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BACH ALMOST SOLITONS IN

PARASASAKIAN GEOMETRY

Uday Chand De and Gopal Ghosh

Abstract. If a paraSasakian manifold of dimension (2n+ 1) represents
Bach almost solitons, then the Bach tensor is a scalar multiple of the

metric tensor and the manifold is of constant scalar curvature. Addition-

ally it is shown that the Ricci operator of the metric g has a constant
norm. Next, we characterize 3-dimensional paraSasakian manifolds ad-

mitting Bach almost solitons and it is proven that if a 3-dimensional

paraSasakian manifold admits Bach almost solitons, then the manifold is
of constant scalar curvature. Moreover, in dimension 3 the Bach almost

solitons are steady if r = −6; shrinking if r > −6; expanding if r < −6.

1. Introduction

ParaSasakian (in short, ps) manifolds were introduced by Adati and Mat-
sumoto in 1977 [1] as a special case of an almost paracontact (in short, apc)
manifold introduced by Sato [26]. However, in [21] Kaneyuki and Kozai de-
fined an apc manifold on pseudo-Riemannian manifold N of dimension (2n+1)
and constructed the almost paracomplex shape on N 2n+1 × R. The primary
difference among an apc manifold within the sense of Sato [26] and Kaneyuki
et al. [22] is the signature of the metric. In 2009, Zamkovoy [29] defined a
ps manifold as a normal paracontact manifold by taking pseudo-Riemannian
metric and the author obtains a condition for a paracontact manifold to be a
paraSasakian manifold.

Bach tensor was introduced [2] by Bach to observe conformal geometry in
early 1920’s and showed that Bach tensor is a trace-free tensor of rank 2 which
is conformally invariant in dimension 4. Therefore, as an alternative of the
Hilbert-Einstein functional, one chooses the functional

W(g) =

∫
N

∥ C ∥2g dµg(1)
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for a 4-dimensional manifold, where C denotes the Weyl tensor of type (1,3)
defined by

C(Z1, Z2)Z3 = R(Z1, Z2)Z3 −
1

2n− 1
[S(Z2, Z3)Z1 − S(Z1, Z3)Z2(2)

+ g(Z2, Z3)QZ1 − g(Z1, Z3)QZ2]

+
r

2n(2n− 1)
[g(Z2, Z3)Z1 − g(Z1, Z3)Z2],

where R denotes the Riemannian curvature tensor, S being the Ricci tensor
and Q indicates the Ricci operator defined by g(QZ1, Z2) = S(Z1, Z2) for all
smooth vector fields Z1, Z2 and Z3. On any Riemannian manifold (N , g) of
dimension (2n+ 1), the Bach tensor B of type (0,2) is defined by

B(Z1, Z2) =
1

2n− 2

n∑
i,j=1

((∇vi∇vjC)(Z1, vi)vj , Z2)(3)

+
1

2n− 1

n∑
i,j=1

S(vi, vj)C(Z1, vi, vj , Z2),

{vi}2n+1
i=1 being a local orthonormal basis of the tangent space at each point of

the manifold.
Utilizing the expression of Cotton tensor [28]

C0(Z1, Z2)Z3 = (∇Z1
S)(Z2, Z3)− (∇Z2

S)(Z1, Z3)(4)

− 1

4n
[(Z1r)g(Z2, Z3)− (Z2r)g(Z1, Z3)],

and the Weyl tensor (2), the Bach tensor can be expressed as

B(Z1, Z2) =
1

2n− 1

n∑
i=1

[(∇viC0)(vi, Z1)Z2) + S(vi, vi)C(Z1, vi, vi, Z2)](5)

for all smooth vector fields Z1 and Z2.
For more information about Bach tensor, we confer the reader ([5,12,14,16,

18,27]) and references therein.
In [11], Das and Kar investigate the various aspects of Bach flows on product

manifolds. They compare their results with Ricci flow. In general relativity,
such flow is proposed in [4] to characterize the Harava-Lifschitz gravity and
short time existence of such flow was investigated by Bahuaud and Helliwell
in [3]. In 2013, Cao and Chen published their work on Bach flat gradient
shrinking Ricci solitons in [10]. Later, the author Ho [20] studied depthly the
solitons of the Bach flow and bach flows on a four dimensional Lie group. On
four dimension the Bach flow was also characterized by Helliwell on locally
homogeneous product manifolds in 2020 [19]. Recently Ghosh [17] studied
Bach almost solitons in Riemannian geometry, defined by

(6) (£V g)(Z1, Z2) + 2B(Z1, Z2) = 2λg(Z1, Z2),
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£V being the Lie derivative along the vector field V and V is the potential
vector field; λ is the soliton constant.

The present paper is structured as follows: Section 2, contains some basic
formulas of paraSasakian manifolds. Section 3 deals with the study of Bach
almost solitons in a paraSasakian manifold. Finally, we consider 3-dimensional
paraSasakian manifolds admitting Bach almost solitons.

2. ParaSasakian manifolds

Let N 2n+1 be a (2n+1)-dimensional smooth manifold. If there exit a tensor
field ϕ of type (1, 1), a vector field ζ and a 1-form τ on N 2n+1 fulfilling the
following relation ([6, 7, 26])

ϕ2 = I − τ ⊗ ζ, η(ζ) = 1, ϕζ = 0, τ ◦ ϕ = 0,(7)

where I is the identity transformation, then the triplet (ϕ, ζ, τ) is an apc struc-
ture and the manifold is an apc manifold.

If an apc manifold N 2n+1 with an apc structure (ϕ, ζ, τ) admits a pseudo-
Riemannian metric g such that [21]

g(Z1, Z2) = −g(ϕZ1, ϕZ2) + τ(Z1)τ(Z2)(8)

for all vector fields Z1 and Z2, then we say that N 2n+1 is an apc structure
(ϕ, ζ, τ, g) and such a metric g is called a compatible metric. The fundamental
2-form of N 2n+1 is defined by

Φ(Z1, Z2) = g(Z1, ϕZ2).

An apc metric structure becomes a paracontact metric structure if

dτ(Z1, Z2) = g(Z1, ϕZ2)

for all vector fields Z1 and Z2, where

dτ(Z1, Z2) =
1

2
[Z1τ(Z2)− Z2τ(Z1)− τ([Z1, Z2])],

[Z1, Z2] being the Lie bracket of Z1 and Z2.
Paracontact manifolds have been studied by numerous authors such as Cal-

varuso ([8, 9]), Mertin-Molina [25], Kaneyuki and Willams [22], Zamkovoy et
al. [30] and lots of others.

An apc manifold is called normal ([23, 29]) if and only if the tensor Nϕ −
2dτ ⊗ ξ vanishes identically, Nϕ being the Nijenhuis tensor of ϕ : Nϕ(Z1, Z2) =
[ϕ, ϕ](Z1, Z2) = ϕ2[Z1, Z2] + [ϕZ1, ϕZ2] − ϕ[ϕZ1, Z2] − ϕ[Z1, ϕZ2]. A normal
paracontact metric manifold is known as a paraSasakian manifold. It is known
[29] that an apc manifold is a paraSasakian manifold if and only if

(∇Z1ϕ)Z2 = −g(Z1, Z2)ζ + τ(Z2)Z1(9)

for all vector fields Z1, Z2, where ∇ is the Levi-Civita connection of the pseudo-
Riemannian metric. From the above equation it follows that

∇Z1
ζ = −ϕZ1.(10)
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Moreover, in a ps manifold the curvature tensor R, the Ricci tensor S and the
Ricci operator Q defined by g(QZ1, Z2) = S(Z1, Z2) satisfy [29]

R(Z1, Z2)ζ = −(τ(Z2)Z1 − τ(Z1)Z2),(11)

R(ζ, Z1)Z2 = −g(Z1, Z2) + τ(Z2)Z1,(12)

S(Z1, ζ) = −2nτ(Z1),(13)

Qζ = −2nζ.(14)

ParaSasakian manifolds have been studied by several authors such as Ghosh et
al. [13], De and Sarkar [15], Erken [24], Zamkovoy [29] and many others.

Zamkovoi [29] proved the following:

Proposition 2.1. Let N 2n+1 be a paraSasakian manifold. Then

S(Z1, ϕZ2) = −S(ϕZ1, Z2)− g(Z1, ϕZ2)(15)

for all smooth vector fields Z1 and Z2.

3. Bach almost solitons and paraSasakian manifolds

Let (g, ζ, λ) be a Bach almost solitons in a (2n+1)-dimensional ps manifold
N . Then

(16) (£ζg)(Z1, Z2) + 2B(Z1, Z2) = 2λg(Z1, Z2).

Using (10), we obtain

(17) (£ζg)(Z1, Z2) = g(∇Z1ζ, Z2) + g(Z1,∇Z2ζ) = 0.

Using (17) in (16) yields

B(Z1, Z2) = λg(Z1, Z2).

This leads to the following:

Theorem 3.1. Let (g, ζ, λ) be a Bach almost solitons in a (2n+1)-dimensional
paraSasakian manifold N . Then the Bach tensor is a scalar multiple of the
metric tensor.

Setting Z3 by ζ in (2) yields

C(Z1, Z2)ζ = R(Z1, Z2)ζ−
1

2n− 1
[S(Z2, ζ)Z1−S(Z1, ζ)Z2+τ(Z2)QZ1(18)

− τ(Z1)QZ2]+
r

2n(2n− 1)
[τ(Z2)Z1−τ(Z1)Z2]

for all smooth vector fields Z1 and Z2.
Operating Q on both sides of (18) and using (11), (13), we have

Q(C(Z1, Z2)ζ) = [1− 2n

2n− 1
+

r

2n(2n− 1)
](τ(Z2)QZ1 − τ(Z1)QZ2)(19)

− 1

2n− 1
(τ(Z2)Q

2Z1 − τ(Z1)Q
2Z2).
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Taking an orthonormal basis {vi} and replacing Z2 and Z4 by vi, we obtain

2n+1∑
i=1

g(Q(C(Z1, vi)ζ), vi) = − r2 − 4n2

2n(2n− 1)
τ(Z1) + [

| Q |2 −4n2

2n− 1
]τ(Z1).(20)

Substituting ζ for Z3 in (4) we get

C0(Z1, Z2)ζ = g((∇Z1
Q)Z2, ζ)− g((∇Z2

Q)Z1, ζ)(21)

− 1

4n
[(Z1r)τ(Z2)− (Z2r)τ(Z1)].

From Proposition 2.1, it follows that

(22) ϕQZ1 = QϕZ1 − ϕZ1.

Combining (10) and (14), we have

(∇Z1
Q)ζ = 2nϕZ1 +QϕZ1.(23)

From the preceding equation, it follows that

g((∇Z1Q)Z2, ζ) = 2ng(ϕZ1, Z2) + g(QϕZ1, Z2).(24)

Using (24) in (21) yields

C0(Z1, Z2)ζ = 2ng(ϕZ1, Z2) + g(QϕZ1, ϕZ2)(25)

− 2ng(ϕZ2, Z1)− g(QϕZ2, Z1) + g(QZ2, ϕZ1)

+ g(Z2, ϕZ1)−
1

4n
[(Z1r)τ(Z2)− (Z2r)τ(Z1)].

Differentiating (25) along the vector field Z4, provides

(∇Z4
C0)(Z1, Z2)ζ = ∇Z4

C0(Z1, Z2)ζ −C0(∇Z4
Z1, Z2)ζ(26)

−C0(Z1,∇Z4Z2)ζ −C0(Z1, Z2)∇Z4ζ.

Utilizing (10) and (25) in (26), we obtain

(∇Z4
C0)(Z1, Z2)ζ = 2ng((∇Z4

ϕ)Z1, Z2)− g((∇Z4
Q)Z1, ϕZ2)(27)

− g(QX, (∇Z4
ϕ)Z2)− g(Z1, (∇Z4

ϕ)Z2)

− 2ng((∇Z4ϕ)Z2, Z1) + g((∇Z4Q)Z2, ϕZ4)

+ g(QZ2, (∇Z4ϕ)Z1) + g(Z2, (∇Z4ϕ)Z1)

− 1

4n
[g(∇Z4Dr,Z1)τ(Z2)− g(∇Z4Dr,Z2)τ(Z1)

− g(ϕZ4, Z2)(Z1r) + g(ϕZ4, Z1)(Z2r)],

where D denotes the gradient operator.
From (25) we can easily obtain the following

C0(∇Z4
Z1, Z2)ζ = 2ng(ϕ∇Z4

Z1, Z2)− g(Q∇Z4
Z1, ϕZ2)(28)

− g(∇Z4Z1, ϕZ2)− 2ng(ϕZ2,∇Z4Z1)

+ g(QZ2, ϕ∇Z4Z1) + g(Z2, ϕ∇Z4Z1)
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− 1

4n
[((∇Z4Z1)r)τ(Z2)− (Z2r)τ(∇Z4Z1)].

Similarly, from (25), we can obtain

C0(Z1,∇Z4
Z2)ζ = 2ng(ϕZ1,∇Z4

Z2)− g(QZ1, ϕ∇Z4
Z2)(29)

− g(Z1, ϕ∇Z4Z2)− 2ng(ϕ∇Z4Z2, Z1)

+ g(Q∇Z4Z2, ϕZ1) + g(∇Z4Z2, ϕZ1)

− 1

4n
[(Z1r)τ(∇Z4

Z2)− ((∇Z4
Z2)r)τ(Z1)].

Again from (4), we infer

C0(Z1, Z2)∇Z4ζ = (∇Z1S)(Z2, ϕZ4)− (∇Z2S)(Z1, ϕZ4)(30)

− 1

4n
[(Z1r)g(Z2, ϕZ4)− (Z2r)g(Z1, ϕZ4)].

Utilizing (27), (28), (29) and (30) in (26) we have

(∇Z4
C0)(Z1, Z2)ζ(31)

= 2ng((∇Z4ϕ)Z1, Z2)− g((∇Z4Q)Z1, ϕZ2)

− g(QZ1, (∇Z4ϕ)Z2)− g(Z1, (∇Z4ϕ)Z2)− 2ng((∇Z4ϕ)Z2, Z1)

+ g((∇Z4
Q)Z2, ϕZ1) + g(QZ2, (∇Z4

ϕ)Z1) + g(Z2, (∇Z4
ϕ)Z1)

− 1

4n
[g(∇Z4

Dr,Z1)τ(Z2)− g(∇Z4
Dr,Z2)τ(Z1)− g(ϕZ4, Z2)(Z1r)

+ g(ϕZ4, Z1)(Z2r)]− 2ng(ϕ∇Z4
Z1, Z2) + g(Q∇Z4

Z1, ϕZ2)

+ g(∇Z4
Z1, ϕZ2) + 2ng(ϕZ2,∇Z4

Z1)− g(QZ2, ϕ∇Z4
Z1)

− g(Z2, ϕ∇Z4
Z1) +

1

4n
[((∇Z4Z1)r)τ(Z2)− (Z2r)τ(∇Z4Z1)]

− 2ng(ϕZ1,∇Z4Z2) + g(QZ1, ϕ∇Z4Z2) + g(Z1, ϕ∇Z4Z2)

+ 2ng(ϕ∇Z4Z2, Z1)− g(Q∇Z4Z2, ϕZ1)− g(∇Z4Z2, ϕZ1)

+
1

4n
[(Z1r)τ(∇Z4

Z2)− ((∇Z4
Z2)r)τ(Z1)]− (∇Z1

S)(Z2, ϕZ4)

+ (∇Y S)(Z1, ϕZ4) +
1

4n
[(Z1r)g(Z2, ϕZ4)− (Z2r)g(Z1, ϕZ4)].

Substituting Z1 = Z4 = vi in (31), where {vi} is an orthonormal basis, we have

2n+1∑
i=1

(∇viC0)(vi, Z2)ζ(32)

= 2ng(vi, Z2)τ(vi) + g((∇viQ)ϕvi, Z2) + g(Qvi, Z2)τ(vi)

− 1

4n
[g(∇viDr, vi)τ(Z2)− g(∇viDr,Z2)τ(vi)− g(ϕvi, Z2)(vir)].

From Proposition 2.1, it follows

(33) ϕQZ1 = QϕZ1 − ϕZ1.
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Now

g((∇Z1Q)ϕZ2, Z4) + g((∇Z1Q)Z2, ϕZ4)(34)

= g((∇Z1QϕZ2 −Q∇Z1ϕZ2), Z4) + g((∇Z1QZ2 −Q∇Z1Z2), ϕZ4).

Making use of (9) and (33) in (34) implies

g((∇Z1
Q)ϕZ2, Z4) + g((∇Z1

Q)Z2, ϕZ4)

= g((∇Z1
ϕ)QZ2, Z4) + g(Q(∇Z1

ϕ)Z2, Z4).

Using (9) and (13) in the foregoing equation, we have

g((∇Z1
Q)ϕZ2, Z4) + g((∇Z1

Q)Z2, ϕZ4)(35)

= − g(Z1,QZ2)τ(Z4)− (2n− 1)g(Z1, Z4)τ(Z2)

+ (2n− 1)g(Z1, Z2)τ(Z4) + g(QZ1, Z4)τ(Z2).

Putting Z2 = Z4 = vi in the above equation, where {vi} is an orthonormal
basis, we get

2n+1∑
i=1

g((∇Z1Q)ϕvi, vi) +

2n+1∑
i=1

g((∇Z1Q)vi, ϕvi) = 0.

That is,

(36)

2n+1∑
i=1

g((∇Z1
Q)ϕvi, vi) = 0.

Substituting Z1 = Z4 = vi in (35) yields

(37)

2n+1∑
i=1

g((∇viQ)Z2, ϕvi) = (−4n2 − r)τ(Z2)− div ϕ Z2 −
1

2
(ϕZ2)r.

Using (36) and (37) in (32) yields

2n+1∑
i=1

(∇viC0)(vi, Z2)ζ = 2(−4n2 − r)τ(Z2)−
1

2
(ϕZ2r)(38)

− 1

4n
[(divDr)τ(Z2)− g(∇ζDr,Z2)].

Now

g(Qvi, vj)g(C(Z1, vi)vj), Z2) = −g(C(Z1, vi)Z2,Qvi)(39)

= −g(QC(Z1, vi)Z2, vi).

Combining (3) and (39), we have

B(Z1, Z2) =
1

2n− 1
[

2n+1∑
i=1

(∇viC0)(vi, Z1, Z2)−
2n+1∑
i=1

g(QC(Z1, vi)Z2, vi)](40)

for all smooth vector fields Z1 and Z2.
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Replacing Z2 by ζ in (6) and using (20), (38), (40) yields

2(4n− 4n2 + r)τ(Z1)−
1

2
(ϕZ1r)−

1

4n
[(divDr)τ(Z1)− g(∇ζDr,Z1)](41)

+
r2 − 4n2

2n(2n− 1)
τ(Z1)− [

| Q |2 −4n2

2n− 1
]τ(Z1)− λτ(Z1) = 0.

Replacing Z1 by ϕZ1 in the above equation implies

∇ζDr = 2nϕDr.(42)

Since ζ is a Killing vector field, so

£ζr = 0.(43)

Taking exterior derivative d in (43), provides

£ζdr = 0,

since £ζ and d commutes.
From the preceding equation, we have

£ζDr = 0.(44)

Using (10) in (44), we have

£ζDr = −ϕDr.(45)

Finally, equations (42) and (45) together reveal ϕDr = 0, that is, Dr = 0.
Hence the manifold is of constant scalar curvature. Now, since r is constant
so from (41), it follows that the Ricci operator of the metric g has a constant
norm.

As a result, the following theorem emerges:

Theorem 3.2. Let (g, ζ, λ) be a Bach almost solitons on a paraSasakian man-
ifold of dimension (2n+ 1). Then the manifold is of constant scalar curvature
and the Ricci operator of the metric g has a constant norm.

4. Bach almost solitons in 3-dimensional paraSasakian manifolds

In this section we characterize 3-dimensional ps manifolds admitting Bach
almost solitons. In a 3-dimensional Riemannian manifold the curvature tensor
is given by

R(Z1, Z2)Z3 = g(Z2, Z3)QZ1 − g(Z1, Z3)QZ2 + S(Z2, Z3)Z1(46)

− S(Z1, Z3)Z2 −
r

2
[g(Z2, Z3)Z1 − g(Z1, Z3)Z2]

for all smooth vector fields Z1, Z2 and Z3.
Substituting Z1 = Z3 = ζ in (46) and making use of (12), (13) and (14)

implies

QZ2 = (−3− r

2
)τ(Z2)ζ + (1 +

r

2
)Z2.(47)
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From the foregoing equation, it is quite clear that

Qϕ = ϕQ.(48)

Using (10) and (47), we infer that

(∇Z1
Q)ζ = QϕZ1.(49)

From (21) and (49) we have

C0(Z1, Z2)ζ = −2g(QϕZ1, Z2)−
1

4
[(Z1r)τ(Z2)− (Z2r)τ(Z1)].(50)

Using (4), (9), (47) and (50) in (26) yields

(∇Z1C0)(Z2, Z3)ζ = g((∇Z2Q)Z3, ϕZ1)− g((∇Z3Q)Z2, ϕZ1)(51)

+ 2g((∇Z1
Q)ϕZ2, Z3) + 4g(Z1, Z2)τ(Z3)

+ 2S(QZ1, Z3)τ(Z2) +
1

4
[g(Z2, ϕZ1)(Z2r)

− g(∇Z1
Dr,Z2)τ(Z3)− g(ϕZ1, Z3)τ(Z2)

− g(∇Z1
Dr,Z3)τ(Z2)].

Putting Z1 = Z2 = vi in (51), where {vi} is an orthonormal basis, we get

(∇viC0)(vi, Z3)ζ(52)

= g((∇viQ)Z3, ϕvi)− g((∇Z3
Q)vi, ϕvi)

+ 2g((∇viQ)ϕvi, Z3) + 12τ(Z3) + 2S(Qvi, Z3)τ(vi)

+
1

4
[g(Z3, ϕvi)(vir)− g(∇vi

Dr, vi)τ(Z3)− g(ϕvi, Z3)(vi)

− g(∇viDr,Z3)τ(vi)].

Now from (48), we have

g((∇Z1Q)ϕZ2, Z3) + g((∇Z1Q)Z2, ϕZ3)(53)

= g((∇Z1
ϕ)QZ2, Z3) + g(Q(∇Z1

ϕ)Z2, Z3).

Again using (9) and (48) in the foregoing equation yields

g((∇Z1
Q)ϕZ2, Z3) + g((∇Z1

Q)Z2, ϕZ3)(54)

= − g(Z1,QZ2)τ(Z3)− 2g(Z1, Z3)τ(Z2)

+ 2g(Z1, Z2)τ(Z3) + g(QZ1, Z3)τ(Z2).

Taking an orthonormal basis {vi} and replacing Z2 and Z3 by vi, we infer

3∑
i=1

g((∇Z1
Q)ϕvi, vi) +

3∑
i=1

g((∇Z1
Q)vi, ϕvi) = 0.

That is,

(55)

3∑
i=1

g((∇Z1
Q)ϕvi, vi) = 0.
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Setting Z1 = Z3 = vi in (46) yields

(56)

3∑
i=1

g((∇viQ)Z2, ϕvi) = (r − 2)η(Z2)−
1

2
(ϕZ2)r.

Making use of (47), (55) and (56) in (52) yields

(∇viC0)(vi, Z3)ζ = 3(r + 6)τ(Z3)−
3

2
g(ϕZ3, Dr)(57)

+
1

4
[(divDr)τ(Z3)− g(∇ζDr,Z3)].

Since in a 3-dimensional paraSasakian manifold Weyl curvature tensor vanishes,
so equation (5) reduces to

B(Z1, Z2) =

3∑
i=1

[(∇viC0)(vi, Z1)Z2)](58)

for all smooth vector fields Z1 and Z2.
Replacing Z2 by ζ in (6) and using (57) and (58) provides

3(r + 6)τ(Z1)−
3

2
g(ϕZ1, Dr)(59)

+
1

4
[(divDr)τ(Z1)− g(∇ζDr,X)]− λτ(Z1) = 0.

Replacing Z1 by ϕZ1 in (59) implies

∇ζDr = −6(ϕDr).(60)

From (45) and (60), we have Dr = 0, that is, r is a constant.
Then from (59), it follows that

λ = 3(r + 6).

This leads to the following:

Theorem 4.1. Let (g, ζ, λ) be a Bach almost solitons on a paraSasakian man-
ifold of dimension 3. Then the manifold is of constant scalar curvature. More-
over, the Bach almost solitons are steady if r = −6; shrinking if r > −6;
expanding if r < −6.
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