi Z_{1}, \nabla_{Z_{4}} Z_{2}\right)+g\left(\mathbf{Q} Z_{1}, \phi \nabla_{Z_{4}} Z_{2}\right)+g\left(Z_{1}, \phi \nabla_{Z_{4}} Z_{2}\right) \\
& +2 n g\left(\phi \nabla_{Z_{4}} Z_{2}, Z_{1}\right)-g\left(\mathbf{Q} \nabla_{Z_{4}} Z_{2}, \phi Z_{1}\right)-g\left(\nabla_{Z_{4}} Z_{2}, \phi Z_{1}\right) \\
& +\frac{1}{4 n}\left[\left(Z_{1} r\right) \tau\left(\nabla_{Z_{4}} Z_{2}\right)-\left(\left(\nabla_{Z_{4}} Z_{2}\right) r\right) \tau\left(Z_{1}\right)\right]-\left(\nabla_{Z_{1}} \mathbf{S}\right)\left(Z_{2}, \phi Z_{4}\right) \\
& +\left(\nabla_{Y} \mathbf{S}\right)\left(Z_{1}, \phi Z_{4}\right)+\frac{1}{4 n}\left[\left(Z_{1} r\right) g\left(Z_{2}, \phi Z_{4}\right)-\left(Z_{2} r\right) g\left(Z_{1}, \phi Z_{4}\right)\right] .
\end{align*}
$$

Substituting $Z_{1}=Z_{4}=v_{i}$ in (31), where $\left\{v_{i}\right\}$ is an orthonormal basis, we have

$$
\begin{align*}
& \sum_{i=1}^{2 n+1}\left(\nabla_{v_{i}} \mathbf{C}_{0}\right)\left(v_{i}, Z_{2}\right) \zeta \tag{32}\\
= & 2 n g\left(v_{i}, Z_{2}\right) \tau\left(v_{i}\right)+g\left(\left(\nabla_{v_{i}} \mathbf{Q}\right) \phi v_{i}, Z_{2}\right)+g\left(\mathbf{Q} v_{i}, Z_{2}\right) \tau\left(v_{i}\right) \\
& -\frac{1}{4 n}\left[g\left(\nabla_{v_{i}} D r, v_{i}\right) \tau\left(Z_{2}\right)-g\left(\nabla_{v_{i}} D r, Z_{2}\right) \tau\left(v_{i}\right)-g\left(\phi v_{i}, Z_{2}\right)\left(v_{i} r\right)\right] .
\end{align*}
$$

From Proposition 2.1, it follows

$$
\begin{equation*}
\phi \mathbf{Q} Z_{1}=\mathbf{Q} \phi Z_{1}-\phi Z_{1} . \tag{33}
\end{equation*}
$$

Now

$$
\begin{align*}
& g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) \phi Z_{2}, Z_{4}\right)+g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) Z_{2}, \phi Z_{4}\right) \tag{34}\\
= & g\left(\left(\nabla_{Z_{1}} \mathbf{Q} \phi Z_{2}-\mathbf{Q} \nabla_{Z_{1}} \phi Z_{2}\right), Z_{4}\right)+g\left(\left(\nabla_{Z_{1}} \mathbf{Q} Z_{2}-\mathbf{Q} \nabla_{Z_{1}} Z_{2}\right), \phi Z_{4}\right) .
\end{align*}
$$

Making use of (9) and (33) in (34) implies

$$
\begin{aligned}
& g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) \phi Z_{2}, Z_{4}\right)+g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) Z_{2}, \phi Z_{4}\right) \\
= & g\left(\left(\nabla_{Z_{1}} \phi\right) \mathbf{Q} Z_{2}, Z_{4}\right)+g\left(\mathbf{Q}\left(\nabla_{Z_{1}} \phi\right) Z_{2}, Z_{4}\right) .
\end{aligned}
$$

Using (9) and (13) in the foregoing equation, we have

$$
\begin{align*}
& g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) \phi Z_{2}, Z_{4}\right)+g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) Z_{2}, \phi Z_{4}\right) \tag{35}\\
= & -g\left(Z_{1}, \mathbf{Q} Z_{2}\right) \tau\left(Z_{4}\right)-(2 n-1) g\left(Z_{1}, Z_{4}\right) \tau\left(Z_{2}\right) \\
& +(2 n-1) g\left(Z_{1}, Z_{2}\right) \tau\left(Z_{4}\right)+g\left(\mathbf{Q} Z_{1}, Z_{4}\right) \tau\left(Z_{2}\right) .
\end{align*}
$$

Putting $Z_{2}=Z_{4}=v_{i}$ in the above equation, where $\left\{v_{i}\right\}$ is an orthonormal basis, we get

$$
\sum_{i=1}^{2 n+1} g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) \phi v_{i}, v_{i}\right)+\sum_{i=1}^{2 n+1} g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) v_{i}, \phi v_{i}\right)=0
$$

That is,

$$
\begin{equation*}
\sum_{i=1}^{2 n+1} g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) \phi v_{i}, v_{i}\right)=0 \tag{36}
\end{equation*}
$$

Substituting $Z_{1}=Z_{4}=v_{i}$ in (35) yields

$$
\begin{equation*}
\sum_{i=1}^{2 n+1} g\left(\left(\nabla_{v_{i}} \mathbf{Q}\right) Z_{2}, \phi v_{i}\right)=\left(-4 n^{2}-r\right) \tau\left(Z_{2}\right)-\operatorname{div} \phi Z_{2}-\frac{1}{2}\left(\phi Z_{2}\right) r \tag{37}
\end{equation*}
$$

Using (36) and (37) in (32) yields

$$
\begin{align*}
\sum_{i=1}^{2 n+1}\left(\nabla_{v_{i}} \mathbf{C}_{0}\right)\left(v_{i}, Z_{2}\right) \zeta= & 2\left(-4 n^{2}-r\right) \tau\left(Z_{2}\right)-\frac{1}{2}\left(\phi Z_{2} r\right) \tag{38}\\
& -\frac{1}{4 n}\left[(\operatorname{div} D r) \tau\left(Z_{2}\right)-g\left(\nabla_{\zeta} D r, Z_{2}\right)\right]
\end{align*}
$$

Now

$$
\begin{align*}
\left.g\left(\mathbf{Q} v_{i}, v_{j}\right) g\left(\mathbf{C}\left(Z_{1}, v_{i}\right) v_{j}\right), Z_{2}\right) & =-g\left(\mathbf{C}\left(Z_{1}, v_{i}\right) Z_{2}, \mathbf{Q} v_{i}\right) \tag{39}\\
& =-g\left(\mathbf{Q} \mathbf{C}\left(Z_{1}, v_{i}\right) Z_{2}, v_{i}\right)
\end{align*}
$$

Combining (3) and (39), we have
(40) $\mathcal{B}\left(Z_{1}, Z_{2}\right)=\frac{1}{2 n-1}\left[\sum_{i=1}^{2 n+1}\left(\nabla_{v_{i}} \mathbf{C}_{0}\right)\left(v_{i}, Z_{1}, Z_{2}\right)-\sum_{i=1}^{2 n+1} g\left(\mathbf{Q C}\left(Z_{1}, v_{i}\right) Z_{2}, v_{i}\right)\right]$
for all smooth vector fields Z_{1} and Z_{2}.

Replacing Z_{2} by ζ in (6) and using (20), (38), (40) yields
(41) $2\left(4 n-4 n^{2}+r\right) \tau\left(Z_{1}\right)-\frac{1}{2}\left(\phi Z_{1} r\right)-\frac{1}{4 n}\left[(\operatorname{div} D r) \tau\left(Z_{1}\right)-g\left(\nabla_{\zeta} D r, Z_{1}\right)\right]$

$$
+\frac{r^{2}-4 n^{2}}{2 n(2 n-1)} \tau\left(Z_{1}\right)-\left[\frac{|\mathbf{Q}|^{2}-4 n^{2}}{2 n-1}\right] \tau\left(Z_{1}\right)-\lambda \tau\left(Z_{1}\right)=0
$$

Replacing Z_{1} by ϕZ_{1} in the above equation implies

$$
\begin{equation*}
\nabla_{\zeta} D r=2 n \phi D r \tag{42}
\end{equation*}
$$

Since ζ is a Killing vector field, so

$$
\begin{equation*}
£_{\zeta} r=0 . \tag{43}
\end{equation*}
$$

Taking exterior derivative d in (43), provides

$$
£_{\zeta} d r=0
$$

since $£_{\zeta}$ and d commutes.
From the preceding equation, we have

$$
\begin{equation*}
£_{\zeta} D r=0 . \tag{44}
\end{equation*}
$$

Using (10) in (44), we have

$$
\begin{equation*}
£_{\zeta} D r=-\phi D r . \tag{45}
\end{equation*}
$$

Finally, equations (42) and (45) together reveal $\phi D r=0$, that is, $D r=0$. Hence the manifold is of constant scalar curvature. Now, since r is constant so from (41), it follows that the Ricci operator of the metric g has a constant norm.

As a result, the following theorem emerges:
Theorem 3.2. Let (g, ζ, λ) be a Bach almost solitons on a paraSasakian manifold of dimension $(2 n+1)$. Then the manifold is of constant scalar curvature and the Ricci operator of the metric g has a constant norm.

4. Bach almost solitons in 3-dimensional paraSasakian manifolds

In this section we characterize 3-dimensional ps manifolds admitting Bach almost solitons. In a 3-dimensional Riemannian manifold the curvature tensor is given by

$$
\begin{align*}
\mathbf{R}\left(Z_{1}, Z_{2}\right) Z_{3}= & g\left(Z_{2}, Z_{3}\right) \mathbf{Q} Z_{1}-g\left(Z_{1}, Z_{3}\right) \mathbf{Q} Z_{2}+\mathbf{S}\left(Z_{2}, Z_{3}\right) Z_{1} \tag{46}\\
& -\mathbf{S}\left(Z_{1}, Z_{3}\right) Z_{2}-\frac{r}{2}\left[g\left(Z_{2}, Z_{3}\right) Z_{1}-g\left(Z_{1}, Z_{3}\right) Z_{2}\right]
\end{align*}
$$

for all smooth vector fields Z_{1}, Z_{2} and Z_{3}.
Substituting $Z_{1}=Z_{3}=\zeta$ in (46) and making use of (12), (13) and (14) implies

$$
\begin{equation*}
\mathbf{Q} Z_{2}=\left(-3-\frac{r}{2}\right) \tau\left(Z_{2}\right) \zeta+\left(1+\frac{r}{2}\right) Z_{2} . \tag{47}
\end{equation*}
$$

From the foregoing equation, it is quite clear that

$$
\begin{equation*}
\mathbf{Q} \phi=\phi \mathbf{Q} \tag{48}
\end{equation*}
$$

Using (10) and (47), we infer that

$$
\begin{equation*}
\left(\nabla_{Z_{1}} \mathbf{Q}\right) \zeta=\mathbf{Q} \phi Z_{1} \tag{49}
\end{equation*}
$$

From (21) and (49) we have

$$
\begin{equation*}
\mathbf{C}_{0}\left(Z_{1}, Z_{2}\right) \zeta=-2 g\left(\mathbf{Q} \phi Z_{1}, Z_{2}\right)-\frac{1}{4}\left[\left(Z_{1} r\right) \tau\left(Z_{2}\right)-\left(Z_{2} r\right) \tau\left(Z_{1}\right)\right] \tag{50}
\end{equation*}
$$

Using (4), (9), (47) and (50) in (26) yields

$$
\begin{align*}
\left(\nabla_{Z_{1}} \mathbf{C}_{0}\right)\left(Z_{2}, Z_{3}\right) \zeta= & g\left(\left(\nabla_{Z_{2}} \mathbf{Q}\right) Z_{3}, \phi Z_{1}\right)-g\left(\left(\nabla_{Z_{3}} \mathbf{Q}\right) Z_{2}, \phi Z_{1}\right) \tag{51}\\
& +2 g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) \phi Z_{2}, Z_{3}\right)+4 g\left(Z_{1}, Z_{2}\right) \tau\left(Z_{3}\right) \\
& +2 \mathbf{S}\left(\mathbf{Q} Z_{1}, Z_{3}\right) \tau\left(Z_{2}\right)+\frac{1}{4}\left[g\left(Z_{2}, \phi Z_{1}\right)\left(Z_{2} r\right)\right. \\
& -g\left(\nabla_{Z_{1}} D r, Z_{2}\right) \tau\left(Z_{3}\right)-g\left(\phi Z_{1}, Z_{3}\right) \tau\left(Z_{2}\right) \\
& \left.-g\left(\nabla_{Z_{1}} D r, Z_{3}\right) \tau\left(Z_{2}\right)\right] .
\end{align*}
$$

Putting $Z_{1}=Z_{2}=v_{i}$ in (51), where $\left\{v_{i}\right\}$ is an orthonormal basis, we get

$$
\begin{align*}
& \left(\nabla_{v_{i}} \mathbf{C}_{0}\right)\left(v_{i}, Z_{3}\right) \zeta \tag{52}\\
= & g\left(\left(\nabla_{v_{i}} \mathbf{Q}\right) Z_{3}, \phi v_{i}\right)-g\left(\left(\nabla_{Z_{3}} \mathbf{Q}\right) v_{i}, \phi v_{i}\right) \\
& +2 g\left(\left(\nabla_{v_{i}} \mathbf{Q}\right) \phi v_{i}, Z_{3}\right)+12 \tau\left(Z_{3}\right)+2 \mathbf{S}\left(\mathbf{Q} v_{i}, Z_{3}\right) \tau\left(v_{i}\right) \\
& +\frac{1}{4}\left[g\left(Z_{3}, \phi v_{i}\right)\left(v_{i} r\right)-g\left(\nabla_{v_{i}} D r, v_{i}\right) \tau\left(Z_{3}\right)-g\left(\phi v_{i}, Z_{3}\right)\left(v_{i}\right)\right. \\
& \left.-g\left(\nabla_{v_{i}} D r, Z_{3}\right) \tau\left(v_{i}\right)\right] .
\end{align*}
$$

Now from (48), we have

$$
\begin{align*}
& g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) \phi Z_{2}, Z_{3}\right)+g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) Z_{2}, \phi Z_{3}\right) \tag{53}\\
= & g\left(\left(\nabla_{Z_{1}} \phi\right) \mathbf{Q} Z_{2}, Z_{3}\right)+g\left(\mathbf{Q}\left(\nabla_{Z_{1}} \phi\right) Z_{2}, Z_{3}\right) .
\end{align*}
$$

Again using (9) and (48) in the foregoing equation yields

$$
\begin{align*}
& g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) \phi Z_{2}, Z_{3}\right)+g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) Z_{2}, \phi Z_{3}\right) \tag{54}\\
= & -g\left(Z_{1}, \mathbf{Q} Z_{2}\right) \tau\left(Z_{3}\right)-2 g\left(Z_{1}, Z_{3}\right) \tau\left(Z_{2}\right) \\
& +2 g\left(Z_{1}, Z_{2}\right) \tau\left(Z_{3}\right)+g\left(\mathbf{Q} Z_{1}, Z_{3}\right) \tau\left(Z_{2}\right) .
\end{align*}
$$

Taking an orthonormal basis $\left\{v_{i}\right\}$ and replacing Z_{2} and Z_{3} by v_{i}, we infer

$$
\sum_{i=1}^{3} g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) \phi v_{i}, v_{i}\right)+\sum_{i=1}^{3} g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) v_{i}, \phi v_{i}\right)=0
$$

That is,

$$
\begin{equation*}
\sum_{i=1}^{3} g\left(\left(\nabla_{Z_{1}} \mathbf{Q}\right) \phi v_{i}, v_{i}\right)=0 \tag{55}
\end{equation*}
$$

Setting $Z_{1}=Z_{3}=v_{i}$ in (46) yields

$$
\begin{equation*}
\sum_{i=1}^{3} g\left(\left(\nabla_{v_{i}} \mathbf{Q}\right) Z_{2}, \phi v_{i}\right)=(r-2) \eta\left(Z_{2}\right)-\frac{1}{2}\left(\phi Z_{2}\right) r . \tag{56}
\end{equation*}
$$

Making use of (47), (55) and (56) in (52) yields

$$
\begin{align*}
\left(\nabla_{v_{i}} \mathbf{C}_{0}\right)\left(v_{i}, Z_{3}\right) \zeta= & 3(r+6) \tau\left(Z_{3}\right)-\frac{3}{2} g\left(\phi Z_{3}, D r\right) \tag{57}\\
& +\frac{1}{4}\left[(\operatorname{div} D r) \tau\left(Z_{3}\right)-g\left(\nabla_{\zeta} D r, Z_{3}\right)\right]
\end{align*}
$$

Since in a 3-dimensional paraSasakian manifold Weyl curvature tensor vanishes, so equation (5) reduces to

$$
\begin{equation*}
\left.\mathcal{B}\left(Z_{1}, Z_{2}\right)=\sum_{i=1}^{3}\left[\left(\nabla_{v_{i}} \mathbf{C}_{0}\right)\left(v_{i}, Z_{1}\right) Z_{2}\right)\right] \tag{58}
\end{equation*}
$$

for all smooth vector fields Z_{1} and Z_{2}.
Replacing Z_{2} by ζ in (6) and using (57) and (58) provides

$$
\begin{align*}
& 3(r+6) \tau\left(Z_{1}\right)-\frac{3}{2} g\left(\phi Z_{1}, D r\right) \tag{59}\\
& +\frac{1}{4}\left[(\operatorname{div} D r) \tau\left(Z_{1}\right)-g\left(\nabla_{\zeta} D r, X\right)\right]-\lambda \tau\left(Z_{1}\right)=0 .
\end{align*}
$$

Replacing Z_{1} by ϕZ_{1} in (59) implies

$$
\begin{equation*}
\nabla_{\zeta} D r=-6(\phi D r) \tag{60}
\end{equation*}
$$

From (45) and (60), we have $D r=0$, that is, r is a constant.
Then from (59), it follows that

$$
\lambda=3(r+6) .
$$

This leads to the following:
Theorem 4.1. Let (g, ζ, λ) be a Bach almost solitons on a paraSasakian manifold of dimension 3. Then the manifold is of constant scalar curvature. Moreover, the Bach almost solitons are steady if $r=-6$; shrinking if $r>-6$; expanding if $r<-6$.

Acknowledgements. The authors are grateful to the referee for his or her valuable suggestions and comments which improved the quality of this paper.

References

[1] T. Adati and K. Matsumoto, On conformally recurrent and conformally symmetric P-Sasakian manifolds, TRU Math. 13 (1977), no. 1, 25-32.
[2] R. Bach, Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs, Math. Z. 9 (1921), no. 1-2, 110-135. https://doi.org/10. 1007/BF01378338
[3] E. Bahuaud and D. Helliwell, Short-time existence for some higher-order geometric flows, Comm. Partial Differential Equations 36 (2011), no. 12, 2189-2207. https:// doi.org/10.1080/03605302.2011.593015
[4] I. Bakas, F. Bourliot, D. Lüst, and M. Petropoulos, Geometric flows in Hořava-Lifshitz gravity, J. High Energy Phys. 2010 (2010), no. 4, 131, 58 pp. https://doi.org/10. 1007/JHEP04(2010)131
[5] J. Bergman, Conformal Einstein spaces and Bach tensor generalization in n-dimensions, Thesis, Linkoping, 2004.
[6] A. M. Blaga, Conformal and paracontactly geodesic transformations of almost paracontact metric structures, Facta Univ. Ser. Math. Inform. 35 (2020), no. 1, 121-130.
[7] A. M. Blaga and M. Crasmareanu, Statistical structures in almost paracontact geometry, Bull. Iranian Math. Soc. 44 (2018), no. 6, 1407-1413. https://doi.org/10.1007/ s41980-018-0088-8
[8] G. Calvaruso, Homogeneous paracontact metric three-manifolds, Illinois J. Math. 55 (2011), no. 2, 697-718. http://projecteuclid.org/euclid.ijm/1359762409
[9] G. Calvaruso and A. Perrone, Ricci solitons in three-dimensional paracontact geometry, J. Geom. Phys. 98 (2015), 1-12. https://doi.org/10.1016/j.geomphys.2015.07.021
[10] H.-D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6, 1149-1169. https://doi.org/10.1215/00127094-2147649
[11] S. Das and S. Kar, Bach flows of product manifolds, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 5, 1250039, 18 pp. https://doi.org/10.1142/S0219887812500399
[12] U. C. De, G. Ghosh, and K. De, A note on Bach flat paraSasakian manifold, Communicated.
[13] U. C. De, G. Ghosh, J. B. Jun, and P. Majhi, Some results on paraSasakian manifolds, Bull. Transilv. Univ. Braşov Ser. III 11(60) (2018), no. 1, 49-63.
[14] U. C. De and A. Sardar, Classification of (k, μ)-almost co-Kähler manifolds with vanishing Bach tensor and divergence free Cotton tensor, Commun. Korean Math. Soc. 35 (2020), no. 4, 1245-1254. https://doi.org/10.4134/CKMS.c200091
[15] U. C. De and A. Sarkar, On a type of P-Sasakian manifolds, Math. Rep. (Bucur.) 11(61) (2009), no. 2, 139-144.
[16] H. Fu and J. Peng, Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature, Hokkaido Math. J. 47 (2018), no. 3, 581-605. https://doi. org/10.14492/hokmj/1537948832
[17] A. Ghosh, On Bach almost solitons, Beitr. Algebra Geom. 63 (2022), no. 1, 45-54. https://doi.org/10.1007/s13366-021-00565-4
[18] A. Ghosh and R. Sharma, Sasakian manifolds with purely transversal Bach tensor, J. Math. Phys. 58 (2017), no. 10, 103502, 6 pp. https://doi.org/10.1063/1.4986492
[19] D. Helliwell, Bach flow on homogeneous products, SIGMA Symmetry Integrability Geom. Methods Appl. 16 (2020), Paper No. 027, 35 pp. https://doi.org/10.3842/ SIGMA. 2020.027
[20] P. T. Ho, Bach flow, J. Geom. Phys. 133 (2018), 1-9. https://doi.org/10.1016/j. geomphys. 2018.07.008
[21] S. Kaneyuki and M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8 (1985), no. 1, 81-98. https://doi.org/10.3836/tjm/1270151571
[22] S. Kaneyuki and F. L. Williams, Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173-187. https://doi.org/10.1017/ S0027763000021565
[23] I. Küpeli Erken, Some classes of 3-dimensional normal almost paracontact metric manifolds, Honam Math. J. 37 (2015), no. 4, 457-468. https://doi.org/10.5831/HMJ. 2015. 37.4.457
[24] I. Küpeli Erken, Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Period. Math. Hungar. 80 (2020), no. 2, 172-184. https://doi.org/10. 1007/s10998-019-00303-3
[25] V. Martín-Molina, Local classification and examples of an important class of paracontact metric manifolds, Filomat 29 (2015), no. 3, 507-515. https://doi.org/10.2298/ FIL1503507M
[26] I. Sato, On a structure similar to the almost contact structure, Tensor (N.S.) 30 (1976), no. 3, 219-224.
[27] P. Szekeres, Conformal Tensors, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences Vol. 304, No. 1476 (Apr. 2, 1968), pp. 113-122.
[28] Y. Wang, Cotton tensors on almost coKähler 3-manifolds, Ann. Polon. Math. 120 (2017), no. 2, 135-148. https://doi.org/10.4064/ap170410-3-10
[29] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom. 36 (2009), no. 1, 37-60. https://doi.org/10.1007/s10455-008-9147-3
[30] S. Zamkovoy and V. Tzanov, Non-existence of flat paracontact metric structures in dimension greater than or equal to five, Annuaire Univ. Sofia Fac. Math. Inform. 100 (2011), 27-34.

Uday Chand De
Department of Pure Mathematics
University of Calcutta
35, Ballygunge Circular Road, Kol-700019, West Bengal, India
Email address: uc_de@yahoo.com
Gopal Ghosh
Department of Basic Science and Humanities
Cooch Behar Government Engineering College
Harinchawra, Ghugumari, Cooch Behar, Pin-736170, West Bengal, India
Email address: ghoshgopal.pmath@gmail.com

