DOI QR코드

DOI QR Code

SHAPE OPERATOR AH FOR SLANT SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • KIM, DONG-SOO (Department of Mathematics, Chonnam National University) ;
  • KIM, YOUNG-HO (Department of Mathematics, Kyungpook National University) ;
  • LEE, CHUL-WOO (Department of Mathematics, Kyungpook National University)
  • Published : 2005.02.01

Abstract

In this article, we establish relations between the sectional curvature function K and the shape operator, and also relationship between the k-Ricci curvature and the shape operator for slant submanifolds in generalized complex space forms with arbitrary codimension.

Keywords

References

  1. B.-Y. Chen, Geometry of Slant submanifolds, Katholieke Univ. Leuven, Belgium
  2. B.-Y. Chen, Geometry of submanifolds, Marcel Dekker, New York, 1973
  3. B.-Y. Chen, Mean curvature and shape operator of isometric immersions in real space form, Glasg. Math. J. 38 (1996), 87-97 https://doi.org/10.1017/S001708950003130X
  4. B.-Y. Chen, Relations betveen Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J. 41 (1999), 33-41 https://doi.org/10.1017/S0017089599970271
  5. A. Gray, Nearly Kaehler manifolds, J. Differential Geom. 4 (1970), 283-309 https://doi.org/10.4310/jdg/1214429504
  6. J. J. Konderak, An example of an almost Hermitian fiat manifold which is not Hermitian, Riv. Mat. Univ. Parma (4), 17 (1991), 3159-318
  7. K. Matsumoto, I. Mihai, and A. Oiaga, Shape operator for slant sub manifold in complex space forms, Bull. Yamagata Univ. Natur. Sci. 14 (2000), 169-177
  8. Z. Olszak, On the existence of generalized complex space forms, Israel J. Math. 65 (1989), 214-218 https://doi.org/10.1007/BF02764861
  9. G.-B. Rizza, Varieta parakahleruuie, Ann. Mat. Pura Appl. 98 (1974), 47-61 https://doi.org/10.1007/BF02414012
  10. F. Triccrri, L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. Amer. Math. Soc. 267 (1981), 365-398 https://doi.org/10.2307/1998660
  11. F. Triccrri, Flat almost Hermitian manifolds which are not Kahler manifolds, Tensor (N.S.) 13 (1977), 149-154
  12. M. M. Tripathi, Some remarks on almost Hermitian Manifolds, Riv. Mat. Univ. Parma 3 (1994), no. 5, 229-230
  13. L. Vanhecke, Almost Hermitian manifolds with J-invariant Riemann curvature tensor, Rend. Mat. 34 (1975/76), 487-498