DOI QR코드

DOI QR Code

A Study on The Flame Propagation Velocity of Laminar Lifted Flame with Flame Curvatur e and Scalar Dissipation Rate

화염 곡률과 스칼라 소산율에 따른 층류부상화염의 화염전파속도에 관한 연구

  • Kim, Kyung-Ho (Department of Physics, Keimyung University) ;
  • Kim, Tae-Kwon (School of Mechanical & Automotive Engineering, Keimyung University) ;
  • Park, Jeong (School of Mechanical Engineering, Pukyong National University) ;
  • Ha, Ji-Soo (Energy and Environmental Science, Keimyung University)
  • 김경호 (계명대학교 물리학과) ;
  • 김태권 (계명대학교 기계자동차공학부) ;
  • 박정 (부경대학교 기계공학부) ;
  • 하지수 (계명대학교 에너지환경과학과)
  • Received : 2010.11.25
  • Accepted : 2011.03.25
  • Published : 2011.04.30

Abstract

Flame propagation velocity is the one ofmainmechanismof the stabilization of triple flame. To quantify the triple flame propagation velocity, Bilger presents the triple flame propagation velocity depending on the mixture fraction gradient, based on the laminar jet flow theory. However, in spite of these many analyses, there was not presented any relation of these variables, triple flame propagation velocity, radius of flame curvature and scalar dissipation rate indirectly. In the present research, we have checked the results of numerical simulation with experiment and numerical analysis and verified the flame propagation velocity with a scalar dissipation rate proposed by Bilger through the numerical simulation. Also we have clarified that flame propagation velocity was depended on the radius of flame curvature and scalar dissipation rate.

삼지화염의 화염안정화 메커니즘 중 중요한 한 가지는 화염전파속도이다. 화염전파속도의 정량적인 규명을 위해 Bilger는 층류 유동이론에 근거하여 혼합분율 기울기에 비선형적으로 연관된 삼지화염전파속도를 제시하였다. 그러나 지금까지의 연구에서는 화염의 곡률 반경과 스칼라소산율 및 삼지화염의 화염전파속도에 관한 직접적인 관계에 관하여 제시된 바가 없었다. 본 논문은 실험과 수치해석에 따른 수치해석 결과를 검증하고, 수치해석을 통해 스칼라소산율에 따른 화염전파속도를 확인하였다. 그리고 화염스트레치 분석을 통하여 화염전파속도의 곡률반경 및 스칼라소산율에 따른 의존도를 명확히 하였다.

Keywords

References

  1. H. Phillips, "Flame in a buoyant methane layer", Tenth Symposium (international) on Combustion, The Combustion Institute, 1277-1283, (1965)
  2. L.Muniz,M. G.Mungal, "Instantaneous flame-stabilization velocities in lifted-jet diffusion flames", Combustion and Flame, 111, 16-31, (1997) https://doi.org/10.1016/S0010-2180(97)00096-5
  3. J. W. Dold, "Flame propagation in a nonuniform mixture: analysis of a slowly varying triple flame", Combustion and Flame, 76, 71-88, (1989) https://doi.org/10.1016/0010-2180(89)90079-5
  4. J. Boulanger, L. Vervisch, J. Reveillon, S. Ghosal, " Effects of heat release in laminar diffusion flames lifted on round jets", Combustion and Flame, 134, 355-368, (2003) https://doi.org/10.1016/S0010-2180(03)00114-7
  5. T. Plessing, P. Terhoeven, N. Peters,M.S.Mansour, "An experimental and numerical study of a laminar triple flame", Combustion and Flame, 115, 335-353, (1998) https://doi.org/10.1016/S0010-2180(98)00013-3
  6. H.G. Im, J.H. Chen, "Structure and propagation of methanol-air triple flames", Combustion and Flame, 119, 436-454, (1999) https://doi.org/10.1016/S0010-2180(99)00073-5
  7. H.G. Im, J.H. Chen, "Effect of flow strain on triple flame propagation", Combustion and Flame, 126, 1384-392, (2001) https://doi.org/10.1016/S0010-2180(01)00261-9
  8. R. D. Lockett, B. Boulanger, S. C. Harding, D. A. Greenhalgh, "The structure and stability of the laminar counter-flow partially premixedmethane/air triple flame", Combustion and Flame, 119, 109-120, (1999) https://doi.org/10.1016/S0010-2180(99)00046-2
  9. C. E. Frouzakis, A. G. Tomboulides, J. Lee, K. Boulouchos, "From diffusion to premixed flames in an $H_{2}$/air opposed-jet burner: the role of edge flames", Combustion and Flame, 130, 171-184, (2002) https://doi.org/10.1016/S0010-2180(02)00376-0
  10. Y. S. Ko, S. H. Chung, "Propagation of unsteady tribrachial flames in laminar non-premixed jets", Combustion and Flame, 118, 151-163, (1999) https://doi.org/10.1016/S0010-2180(98)00154-0
  11. S. H. Chung, B. J. Lee, "On the characteristics of laminar lifted flames in a nonpremixed jet", Combustion and Flame, 86, 62-72, (1991) https://doi.org/10.1016/0010-2180(91)90056-H
  12. J. Lee, S. H.Won, S. H. Jin, S. H. Chung, O. Fujita, K. Ito, "Propagation speed of tribrachial (triple) flame of propane in laminar jets under normal and micro gravity conditions", Combustion and Flame, 134, 411-420, (2003) https://doi.org/10.1016/S0010-2180(03)00115-9
  13. R. W. Bilger, Y. C. Chen, "Stabilization mechanisms of lifted laminar flames in axisymmetric jet flows", Combustion and Flame, 122, 377-399, (2000) https://doi.org/10.1016/S0010-2180(00)00120-6
  14. H. Schlichting, Boundary-Layer Theory, McGraw- Hill Co., New York, (1979)
  15. K. K. Kuo, Principles of Combustion, John Wiley & Sons, New York, (1993)
  16. H. S. Um, K. H. Kim, J. S. Ha, T. K. Kim, J. Park, "Effects of fuel nozzle diameter in the behavior of laminar lifted flame", Kigas, 12(2), 77-84, (2008)
  17. J. S. Ha, T. K. Kim, J. Park, K. H. Kim, "A Numerical study for the scalar dissipation rate and the flame curvature with flame propagation velocity in a lifted flame", Kigas, 14(3), 46-52, (2010)
  18. J. S. Ha, T. K. Kim, J. Park, K. H. Kim, "A Study on the Flame Curvature Characteristics in a Lifted Flame", Kigas, 14(2), 35-40, (2010)
  19. C. K. Law, Combustion Physics, Cambridge University Press, New York, (2006)