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MELTING OF THE EUCLIDEAN METRIC TO NEGATIVE

SCALAR CURVATURE IN 3 DIMENSION

Yutae Kang, Jongsu Kim, and SeHo Kwak

Abstract. We find a C∞ one-parameter family of Riemannian metrics
gt on R3 for 0 ≤ t ≤ ε for some number ε with the following property:
g0 is the Euclidean metric on R3, the scalar curvatures of gt are strictly

decreasing in t in the open unit ball and gt is isometric to the Euclidean
metric in the complement of the ball.

1. Introduction

In a remarkable paper of Lohkamp [3], where he proved the existence of
negatively Ricci-curved metrics on a manifold, he constructed metrics on Rk,
k ≥ 3 which have negative Ricci curvature on a ball and are Euclidean in the
complement of the ball. These metrics played a central role in the proof of the
existence. In fact, such metrics near the ball were quasi-isometrically embedded
into any given manifold, and then he could prove by spreading argument that
any manifold of dimension ≥ 3 admit a Riemannian metric of negative Ricci
curvature.

But he noted that the metrics on Rk can be only C0-close to the Euclidean
metric by the nature of the construction, e.g., see the metrics in [4, pp. 492–
493]. Related to this, Lohkamp has made the following conjecture in [4].

Conjecture. Let (Mn, g0), n ≥ 3, be a manifold and B ⊂ M a ball. Then
there are a metric g1 and a C∞-continuous path gt, on M with

(i) Ricci curvature of gt is strictly decreasing in t on B.
(ii) gt ≡ g0 on M\B.

Through this conjecture, one wants to study how flexible a Riemannian
metric can be with respect to Ricci curvature. Also one may want to study
the topology of the space of negatively Ricci-curved metrics on a manifold.
If the above gt exists, we call it a Ricci-curvature melting of g0 on B. This
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conjecture, if true, would certainly imply a scalar-curvature melting, meaning
a path gt as above but with scalar curvature replacing the Ricci curvature
in the condition (i). So far, there is no specific argument yet shown even in
the scalar-curvature melting case, to the knowledge of the authors. Typical
metric-surgery arguments do not seem to yield a scalar-curvature melting.

If one considers the scalar curvatures s(gt) for a scalar-curvature melting gt,

then ds(gt)
dt |t=0 ≤ 0 on B. In this way, the scalar-curvature melting is related

to the deformation theory of the scalar curvature functional S : M → C∞(M)
defined on the space M of Riemannian metrics, [1]. For example, to find a
melting gt one may try to get a symmetric 2-tensor h with support in B such
that dSg0(h), the first order derivative of S at g0 in the direction h, is negative
in B. But this approach is technically yet to be developed.

So in this paper we are content to study the scalar-curvature melting in
the simple case; that of Euclidean metric on a ball in R3. We use the co-
ordinates (x, r, θ) on R3 where (r, θ) are the polar coordinates on the sec-
ond direct summand of R3 := R × R2. We express the Euclidean metric as

g0 = dx2 + dr2 + r2dθ2 and deform it to g = f2dx2 + h2dr2 + r2

h2 dθ
2 using

two smooth functions f and h so that g has negative scalar curvatures on a
compact set near origin and is Euclidean away from it. And then by conformal
change of g we spread the negativity inside the compact set over to an exact
ball. In the process, we found a natural choice of parameter t to get gt. Here
is the main result.

Theorem 1.1. There exists a C∞ one-parameter family of Riemannian met-
rics gt on R3 which exists for 0 ≤ t ≤ ε for some number ε with the following
property: g0 is the Euclidean metric on R3, s(gt̃) < s(gt) for 0 ≤ t < t̃ ≤ ε in
the open unit ball and gt is the Euclidean metric in the complement of the ball.

Note that at the Euclidean metric g0, dSg0(h) = ∆(trh) + δδ(h), whose

integral is zero. So we could not expect to get a melting gt with
ds(gt)
dt |t=0 =

dSg0(g
′(0)) < 0 in a ball. In fact, we have dSg0(g

′(0)) ≡ 0 whereas d
2s(gt)
dt2 |t=0 <

0 in the open unit ball.
In Section 2, we construct Riemannian metrics on R3 that have negative

scalar curvatures on a compact set near origin and are Euclidean away from
it. In Section 3, we demonstrate a C∞ one-parameter family of metrics gt and
prove that the scalar curvature s(gt) is monotonically decreasing in t on R3. In
Section 4, by a conformal deformation we spread the strict decreasing property
of scalar curvature onto a ball.

2. Construction of the metric

We will deform the Euclidean metric g0 = dx2 + dr2 + r2dθ2 on R3 to

g = f2dx2 + h2dr2 + r2

h2 dθ
2 where f(x, r) and h(x, r) are C∞ functions on

R3 = {(x, r, θ) | x ∈ R, r ≥ 0, 0 ≤ θ < 2π}, and we will require that both
of them are constant function 1 away from the cylinder C = {(x, r, θ) | |x| <
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1, 0 ≤ r < 1, 0 ≤ θ < 2π}. Let w1 = fdx, w2 = hdr, w3 = r
hdθ be an

orthonormal co-frame of g. Then we can calculate the sectional curvatures
−Rijij as follows:

R1212 =
hxx
f2h

− fxhx
f3h

+
frr
fh2

− frhr
fh3

,

R2323 =
3h2r
h4

− hrr
h3

− 3hr
h3r

− h2x
f2h2

,

R1313 =
2h2x
f2h2

+
fxhx
f3h

− hxx
f2h

+
fr
fh2r

− frhr
fh3

.

The scalar curvature is as follows:

sg =
∑
i,j

(−1)Rijij = −2(R1212 +R1313 +R2323)

= −2

(
frr
fh2

+
fr
fh2r

− hrr
h3

− 3hr
h3r

+
h2x
f2h2

+
3h2r
h4

− 2frhr
fh3

)
.

We multiply −h2

2 to both sides of the above to get

(1) −sgh
2

2
=

(
frr
f

− f2r
f2

+
fr
fr

− hrr
h

− 3hr
hr

+
3h2r
h2

− 2frhr
fh

)
+
f2r
f2

+
h2x
f2

.

Our strategy is to find f and h with support in C so that the sum of the
terms in the parenthesis of (1) becomes zero. The remaining square terms
f2
r

f2 +
h2
x

f2 guarantee the non-positivity of sg on C. Now for convenience we

denote the partial derivative in the r variable by prime (′) as f ′ = fr , f
′′ =

frr , h
′ = hr , h

′′ = hrr and we let F = f ′

f and H = h′

h . Then f ′′

f = F 2 + F ′,
h′′

h = H2 + H ′ and the sum of the terms in the parenthesis in (1) becomes

F ′ + F
r − (H2 +H ′)− 3

rH − 2FH + 3H2, which we want to be zero, i.e.,

(2) F ′ + (
1

r
− 2H)F =

3

r
H +H ′ − 2H2.

Now we will solve the ordinary differential equation (2) with respect to r.
So we denote the functions f(x, r), h(x, r), etc. by f(r), h(r), etc. respectively

for simplicity. We multiply an integrating factor e
∫ r
1

1
s−2Hds = e

∫ r
1
( 1
s−2h

′

h )ds =
rh2(1)
h2(r) = r

h2(r) to both sides of (2). Hereafter we require and assume that

h(0) = h(1) = 1, which will be checked later. Then (2) becomes

d

dr

[
r

h2(r)
F (r)

]
=

[
r

h2(r)

(
3

r
H(r) +H ′(r)− 2H2(r)

)]
.

Integrating both sides from 0 to r,∫ r

0

d

ds

[
s

h2(s)
F (s)

]
ds =

∫ r

0

[
s

h2(s)

(
3

r
H(s) +H ′(s)− 2H2(s)

)]
ds.
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So we have

F (r) =
h2(r)

r

∫ r

0

[
s

h2(s)

(
3

s
H(s) +H ′(s)− 2H2(s)

)]
ds, r ̸= 0

=
h2(r)

r

∫ r

0

s

h2(s)

[
3

s

h′(s)

h(s)
+

(
h′′(s)

h(s)
− h′2(s)

h2(s)

)
− 2

h′2(s)

h2(s)

]
ds, r ̸= 0

=
h2(r)

r

∫ r

0

(
3
h′(s)

h3(s)
+
sh′′(s)

h3(s)
− 3sh′2(s)

h4(s)

)
ds, r ̸= 0.

Since
∫ r
0
( sh

′′(s)
h3(s) − 3sh′2(s)

h4(s) )ds =
∫ r
0
s d( h

′(s)
h3(s) ) =

sh′(s)
h3(s)

∣∣r
0
−
∫ r
0
h′(s)
h3(s)ds,

F (r) =
h2(r)

r

[
2

∫ r

0

h′(s)

h3(s)
ds+

sh′(s)

h3(s)

∣∣∣∣r
0

]
=
h2(r)

r

[
1− 1

h2(r)
+ r

H(r)

h2(r)

]
= H(r) +

h2(r)

r
− 1

r
, r ∈ (0, 1).

Hence we have found the following relation between f and h;

(3)
f ′

f
=
h′

h
+
h2

r
− 1

r
.

Now we are going to show the following lemma.

Lemma 2.1. Suppose that we are given any C∞ function ψ(x, r) on R3 such

that all its partial derivatives vanish at (x, 0),
∫ 1

0
ψ(x, r) dr = 0, supp(ψ) ⊂ C

and |rψ(x, r)| < 1. Then we can construct positive C∞ functions f(x, r) and
h(x, r) on R3 such that they have a constant value 1 on R3 − C , f(x, 0) =

h(x, 0) = 1 and satisfy fr
f = hr

h + h2

r − 1
r .

Proof. We set h(x, r) =
√
rψ(x, r) + 1. Then h(x, r) is C∞ on R3 which has

a constant value 1 on R3 − C and h(x, 0) = 1. Define the function f(x, r)

by f(x, r) = h(x, r)e
∫ r
0

h2(x,s)−1
s ds. Since

∫ r
0
h2(x,s)−1

s ds =
∫ r
0
ψ(x, s) ds and

e
∫ r
0
ψ(x,s)ds are C∞ on R3, the function f(x, r) is also C∞ on R3. We can also

check that f(x, r) has a constant value 1 on R3 −C and f(x, 0) = 1. Compute
∂
∂rf(x, r) =

∂
∂r{h(x, r)e

∫ r
0

h2(x,s)−1
s ds} and we get fr

f = hr

h + h2

r − 1
r . □

Henceforth, we shall choose ψ(x, r) = α(r)β(x) where α should be a smooth
function on R3 and may be described as in Figure 1 and β : R → R is smooth
with suppβ = [−1, 1] and 0 < β′ < 1 on the interval (−1, 0) and −1 < β′ < 0
on (0, 1). Then ψ satisfies the hypothesis of Lemma 2.1. And with such a
choice of α, ψ > 0 and rψr > 0 on {(x, r, θ) | − 1 < x < 1, 0 < r < 0.3}.
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Figure 1. An example of α(r)

With this choice of ψ and Lemma 2.1, we can conclude the following;

Proposition 2.2. There exist Riemannian metrics on R3 such that the scalar
curvature is negative on C except a thin subset and they are the Euclidean
metric on the complement of C.

3. Decreasing property of the scalar curvature of metrics

We are going to show that there is a C∞ one-parameter family gt among
the metrics in the previous section such that its scalar curvature s(gt) is de-
creasing for some interval t ∈ (0, ε) on C and gt is the Euclidean metric in the
complement of C.

We set gt = f2t dx
2 + h2tdr

2 + r2

h2
t
dθ2, where ht, ft are the functions de-

fined by ht(x, r) =
√
r · t · ψ(x, r) + 1 and ft(x, r) = ht(x, r)e

∫ r
0

h2
t (x,s)−1

s ds =

ht(x, r)e
t
∫ r
0
ψ(x,s) ds as in the proof of Lemma 2.1. By the argument of the pre-

vious section, gt is one of the metrics in Proposition 2.2. So its scalar curvature
is

s(gt) = −2

[
(ht)x

2

h2tf
2
t

+
(ft)r

2

h2tf
2
t

]
.

Differentiating ht
2 = r · tψ + 1, we obtain (ht)x

2
= r2t2ψx

2

4h2
t

and (ht)r
ht

=
ψ+rψr

2ht
2 t. Since (ft)r

ft
= (ht)r

ht
+ tψ, the scalar curvature becomes

(4) s(gt) = −2t2
[
r2ψx

2

4ft
2ht

4 + (
ψ + rψr
2h3t

+
ψ

ht
)2
]
.

Put

A =

[
r2ψx

2

4ft
2ht

4 + (
ψ + rψr
2h3t

+
ψ

ht
)2
]
.

Then
d

dt
(s(gt)) = −4tA− 2t2

dA

dt
and

d2

dt2
(s(gt)) = −4A− 8t

dA

dt
− 2t2

d2A

dt2
.
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So we have
d

dt
(s(gt))|t=0 = 0

and

(5)
d2

dt2
(s(gt))|t=0 = −4A|t=0 = −r2ψx

2 − (3ψ + rψr)
2 ≤ 0,

with equality exactly where rψx = 3ψ + rψr = 0. Note that inside C the set

of points with d2

dt2 (s(gt))|t=0 = 0 forms a thin subset.
Therefore s(gt) is strictly decreasing on C except a thin subset, but it is

not clear if there exists a constant ε such that s(gt) is strictly decreasing for
0 ≤ t ≤ ε. Moreover it does not decrease on a ball. In order to have the right
decreasing property, we need to diffuse the negativity (of scalar curvature) onto
a ball.

4. Diffusion of negative scalar curvature onto a ball

We use the functions of [3]; Ft,m(ρ) ∈ C∞(R,R≥0) for m > 0, t ≥ 0 defined
by Ft,m(ρ) = m · t2 · exp(−100

ρ ) on R>0 and Ft,m = 0 on R≤0. Also choose an

H ∈ C∞(R, [0, 1]) withH = 0 on R≥1, H = 1 on R≤0 andHb
ϵ (ρ) = H( 1ϵ (ρ−b)),

for b > 0, ϵ > 0.
Let Br(p) be the open ball of radius r with respect to g0 centered at p. In

Section 2 we described the function ψ using Figure 1. So, ψ > 0 and rψr > 0
on {(x, r, θ) | − 1 < x < 1, 0 < r < 0.3}. We choose a point p so that
B0.1(p) ⊂ {(x, r, θ) | − 1 < x < 1, 0.1 < r < 0.3}. Then in (4), s(gt) < 0 on
B0.1(p) for t > 0.

Let ft,m ∈ C∞(R3,R≥0) be ft,m(q) = Ft,m(ρ(q)), where ρ is the distance
from the above point p to q ∈ R3 and let hbϵ ∈ C∞(R3,R≥0) be hbϵ(q) =
Hb
ϵ (ρ(q)). We choose b = 9 and ϵ = 0.1. We consider e2ϕtgt, where

ϕt(ρ) = ft,m(9.1− ρ) · h90.1(9.1− ρ) = mt2e−
100

9.1−ρh90.1(9.1− ρ).

Here m will be determined below. The scalar curvature is as follows;

s(e2ϕtgt) = e−2ϕt(sgt + 4∆gtϕt − 2|∇gtϕt|2).

In order to show that s(e2ϕtgt) is strictly decreasing for some interval (0, ε), we

calculate ds(e2ϕtgt)
dt |t=0 and d2s(e2ϕtgt)

dt2 |t=0. Put

B = sgt + 4∆gtϕt − 2|∇gtϕt|2.

Then

ds(e2ϕtgt)

dt
= −2

dϕt
dt
e−2ϕtB + e−2ϕt

(
dsgt
dt

+ 4
d∆gtϕt
dt

− 2
d|∇gtϕt|2

dt

)
and

d2s(e2ϕtgt)

dt2
= 4

(
dϕt
dt

)2

e−2ϕtB − 2
d2ϕt
dt2

e−2ϕtB − 4
dϕ

dt
e−2ϕt

(
dsgt
dt

+4
d∆gtϕt
dt
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−2
d|∇gtϕt|2

dt

)
+ e−2ϕt

(
d2sgt
dt2

+ 4
d2∆gtϕt
dt2

− 2
d2|∇gtϕt|2

dt2

)
.

As we have ϕ0 = B|t=0 = 0, ∆gtϕt = mt2∆gte
− 100

9.1−ρh90.1(9.1−ρ) and |∇gtϕt|2 =

m2t4|∇gte
− 100

9.1−ρh90.1(9.1− ρ)|2 we get

ds(e2ϕtgt)

dt
|t=0 = 4

d∆gtϕt
dt

|t=0 − 2
d|∇gtϕt|2

dt
|t=0 = 0

and
d2s(e2ϕtgt)

dt2
|t=0 =

d2sgt
dt2

|t=0 + 4
d2∆gtϕt
dt2

|t=0 .

Now we will show that d2s(e2ϕtgt)
dt2 |t=0 < 0 on B9.1(p). Let U be {q ∈

B9.1(p) | d2sgt
dt2 |t=0(q) = 0} and let V be B9.1(p) − {U ∪ B0.1(p)}. Note that

U
∩
B0.1(p) = ∅ by our choice of ψ and (5). On U, since h90.1(9.1− ρ) = 1 we

have

d2s(e2ϕtgt)

dt2
|t=0 = 4

d2∆gtϕt
dt2

|t=0 = 8m∆g0e
− 100

9.1−ρh90.1(9.1− ρ)

= 8me−
100

9.1−ρ
100

(9.1− ρ)3

(
2− 100

9.1− ρ

)
< 0.

On V,
d2sgt
dt2 |t=0 < 0 and

d2∆gtϕt

dt2 |t=0 < 0, so we have d2s(e2ϕtgt)
dt2 |t=0 < 0.

On B0.1(p),
d2sgt
dt2 |t=0 < 0 and 4

d2∆gtϕt

dt2 |t=0 = 8m∆g0e
− 100

9.1−ρh90.1(9.1 − ρ), so

choose m > 0 small so that
d2sgt
dt2 |t=0 + 4

d2∆gtϕt

dt2 |t=0 < 0.

In sum, we have ds(e2ϕtgt)
dt |t=0 = 0 and d2s(e2ϕtgt)

dt2 |t=0 < 0 on B9.1(p) and

e2ϕtgt = g0 on R3 −B9.1(p). This does not seem to guarantee the existence of
a constant ε such that s(e2ϕtgt) is strictly decreasing for 0 ≤ t ≤ ε. So we add
the following argument.

On B9.0(p), there exists ε̃ > 0 such that s(e2ϕtgt) is strictly decreasing for

0 ≤ t ≤ ε̃. On B9.1(p)−B9.0(p), gt is Euclidean and sgt = 0, so

s(e2ϕtgt) = e−2ϕt(4∆g0ϕt − 2|∇g0ϕt|2)

= e−2ϕt
400mt2

(9.1− ρ)3
e−

100
9.1−ρ

{
−
(

100

9.1− ρ
− 2

)
− 50mt2

9.1− ρ
e−

100
9.1−ρ

}
.

The term {−( 100
9.1−ρ − 2)− 50mt2

(9.1−ρ)e
− 100

9.1−ρ } is strictly decreasing with respect to

t. Since 2me−
100

9.1−ρ < 2m
e1000 , we have

d

dt
(e−2ϕt

400mt2

(9.1− ρ)3
e−

100
9.1−ρ ) =

400m

(9.1− ρ)3
e−

100
9.1−ρ e−2ϕt2t(1− 2me−

100
9.1−ρ t2) > 0

for 0 < t ≤ e500√
2m

. Hence s(e2ϕtgt) is strictly decreasing for 0 ≤ t ≤ e500√
2m

on

B9.1(p) − B9.0(p). Setting ε = min{ε̃, e
500

√
2m

}, we conclude that on R3 there

exists ε > 0 such that s(e2ϕtgt) is decreasing for 0 ≤ t ≤ ε.
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Finally, with the affine transformation ν : R3 → R3, ν(x) = 9.1x + p, we
get the pulled-back metric ν∗(e2ϕtgt), which yields a melting on the unit ball.
This proves Theorem 1.1.

Remark 4.1. From Theorem 1.1, one may suspect that melting of the Euclidean
metric on a ball should hold in any dimension bigger than two. We already
have the metrics of [2] on R2n, n ≥ 2 which have negative scalar curvature on
a compact set and are Euclidean on its complement. It is very interesting to
find a scalar curvature melting of a general metric on a ball.
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