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MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE

SCALAR CURVATURE

Jongsu Kim

Abstract. We find a C∞-continuous path of Riemannian metrics gt on
Rk, k ≥ 3, for 0 ≤ t ≤ ε for some number ε > 0 with the following
property: g0 is the Euclidean metric on Rk, the scalar curvatures of gt
are strictly decreasing in t in the open unit ball and gt is isometric to the
Euclidean metric in the complement of the ball. Furthermore we extend
the discussion to the Fubini-Study metric in a similar way.

1. Introduction

In a remarkable paper [11], Lohkamp has made the following conjecture in
Riemannian geometry.

Conjecture. Let (Mk, g0), k ≥ 3, be a manifold and B ⊂ M a ball. Then
there is a C∞-continuous path of Riemannian metrics gt, 0 ≤ t ≤ ε, on M with

(i) Ricci curvature of gt is strictly decreasing in t on B.
(ii) gt ≡ g0 on M\B.

If such a path gt exists, we call it a Ricci-curvature melting of g0 on B. This
conjecture, if true, would certainly imply a scalar-curvature melting, meaning
a path gt as above but with scalar curvature replacing the Ricci curvature
in the condition (i). We note that common metric-surgery arguments do not
seem to yield a scalar-curvature melting. If one considers the scalar curvatures

s(gt) for a scalar-curvature melting gt, then
ds(gt)

dt
|t=0 ≤ 0 on B. In this way,

the scalar-curvature melting is related to the deformation theory of the scalar
curvature functional [4, Chapter 4]. A remarkable approach is the theory of
local scalar curvature deformation of J. Corvino [6, Theorem 4]. He considered
the formal adjoint L∗

g of the linearization Lg of the scalar curvature functional
on the space of Riemannian metrics restricted to a domain. According to his
work, a scalar-curvature melting of g seems to exist when L∗

g is injective. Years
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later, this injectivity condition of L∗
g on domains was shown to be a generic

one by Beig, Chruściel and Schoen (see Theorem 6.1 and Theorem 7.4 in [3]).
Now the question is how to melt a Riemannian metric which does not satisfy
this condition.

In this context, Euclidean metrics arise importantly because they are out-
standing ones, not satisfying this condition. In a recent paper [8], we explained
the scalar-curvature melting of Euclidean metric in 3 dimension. The purpose
of this article is to complete the scalar-curvature melting of Euclidean met-
rics in any dimension ≥ 3 and then extend the discussion to the Fubini-Study
metric in a similar way.

We shall first construct a family of Riemannian metrics on Rk, k ≥ 3 which
have negative scalar curvatures on a pre-compact (open) set and are Euclidean
away from it. In even dimension we already have such a family of metrics
[7]. In odd dimension, we use the coordinates (r1, θ1, . . . , rn, θn, z) on R2n+1

where (ri, θi) are the polar coordinates on the i-th direct summand of R2n+1 :=
R2 × · · · ×R2 ×R and z is the coordinate for the last summand R. We express
the Euclidean metric as g0 =

∑n
i=1(dr

2
i + r2i dθ

2
i ) + dz2. We deform it to

g =
∑n

i=1(f
2
i dr

2
i +

r2i
f2
i

dθ2i ) + dz2 and choose smooth functions fi so that g has

negative scalar curvature on a pre-compact set near origin and is Euclidean
away from it.

Then by conformal change of g (also for the even dimensional metrics men-
tioned above), we spread the negativity inside the pre-compact set over to a
larger ball. In the process, we found a natural choice of parameter t to get gt.
In this way we get a scalar-curvature melting:

Theorem 1.1. There exists a C∞-continuous path of Riemannian metrics gt
on Rk, k ≥ 3 which exists for 0 ≤ t ≤ ε for some number ε with the following

property: g0 is the Euclidean metric on Rk, s(gt̃) < s(gt) for 0 ≤ t < t̃ ≤ ε in

the open unit ball and gt is the Euclidean metric in the complement of the ball.

In Section 2, we construct Riemannian metrics on R2n+1 that have negative
scalar curvatures on a pre-compact set and are Euclidean away from it. In
Section 3, we demonstrate a C∞-continuous path of metrics gt such that the
scalar curvature s(gt) is monotonically decreasing in t. In Section 4, by a con-
formal deformation we get a genuine scalar-curvature melting on the unit ball
in R

2n+1. We also observe that similar argument works for even dimensions.
In Section 5 we discuss the Fubini-Study metric in a similar way.

2. Construction of the metric

We will deform the Euclidean metric g0 =
∑n

i=1(dr
2
i + r2i dθ

2
i ) + dz2 on

R2n+1 = R2 × · · · × R2 × R to a metric of the form

(1) g̃ =

n
∑

i=1

(f2
i dr

2
i +

r2i
f2
i

dθ2i ) + dz2,
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where fi’s are smooth positive functions on R2n+1 depending only on the
variables r1, . . . , rn, z. g̃ is a metric on R2n+1\{(r1, θ1, . . . , rn, θn, z) | ri =
0 for some i}. Below we shall choose fi so that g̃ is smooth on R2n+1. Let

e2i−1 = 1
fi

∂
∂ri

, e2i =
fi
ri

∂
∂θi

, i = 1, 2, . . . , n, e2n+1 = ∂
∂z
.

Let ωi be the dual co-frame fields of ei: ω2i−1 = fidri, ω2i = ri
fi
dθi,

ω2n+1 = dz. We compute the connection 1-forms ωij with respect to ωi:

dωi =
∑2n+1

j=1 ωij ∧ ωj , with ωij = −ωji; one may compute

2aijk = 〈dωk, ωi ∧ ωj〉g − 〈dωi, ωj ∧ ωk〉g − 〈dωj , ωk ∧ ωi〉g,

where ωij =
∑

k=1 aijkωk. We get

dω2n+1 = 0,

dω2i−1 =
fi,2n+1

fi
ω2n+1 ∧ ω2i−1 +

n
∑

j=1

fi,j

fifj
ω2j−1 ∧ ω2i−1 and

dω2i = −
fi,2n+1

fi
ω2n+1 ∧ ω2i +

n
∑

j=1

δijfi − rifi,j

rififj
ω2j−1 ∧ ω2i

for i = 1, 2, . . . , n.

Here we write fi,j = ∂fi
∂rj

, fi,jk = ∂2fi
∂rk∂rj

. Then we can get ω2i−1 2j−1 =

− fi,j
fjfi

ω2i−1 +
fj,i
fjfi

ω2j−1, ω2i−1 2j =
δjifj−rjfj,i

rjfifj
ω2j and ω2i 2j = 0 for i, j =

1, 2, . . . , n and ω2n+1 2i−1 =
fi,2n+1

fi
ω2i−1, ω2n+1 2i = −

fi,2n+1

fi
ω2i. We use the

formula dωi j − ωi k ∧ ωk j =
∑2n+1

k<l Rijklωk ∧ ωl to compute the curvature
components;

R2i−1 2j−1 2j−1 2i−1

= (−dω2i−1 2j−1 + ω2i−1 s ∧ ωs 2j−1, ω2i−1 ∧ ω2j−1)g

= −
fi,jj

fif
2
j

+
fi,jfj,j

fif
3
j

−
fj,ii

fjf
2
i

+
fj,ifi,i

fjf
3
i

−
n
∑

k 6=i,j

fi,kfj,k

fifjf
2
k

−
fi,2n+1

fi
·
fj,2n+1

fj
,

R2i 2j 2j 2i

= (−dω2i 2j , ω2i ∧ ω2j)g + (ω2i s ∧ ωs 2j , ω2i ∧ ω2j)g

=
fj,i

rif
2
i fj

+
fi,j

rjf
2
j fi

−
n
∑

k=1

fi,kfj,k

fifjf
2
k

−
fi,2n+1

fi
·
fj,2n+1

fj
,

R2i−1 2j 2j 2i−1

= (−dω2i−1 2j , ω2i−1 ∧ ω2j)g + (ω2i−1 s ∧ ωs 2j , ω2i−1 ∧ ω2j)g

=
δijfi,i

rjf
3
i

+
fj,ii

f2
i fj

−
fj,ifi,i

f3
i fj

−
2f2

j,i

f2
i f

2
j

+
2δijfj,i
rjf

2
i fj

−
n
∑

k 6=i

δjkfi,k

rjfif
2
k

+

n
∑

k 6=i

fi,kfj,k

fifjf
2
k

+
fi,2n+1

fi
·
fj,2n+1

fj
,
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R2n+1 2i−1 2i−1 2n+1 = −(
fi,2n+1

fi
)2n+1 − (

fi,2n+1

fi
)2,

R2n+1 2i 2i 2n+1 = (
fi,2n+1

fi
)2n+1 − (

fi,2n+1

fi
)2.

The scalar curvature is as follows;

sg̃

2
=

2n+1
∑

1≤s<t

Rstts

=

2n
∑

1≤t

R2n+1 t t 2n+1 +

n
∑

1≤i<j

(R2i−1 2j−1 2j−1 2i−1 +R2i 2j 2j 2i)

+

n
∑

1≤i<j

(R2i−1 2j 2j 2i−1 +R2j−1 2i 2i 2j−1) +

n
∑

i=1

R2i−1 2i 2i 2i−1

= −
n
∑

i=1

(
fi,2n+1

fi
)2 +

n
∑

i=1

(
fi,ii

f3
i

+ 3
fi,i

rif
3
i

− 3
f2
i,i

f4
i

)−
∑

i<j

f2
i,j + f2

j,i

f2
i f

2
j

= −
1

2

n
∑

i=1

{(f−2
i )ii +

3

ri
(f−2

i )i} −
∑

i<j

f2
i,j + f2

j,i

f2
i f

2
j

−
n
∑

i=1

(
fi,2n+1

fi
)2.

Set Fi = f−2
i , i = 1, . . . , n. We shall find the functions Fi so that they

satisfy

(2)

n
∑

i=1

(Fi,ii +
3

ri
Fi,i) = 0.

We consider smooth functions β(z) and αi
j(r), i = 1, . . . , n− 1, j = 1, . . . , n

on R which satisfy at least

β(z) = 0 for z ≤ −1, or z ≥ 1, and β(z) > 0 on − 1 < z < 1,

αi
j(r) = 0 for r ≤ 0, or r ≥ 1.

The functions αi
j ’s need to be specified more. Let kij(r) be smooth functions

on R satisfying






















a) kij(r) = 0 for r ≤ 0, r ≥ 1,

b) |(kij)
′(r)|C0

≪ |r3|C0
,

c)
∫ 1

0

ki
j(r)

r3
dr = 0,

d) 0 <
∫ c

0

ki
j(r)

r3
dr < 1 for any c with 0 < c < 1.

Set αi
j(r) =

1
r3

dki
j

dr
(r), which will be smooth on R.

Graphs of typical αi
j and β are given in Figures 1 and 2 below.
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−0.2
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Figure 1. The graph of αi
j .

0

0.2

1−1

Figure 2. The graph of β.

Define the functions Fi, i = 1, . . . , n− 1, and Fn by

Fi(r1, . . . , rn, z) = 1 + β(z) · αi
1(r1) · · ·

ˆαi
i(ri) · · ·α

i
n(rn)

∫ ri

0

(
1

y3

∫ y

0

x3αi
i(x) dx) dy,

where ˆ denotes the missing factor in that position,

Fn(r1, . . . , rn, z) = 1− β(z) ·
n−1
∑

i=1

αi
1(r1) · · ·α

i
n−1(rn−1)

∫ rn

0

(
1

y3

∫ y

0

x3αi
n(x) dx) dy.

We consider Fi’s and Fn defined on R2n+1 = R2 × · · · × R2 ×R. Then they
satisfy the equation (2) and

Fi, Fn ≡ 1 if rk ≤ 0 or rk ≥ 1 for some k, or |z| > 1,

Fi, Fn > 0 everywhere.

We set C = {(r1, θ1, . . . , rn, θn, z) | |z| < 1, 0 ≤ ri < 1, 0 ≤ θi < 2π}.
We now see that g̃ is Euclidean away from C and that its scalar curvature
sg̃ is negative inside C except the thin subset T := {(r1, θ1, . . . , rn, θn, z) ∈
C | Fi,j = 0, Fi,2n+1 = 0, 1 ≤ i 6= j ≤ n}.

Proposition 2.1. There exist Riemannian metrics on R2n+1, n ≥ 2 such that

their scalar curvatures are negative on the pre-compact subset C\T and they

are Euclidean away from C.

We need to recall the similar result in even dimensions from Sections 3 and
5 of [7].
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Proposition 2.2. There exist Riemannian metrics on R2n, n ≥ 2 such that

their scalar curvatures are negative on a pre-compact subset K and they are

Euclidean away from K.

3. Decreasing property of the scalar curvature of metrics

We are going to show that there is a C∞-continuous path g̃t among the
metrics in the previous section such that its scalar curvature s(g̃t) is decreasing
in C\T and g̃t is Euclidean in the complement of C.

We set

F t
i (r1, . . . , rn, z) = 1 + t · β(z) · · ·αi

1(r1) · · ·
ˆαi

i(ri) · · ·α
i
n(rn)

∫ ri

0

(
1

y3

∫ y

0

x3αi
i(x) dx) dy,

where ˆ denotes the missing factor in that position,

F t
n(r1, . . . , rn, z) = 1− t · β(z) ·

n−1
∑

i=1

αi
1(r1) · · ·α

i
n−1(rn−1)

∫ rn

0

(
1

y3

∫ y

0

x3αi
n(x) dx) dy.

Still under the relation F t
i = (f t

i )
−2, i = 1, . . . , n, we let

(3) g̃t = dz2 +
n
∑

i=1

(f t
i )

2dr2i +
r2i

(f t
i )

2
dθ2i .

The scalar curvature is

sg̃t(r1, . . . , rn) = −
1

4

∑

i<j

{(
F t
i,j

F t
i

)2F t
j + (

F t
j,i

F t
j

)2F t
i } −

1

4

n
∑

i=1

(
F t
i,2n+1

F t
i

)2.

One can easily check d(s(g̃t))
dt

|t=0 = 0 and

d2(s(g̃t))

dt2
|t=0 = −

1

4

∑

i<j

{
d2(F t

i,j)
2

dt2
|t=0 +

d2(F t
j,i)

2

dt2
|t=0}

−
1

4

n
∑

i=1

d2(F t
i,2n+1)

2

dt2
|t=0

= −
1

2

∑

i<j

{(Fi,j)
2 + (Fj,i)

2} −
1

2

n
∑

i=1

(Fi,2n+1)
2 ≤ 0.

Note that inside C the set of points with d2

dt2
(s(g̃t))|t=0 = 0 is identical to

the set T. We see that s(g̃t) is strictly decreasing only on C\T. In order to
have the right decreasing property, we need to diffuse the negativity (of scalar
curvature) onto a ball containing C\T.
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4. Diffusion of negative scalar curvature onto a ball

Our argument in this section is similar to that in [8, Section 4], so we avoid
some details. We use the following functions; Ft,m(ρ) ∈ C∞(R,R≥0) for m > 0,
t ≥ 0 defined by Ft,m(ρ) = m · t2 · exp(− 100

ρ
) on R>0 and Ft,m = 0 on R≤0.

Also choose an H ∈ C∞(R, [0, 1]) with H = 0 on R≥1, H = 1 on R≤0 and
Hb

ǫ (ρ) = H(1
ǫ
(ρ− b)) for b > 0, ǫ > 0.

Let Br(x) be the open ball of radius r with respect to g0 centered at x. We
choose a point p and a number ǫ1 < 0.1 so that B2ǫ1(p) ⊂ C\T. Then s(g̃t) < 0
on Bǫ1(p) when 0 < t < c for some number c.

Let ft,m ∈ C∞(R2n+1,R≥0) be ft,m(q) = Ft,m(ρ(q)), where ρ is the g0-
distance from the above point p to q ∈ R2n+1 and let hb

ǫ ∈ C∞(R2n+1,R≥0) be
hb
ǫ(q) = Hb

ǫ (ρ(q)). We choose b = 9 and ǫ = ǫ1. We consider the Riemannian
metric e2φt g̃t, where

φt(ρ) = ft,m(9 + ǫ1 − ρ) · h9
ǫ1
(9 + ǫ1 − ρ) = mt2e

− 100
9+ǫ1−ρ h9

ǫ1
(9 + ǫ1 − ρ).

We consider the scalar curvature s(e2φt g̃t). We easily get ds(e2φt g̃t)
dt

|t=0 = 0.

Using the conformal deformation formula s(e2φtgt) = e−2φt(sgt + 4n∆gtφt −

2n(2n−1)|∇gtφt|2), we calculate as in [8, Section 4] to show that d2s(e2φt g̃t)
dt2

|t=0

< 0 on B9+ǫ1(p) for small m > 0. Note that e2φt g̃t = g0 on R2n+1\B9+ǫ1(p).
But due to the boundary ∂B9+ǫ1(p), we can not yet conclude the existence

of a constant ε such that s(e2φt g̃t) is strictly decreasing in the ball B9+ǫ1(p)
for 0 ≤ t ≤ ε.

We continue to follow the argument in [8, Section 4] to show that ds(e2φt g̃t)
dt

<

0 on B9+ǫ1(p)\B9(p) when 0 < t ≤ t0 for some number t0 > 0.
This yields a scalar-curvature melting gt = e2φt g̃t on B9+ǫ1(p). By pulling

it back by an affine transformation, we can get a scalar-curvature melting on
the unit ball.

In even dimensions, we start with the metrics in Proposition 2.2 and proceed
similarly as in Section 3 and Section 4. Then we can get a scalar-curvature
melting on the unit ball in R2n, n ≥ 2. This proves Theorem 1.1.

Remark 4.1. The odd dimensional metric in Proposition 2.1 is in fact a contact
metric compatible with the standard contact structure on R2n+1. We suspect
our melting can be done in the space of contact metrics. It is very interesting
to find a scalar curvature melting of a general metric on a ball, not to mention
a Ricci-curvature melting.

5. Fubini-Study metric

In this section we demonstrate that the arguments for Euclidean metrics can
work similarly for the Fubini-Study metric.

We need to discuss in the context of almost Kähler metrics, which are Rie-
mannian metrics g compatible with a symplectic structure ω, i.e., ω(X,Y ) =
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g(X, JY ) for an almost complex structure J , where X,Y are tangent vectors.
Here ω and g determine J . One may refer to [2] for some knowledge of almost
Kähler geometry needed in this section. In this geometry, for the canonical
hermitian connection ∇ determined by J we have the corresponding hermitian

scalar curvature s∇. It proves to be equal to 1
2 (s

∗ + s), where s∗ is the star-

scalar curvature. It is known that s∗− s = 1
2 |DJ |2, where D is the Levi-Civita

connection. So s∇ ≥ s, with equality if and only if (ω, g) is Kähler .
In [9, Subsection 4.1], for a toric symplectic manifold (M2n, ω), i.e., a

symplectic manifold equipped with an effective Hamiltonian action of an n-
dimensional torus T , M. Lejmi considered ω-compatible T -invariant almost
Kähler metrics g which have the local expression

(4) g =

n
∑

i,j=1

Gij(z)dzi ⊗ dzj +Hij(z)dti ⊗ dtj ,

where z1, . . . , zn are moment coordinates corresponding to Hamiltonian vec-
tor fields generating T action and H = (Hij) is a symmetric positive-definite
matrix-valued function and G = (Gij) is the inverse matrix of H . In z, t

coordinates, ω =
∑

dzi ∧ dti. Any metric of the form (4) is ω-compatible
almost Kähler. He computed that s∇ = 1

2 (s + s∗) = −
∑n

i,j=1 Hij,ij , where

(·),ij =
∂2(·)
∂zj∂zi

.

Example ([1]). Consider the complex projective space CPn with the Fubini-
Study metric gFS in homogeneous coordinates [z0, z1, . . . , zn]. We denote the
Kähler form by ωFS . The T

n-action on CPn given by (y1, . . . , yn)·[z0, z1, . . . , zn]
= [z0, e

−y1iz1, . . . , e
−ynizn], is Hamiltonian, with moment map µ : CPn → Rn

given by µ([z0, z1, . . . , zn]) =
1

‖z‖2 (‖z1‖2, . . . , ‖zn‖2).

Set St := {(x1, . . . , xn) | each xi > 0,
∑n

i=1 xi < t} ⊂ Rn. Then the image
of µ is the closure of S1. gFS can be expressed as (4) with some H0

ij(z).

Proposition 5.1. Given an open set Sc, 0 < c < 1, there exists a family of

T n-invariant almost-Kähler metrics (ωFS , ḡt) on CPn, 0 ≤ t < ǫ2 for some

number ǫ2, such that

(i) on CPn − µ−1(Sc); ḡt = gFS for 0 ≤ t < ǫ2,

(ii) on CPn; ḡ0 = gFS, s
∇ḡt = s∇ḡ0 and s(ḡt) ≤ s(ḡ0) for 0 ≤ t < ǫ2,

(iii) s(ḡt) < s(ḡ0) for 0 < t < ǫ2 on some open subset W of µ−1(Sc).

Proof. Set Ht
ij(z) = H0

ij(z) + tUij(z) and we denote the corresponding metric

in (4) by ḡt. The condition s∇ḡt = s∇ḡ0 is equivalent to
∑n

i,j=1{Uij},ij = 0.

For its solution, choose U = (Uij) as the diagonal matrix with diagonal entries

Uii(z) = αi
1(z1) · · ·

ˆαi
i(ri) · · ·α

i
n(zn)

∫ zi

0

(

∫ y

0

αi
i(x) dx) dy for i = 1, . . . , n− 1,
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where ˆ denotes the missing factor in that position,

Unn(z) = −
n−1
∑

i=1

αi
1(z1) · · ·α

i
n−1(zn−1)

∫ zn

0

(

∫ y

0

αi
n(x) dx) dy,

where αi
j(zj), i = 1, . . . , n − 1, j = 1, . . . , n are smooth functions on R which

satisfy at least αi
j(zj) = 0 for zj ≤ 0, or zj ≥ c̃ for some c̃ > 0. This is

similar to the solution of the equation (2). Again, one can properly choose c̃

small and αi
j so that Uij become smooth functions with compact support in

µ−1(Sc) and that ḡt, t > 0, is an almost Kähler metric which is non-Kähler,
i.e., 1

2 |DJ |2 = s∗ − s 6= 0 somewhere. Indeed, either by direct computation on
a component of DJ or by an argument using [5, Section 4], one can find {Uij}
so that near some chosen point ḡt is non-Kähler for any small t.

As (ωFS , gFS) is Kähler, s(gFS) = s∇ḡ0 . But then, s∇ḡ0 = s∇ḡt ≥ s(ḡt)
with equality exactly where (ω, ḡt) is Kähler. This proves that s(ḡt) < s(ḡ0)
for 0 < t < ǫ2 on an open pre-compact subset W of µ−1(Sc). �

The metrics ḡt play the same role as those in Propositions 2.1 or 2.2.

Theorem 5.2. Suppose we are given a point p0 ∈ CPn and a number r0
with 0 < r0 < 1

2diameter(gFS). Then there exists a C∞-continuous path of

Riemannian metrics gt on CPn, which exists for 0 ≤ t < ε for some number ε

with the following property: g0 = gFS, s(gt̃) < s(gt) for 0 ≤ t < t̃ < ε in the

ball BgFS
r0

(p0) of gFS-radius r0 centered at p0 and gt is isometric to gFS in the

complement of the ball.

Proof. Since (CPn, gFS) is homogeneous, we may choose the coordinates and
hamiltonian T n action so that p0 = µ−1(0, . . . , 0). We choose c so that
µ−1(Sc) ⊂ B

gFS
r0
2

(p0) and get ḡt in Proposition 5.1. Choose the smallest natural

number k such that
dksḡt
dtk

|t=0 is not identically zero. This k exists because at

each point sḡt is a rational function of t. Then
djsḡt
dtj

|t=0 ≡ 0 for j = 1, . . . , k−1.
dksḡt
dtk

|t=0 ≤ 0 and
dksḡt
dtk

|t=0(p) < 0 at some p ∈ W . We now apply the argument
of Section 4.

We consider a smooth coordinates system y := y1, . . . , y2n on B
gFS
3
2
r0
(p0),

which is a topological ball, such that y(0) = p and BgFS
r0

(p0) becomes a y-

coordinates ball of radius, say R. Let g0 be the Euclidean metric g0 = dy21 +

· · ·+ dy22n and ρ =
√

∑2n
i=1 y

2
i .

From now on, Br(·) means a ball of g0-radius r with center at ·. For some

positive number ǫ < R
10 , B2ǫ(p) should satisfy B2ǫ(p)∩{q |

dksḡt
dtk

(q)|t=0 = 0} =
∅. Choosing ǫ further small if necessary, we assume that BR−ǫ(p) ⊃ B

gFS
r0
2

(p0).

Define F d
t,m(x) = mtke−

d
x . We consider gt := e2φt ḡt, where φt(ρ) = F d

t,m(b+

ǫ − ρ) · hb
ǫ(b + ǫ − ρ). We set b = R − ǫ. m and d shall be determined below.
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The scalar curvature is as follows; s(gt) = e−2φtB, where B = sḡt + an∆ḡtφt −
bn|∇ḡtφt|2 for some positive numbers an, bn depending on n. Then

(5)
ds(gt)

dt
= e−2φt(−2

dφt

dt
B +

dsḡt
dt

+ an
d∆ḡtφt

dt
− bn

d|∇ḡtφt|2

dt
).

We easily get djs(gt)
dtj

|t=0 = 0 for j = 1, . . . , k − 1 and

dks(gt)

dtk
|t=0 = −2k!msg0e

− d
b+ǫ−ρhb

ǫ(b + ǫ− ρ) +
dksḡt
dtk

|t=0 + an
dk∆ḡtφt

dtk
|t=0 .

On Bb+ǫ(p)−Bǫ(p), since hb
ǫ(b+ ǫ− ρ) = 1 we have

dks(gt)

dtk
|t=0 ≤ −2k!msg0e

− d
b+ǫ−ρ + an

dk∆ḡtφt

dtk
|t=0

= mk!(−2sg0e
− d

b+ǫ−ρ + an∆g0e
− d

b+ǫ−ρ )

≤ mk!(−2sg0G− α1G
′′

− α2G
′

) < 0, when d is large,

where G(ρ) = e−
d

b+ǫ−ρ and α1, α2 are some positive numbers and we used

Lemmas 5.3 and 5.4 below. On Bǫ(p),
dksḡt
dtk

|t=0 < −c1 < 0 for some number

c1 > 0, so choosem > 0 small so that −2k!msg0e
− d

b+ǫ−ρ hb
ǫ(b+ǫ−ρ)+

dksḡt
dtk

|t=0+

an
dk∆ḡtφt

dtk
|t=0 < 0.

In sum, we have djs(gt)
dtj

|t=0 = 0 for j = 1, . . . , k − 1 and dks(gt)
dtk

|t=0 < 0 on

Bb+ǫ(p) and gt = g0 on M −Bb+ǫ(p). On Bb(p), there exists ǫ3 > 0 such that
s(gt) is strictly decreasing for 0 ≤ t ≤ ǫ3.

On Bb+ǫ(p) − Bb(p), ḡt = g0. From (5), Lemmas 5.3, 5.4 and 5.5, for large
d,

e2φt
ds(gt)

dt

= − 2
dφt

dt
(sg0 + an∆g0φt − bn|∇g0φt|

2) + an
d∆g0φt

dt
− bn

d|∇g0φt|2

dt

= − 2kmtk−1e−
d

b+ǫ−ρ (sg0 + anmtk∆g0e
− d

b+ǫ−ρ − bnm
2t2k|∇g0e

− d
b+ǫ−ρ |2)

+ kanmtk−1∆g0e
− d

b+ǫ−ρ − 2kbnm
2t2k−1|∇g0e

− d
b+ǫ−ρ |2

≤ kmtk−1{−2e−
d

b+ǫ−ρ (sg0 + anmtk∆g0e
− d

b+ǫ−ρ ) + an∆g0e
− d

b+ǫ−ρ }

≤ kmtk−1(−2sg0e
− d

b+ǫ−ρ +
an

2
∆g0e

− d
b+ǫ−ρ )

≤ kmtk−1(−2sg0G− α̃1G
′′

− α̃2G
′

) < 0 for numbers α̃1, α̃2 > 0,

while 0 < t < ǫ4 for some ǫ4. This implies that s(gt) is strictly decreasing for

0 ≤ t < ǫ4 on Bb+ǫ(p) − Bb(p). So, s(gt) is strictly decreasing for 0 ≤ t < ε =
min{ǫ3, ǫ4} on Bb+ǫ(p). This proves Theorem 5.2. �
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For the function F (t) = e−
d
t on R>0, one can modify easily Lemma 1.2 in

[10] as follows; for m0,m1 ∈ R and m2, b ∈ R>0 there exist numbers d0(b) > 0

and d1(m0,m1,m2, b) > 0 such that F (j) := djF
dtj

> 0 on (0, b) for j = 0, 1, 2, 3

if d ≥ d0(b) and m2F
′′

+m1F
′

+m0F > 0 on (0, b) if d ≥ d1(m0,m1,m2, b).
Since G(j)(ρ) = (−1)jF (j)(b + ǫ− ρ), we get:

Lemma 5.3. For m0,m1 ∈ R and m2, b ∈ R>0, there exists d2(m0,m1,m2, b)

> 0 such that m2G
′′

+m1G
′

+m0G > 0 on (ǫ, b+ ǫ) if d ≥ d2(m0,m1,m2, b).
And (−1)jG(j) > 0 on (ǫ, b+ ǫ) for j = 0, 1, 2, 3 if d ≥ d0(b).

Next, we modify Corollary 2.3 in [10] as follows. Assume that g on a domain
D ⊂ Rn+1 fulfill the following two conditions for some k > 1: (i) gEucl(ν, ν) ≤
k2 · g(ν, ν). (ii) The C3-norm ‖g‖C3

gEucl
(D) ≤ k. Let H ∈ C∞(R,R) be a

function with H
′

≤ 0, H
′′

≥ 0. Then there are constants a1, a2 > 0 depending
only on n and k such that (a1H

′′

+ a2H
′

) ◦ π ≤ −∆g(H ◦ π) on D, where
π : R × Rn → R is the projection. This can be easily verified, following the
argument in pp. 660–661 in [10].

We can choose a coordinates system (u1, . . . , u2n) with u1 = ρ on a proper

subdomain D̃ of Bb+ǫ(p)−Bǫ(p) so that (i) and (ii) holds with gEucl := dρ2 +
du2

2 + · · ·+ du2
2n. Applying the above paragraph to g0|D̃ and G, we get:

Lemma 5.4. If d ≥ d0(b), there are constants a1, a2 > 0 such that ∆g0G(ρ) ≤

−a1G
′′

− a2G
′

on Bb+ǫ(p)−Bǫ(p).

Putting Lemmas 5.3 and 5.4 together;

Lemma 5.5. ∆g0G(ρ) < 0 on Bb+ǫ(p)−Bǫ(p) if d is large.

Remark 5.6. For the Fubini-Study metric, the kernel of L∗
g on CPn is trivial.

But we do not know if the kernel of L∗
g is trivial when restricted to a ball. In

any case, our construction gives a large amount of deformation, compared to
the small deformation of Corvino’s, as the latter is based on Implicit Function
Theorem.
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