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STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT

SUBMANIFOLDS IN A COMPLEX SPACE FORM II

U-Hang Ki and Soo Jin Kim∗

Abstract. Let M be a semi-invariant submanifold of codimension 3 with

almost contact metric structure (φ, ξ, η, g) in a complex space formMn+1(c).

We denote by Rξ the structure Jacobi operator with respect to the struc-
ture vector field ξ and by r̄ the scalar curvature of M . Suppose that Rξ is

φ∇ξξ-parallel and at the same time the third fundamental form t satisfies

dt(X,Y ) = 2θg(φX, Y ) for a scalar θ(6= 2c) and any vector fields X and
Y on M .

In this paper, we prove that if it satisfies Rξφ = φRξ, then M is a Hopf

hypersurface of type (A) in Mn+1(c) provided that r̄ − 2(n− 1)c ≤ 0.

1. Introduction

A submanifold M is called a CR submanifold of a Kaehlerian manifold
M̃ with complex structure J if there exists a differentiable distribution 4 :
p → 4p ⊂ TpM on M such that 4 is J-invariant and the complementary
orthogonal distribution 4⊥ is totally real, where TpM denotes the tangent
space at each point p in M ([1], [35]). In particular, M is said to be a semi-
invariant submanifold provided that dim4⊥ = 1. The unit normal in J4⊥ is
called the distinguished normal to the semi-invariant submanifold ([4], [33]).
In this case, M admits an almost contact metric structure (φ, ξ, η, g). A typical
example of a semi-invariant submanfold is real hypersurfaces in a Kaehlerian
manifold. And new examples of nontrivial semi-invariant submanifolds in a
complex projective space PnC are constructed in [22] and [30]. Accordingly, we
may expect to generalize some results which are valid in a real hypersurface to
a semi-invariant submanifold.

An n-dimensional complex space form Mn(c) is a Kaehlerian manifold of
constant holomorphic sectional curvature 4c. As is well known, complete and
simply connected complex space forms are isometric to a complex projective
space PnC, or a complex hyperbolic space HnC according as c > 0 or c < 0.
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For the real hypersurface of Mn(c), c 6= 0, many results are known ([6]∼[8],
[24]∼[26], [31], [32], etc.). One of them, Takagi ([31], [32]) classified all the
homogeneous real hypersurfaces of PnC as six model spaces which are said to
be A1, A2, B,C,D and E, and Cecil-Ryan ([5]) and Kimura ([23]) proved that
they are realized as the tubes of constant radius over Kaehlerian submanifolds
when the structure vector field ξ is principal.

On the other hand, real hypersurfaces in HnC have been investigated by
Berndt [2], Berndt and Tamura [3], Montiel and Romero [21] and so on. Berndt
[2] classified all real hypersurfaces with constant principal curvatures in HnC
and showed that they are realized as the tubes of constant radius over certain
submanifolds. Also such kinds of tubes are said to be real hypersurfaces of type
A0, A1, A2 or type B.

Let M be a real hypersurface of type A1 or type A2 in a complex projective
space PnC or that of type A0, A1 or A2 in a complex hyperbolic space HnC.
Now, hereafter unless otherwise stated, such hypersurfaces are said to be of type
(A) for our convenience sake.

Characterization problems for a real hypersurface of type (A) in a complex
space form Mn(c) were started by Okumura ([26]) for c > 0 and Montiel and
Romero ([24]) for c < 0, respectively. They proved the following :

Theorem 1.1. Let M be a real hypersurface of Mn(c), n ≥ 2. If it satisfies
Aφ = φA, then M is locally congruent to one of the following hypersurface :

(I) in case that Mn(c) = PnC with η(Aξ) 6= 0,
(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and r 6= π/4,
(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, ..., n−

2}, where 0 < r < π/2 and r 6= π/4;
(II) in case that Mn(c) = HnC,

(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-

plane Hn−1C,
(A2) a tube over a totally geodesic HkC for some k ∈ {1, ..., n− 2}.

Denoting by R the curvature tensor of the submanifold, we define the Jacobi
operator Rξ = R(·, ξ)ξ with respect to the structure vector ξ. Then Rξ is a self
adjoint endomorphism on the tangent space of a CR submanifold.

Using several conditions on the structure Jacobi operator Rξ, characteriza-
tion problems for real hypersurfaces of type (A) have recently studied (cf. [7],
[11], [18]). In the provious paper [7], Cho and one of the present authors gave
another characterization of real hypersurface of type (A) in a complex projective
space PnC. Namely they prove the following :

Theorem 1.2. Let M be a connected real hypersurface of PnC. If it satisfies
(1) RξAφ = φARξ or (2) Rξφ = φRξ, RξA = ARξ, then M is of type (A),
where A denotes the shape operator of M .
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On the other hand, semi-invariant submanifolds of codimension 3 in a com-
plex space form Mn+1(c) have been studied in [9], [12]∼[15], [17], [19]∼[22] and
so on by using properties of induced almost contact metric structure and those
of the third fundamental form of the submanifold.

Now, let M be a semi-invariant submanifold of codimension 3 in a complex
space form Mn+1(c), c 6= 0 such that the third fundamental form t satisfies
dt(X,Y ) = 2θω for a scalar θ(6= 2c), where ω(X,Y ) = g(φX, Y ) for any vector
fields X and Y on M . We denote by A and S the shape operator in the direction
of the distinguished normal and the Ricci tensor of M , respectively.

In the preceding work [22], it is proved that the submanifold M above is a
Hopf hypersurface in PnC provided that Aξ = αξ and θ − 2c < 0 for c > 0.

Further, Ki and Song ([21]) proved that if it satisfies Rξφ = φRξ and at the
same time Sξ = g(Sξ, ξ)ξ, then M is a Hopf hypersurface of type (A) in Mn(c)
provided that the scalar curvature r̄ of M holds r̄ − 2(n − 1)c ≤ 0. This is a
semi-invariant version of the main theorem stated in [18].

Moreover, one of the present authors and Kurihara [17] proved also that if it
satisfies ∇ξRξ = 0 and at the same time RξA = ARξ, then M is the same time
type as above.

In this paper, we consider a semi-invariant submanifold of codimension 3
in Mn(c), satisfying Rξφ = φRξ and that Rξ is φ∇ξξ-parallel. In this case,
we prove that M is a Hopf hypersurface of type (A) provided that the scalar
curvature r̄ of M holds r̄ − 2(n− 1)c ≤ 0.

All manifolds in the present paper are assumed to be connected and of class
C∞ and the semi-invariant are supposed to be orientable.

2. Preliminaries

Let M̃ be a real 2(n + 1)-dimensional Kaehlerian manifold equipped with
parallel almost complex structure J and a Riemannian metric tensor G which
is J-Hermitian. Let M be a real (2n − 1) -dimensional Riemannian manifold

isometrically immersed in M̃ by the immersion i : M → M̄ . In the sequel we
identify i(M) with M itself. We denote by g the Riemannian metric tensor on

M from that of M̃ .
We denote by ∇̃ the operator of covariant differentiation with respect to the

metric tensor G on M̃ and by ∇ the one on M . Then the Gauss formulas are
given by

∇̃XY = ∇XY + g(AX,Y )C + g(KX,Y )D + g(LX, Y )E (2.1)

for any vector fields X and Y tangent to M and any mutually orthogonal vectors
C, D and E normal to M , where A, K and L are the second fundamental forms
with respect to C, D and E respectively.

In the following we consider that M is a real (2n − 1)-dimensional semi-

invariant submanifold of codimension 3 in M̃ of real dimension 2(n+ 1). Then
we can choose a local orthonormal frame field
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{e1, · · · , en−1, Je1, · · · , Jen−1, e0 = ξ, Jξ = C,D = JE,E}
on the tangent bundle TM̃ such that e1, · · · , en−1, Je1, · · · , Jen−1, ξ ∈ TM
and C,D,E ∈ T⊥M , where T⊥M is the normal bundle (cf. [14], [17]). Then
equations of Weingarten are also given by

∇̃XC = −AX + l(X)D +m(X)E,

∇̃XD = −KX − l(X)C + t(X)E,

∇̃XE = −LX −m(X)C − t(X)D

(2.2)

because C, D and E are mutually orthogonal, where l, m and t being the third
fundamental forms.

Now, let φ be the restriction of J on M , then we have

JX = φX + η(X)C, η(X) = g(ξ,X), JC = −ξ (2.3)

for any vector field X on M ([34]). From this it is, using Hermitian property of
J , verified that the aggregate (φ, ξ, η, g) is an almost contact metric structure
on M , that is, we have

φ2X = −X + η(X)ξ, η(ξ) = 1, g(ξ,X) = η(X),

φξ = 0, g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X and Y .
In the sequel, we denote the normal components of ∇̃XC by ∇⊥C. The

distinguished normal C is said to be parallel in the normal bundle if we have
∇⊥C = 0, that is, l and m vanish identically.

Using the Kaehler condition ∇̃J = 0 and the Gauss and Weingarten formu-
las,we obtain from (2.3)

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, (2.4)

∇Xξ = φAX, (2.5)

KX = φLX −m(X)ξ, (2.6)

LX = −φKX + l(X)ξ (2.7)

for any vectors X and Y on M . From the last two equations, we have

g(Kξ,X) = −m(X), (2.8)

g(Lξ,X) = l(X). (2.9)

Using the frame field {e0 = ξ, e1, · · · , en−1, φe1, · · · , φen−1} on M it follows
from (2.6) ∼ (2.9) that

TrK = η(Kξ) = −m(ξ), TrL = η(Lξ) = l(ξ), (2.10)

where Tr means that the notation of trace.



STRUCTURE JACOBI OPERATORS OF SEMI-INVARINAT SUBMANIFOLDS 47

Now, we retake D and E, there is no loss of generality such that we may
assume TrL = 0(cf. [17], [22]). So we have

l(ξ) = 0. (2.11)

In what follows, to write our formulas in a convention form, we denote by
α = η(Aξ), β = η(A2ξ), γ = η(A3ξ), TrA = h, TrK = k, Tr(

tAA) = h(2) and
for a function f we denote by ∇f the gradient vector field of f .

From (2.10) we also have

m(ξ) = −k. (2.12)

From (2.6) and (2.7) we get

η(X)l(φY )− η(Y )l(φX) = m(Y )η(X)−m(X)η(Y ),

which together with (2.12) gives

l(φX) = m(X) + kη(X), (2.13)

which tells us, using (2.11), that

m(φX) = −l(X), (2.14)

where we have used (2.9) and (2.11).
Taking the inner product with LY to (2.6) and using (2.9), we get

g(KLX,Y ) + g(LKX,Y ) = −{l(X)m(Y ) + l(Y )m(X)}. (2.15)

Now, we put ∇ξξ = U in the sequel. Then U is orthogonal to ξ because of (2.5).
We put

Aξ = αξ + µW, (2.16)

where W is a unit vector orthogonal to ξ. Then we have

U = µφW (2.17)

by virtue of (2.5). Thus, W is also orthogonal to U . Further, we have

µ2 = β − α2. (2.18)

From (2.16) and (2.17) we have

φU = −Aξ + αξ. (2.19)

If we take account of (2.5), (2.10) and (2.19), then we find

g(∇Xξ, U) = µg(AW,X). (2.20)

Since W is orthogonal to ξ, we can, using (2.5) and (2.17), see that

µg(∇XW, ξ) = g(AU,X). (2.21)
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Differentiating (2.19) covariantly along M and using (2.4) and (2.5), we find

(∇XA)ξ = −φ∇XU + g(AU +∇α,X)ξ −AφAX + αφAX. (2.22)

From now on we shall suppose that M is a semi-invariant submanifold of
codimension 3 in a complex space form Mn+1(c), c 6= 0 and that the third
fundamental form t satisfies

dt = 2θω, ω(X,Y ) = g(φX, Y ) (2.23)

for any vector fields X and Y and a certain scalar θ, where d denotes the exterior
differential operator. Then we can verify that (see [15], [17])

l = 0 (2.24)

provided that θ − 2c 6= 0 and hence

m(X) = −kη(X) (2.25)

because of (2.13). Using these facts, (2.8) and (2.9) turn out respectively to

Kξ = kξ, Lξ = 0. (2.26)

Because of (2.24) and (2.25), we can also write respectively (2.6) and (2.7)
as

KX = φLX + kη(X)ξ, (2.27)

L = −φK. (2.28)

In the rest of this paper, we shall suppose that M̃ is a Kaehlerian manifold
of constant holomorphic sectional curvature 4c, which called a complex space
form and denote by Mn+1(c). Then equations of the Gauss is given by

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y + g(φY,Z)φX (2.29)

− g(φX,Z)φY − 2g(φX, Y )φZ}+ g(AY,Z)AX − g(AX,Z)AY

+ g(KY,Z)KX − g(KX,Z)KY + g(LY,Z)LX − g(LX,Z)LY.

If we take account of (2.24) and (2.25), then equations of the Codazzi and
Ricci are given respectively by

(∇XA)Y − (∇YA)X = k{η(Y )LX − η(X)LY }
+ c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},

(2.30)

(∇XK)Y − (∇YK)X = t(X)LY − t(Y )LX, (2.31)

(∇XL)Y − (∇Y L)X = k{η(X)AY − η(Y )AX} − t(X)KY + t(Y )KX, (2.32)
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g((KA−AK)X,Y ) = k{η(X)t(Y )− t(X)η(Y )}, (2.33)

LAX −ALX = (Xk)ξ − η(X)∇k + k(φAX +AφX),

g((LK −KL)X,Y ) = −2(θ − c)g(φX, Y ),
(2.34)

which together with (2.15) and (2.24) yields

g(LKX,Y ) = −(θ − c)g(φX, Y ). (2.35)

From (2.28) and this, we obtain

L2X = (θ − c)(X − η(X)ξ). (2.36)

By properties of the almost contact metric structure we have from (2.35)

Tr(
tKK)− ‖Kξ‖2 + ‖Lξ‖2 = 2(n− 1)(θ − c),

where we have used (2.6), (2.9) and (2.10), which connected to (2.8) gives

‖K −m⊗ ξ‖2 + ‖Lξ‖2 = 2(n− 1)(θ − c). (2.37)

In the same way, using (2.7), (2.11), (2.14), (2.35) we see that

‖m+ kξ‖2 − ‖Lξ‖2 − Tr(tLL) = 2(n− 1)(θ − c). (2.38)

Differentiating (2.23) covariantly along M and making use of (2.4) and the
first Bianchi identity, we find

(Xθ)ω(Y, Z) + (Y θ)ω(Z,X) + (Zθ)ω(X,Y ) = 0,

which implies (n− 2)Xθ = 0. Therefore, θ is a constant if n > 2.
For the case where θ = c in (2.23) we have dt = 2cω. In this case, the normal

connection M is said to be L-flat (see [27]).

Using (2.37) and (2.38) we can verify that the following lemma (see [15],[22])
:

Lemma 2.1. Let M be a semi-invariant submanifold with L-flat normal con-
nection in Mn+1(c), c 6= 0. If Aξ = αξ, then we have ∇⊥C = 0 and K = L = 0
on M .

Putting X = ξ in (2.33) and using (2.26), we find

KAξ = kAξ + k{t′ − t(ξ)ξ}, (2.39)

where t′ is the associated vector of the 1-form t.
If we apply this by φ and use (2.19), (2.26) and (2.28), then we get

g(KU,X) = k{t(φX)− u(X)}, (2.40)

where u(X) = g(U,X) for any vector field X.
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Replacing X by ξ in (2.34) and using (2.5), (2.26) and (2.28), we get

KU = (ξk)ξ −∇k + kU. (2.41)

which together with (2.40) gives

Xk = (ξk)η(X) + k{2u(X)− t(φX)}. (2.42)

If we apply (2.34) by φ and take account of (2.27) and the last equation, then
we find

φALX −KAX = −k{(t′ − t(ξ)ξ)η(X) + 2η(X)(Aξ − αξ)
+ 2g(Aξ,X)ξ −AX + φAφX},

or, using (2.26), (2.34) and (2.35) we have φAL+ LAφ = 0.
Since θ is constant if n > 2, differentiating (2.36) covariantly, we get

2L∇XL = (c− θ){η(X)φA+ g(φA,X)ξ},
or, using (2.26), (2.32), (2.34) and (2.35), it is verified that (see [19])

(θ − c)(Aφ− φA)X + (k2 + θ − c)(u(X)ξ + η(X)U)

+ k{(AL+ LA)X + k{−t(φX)ξ + η(X)φ ◦ t} = 0.
(2.43)

Taking the trace of this, we obtain

kTr(AL) = 0. (2.44)

In the previous paper [17], [22] the following Lemma was proved.

Lemma 2.2. If M satisfies dt = 2θω for a scalar θ(6= 2c) and µ = 0 in
Mn+1(c), c 6= 0, then we have k = 0 on M .

We set Ω = {p ∈ M : k(p) 6= 0}, and suppose that Ω is not empty. In the
rest of this paper, we discuss our arguments on the open subset Ω of M . So, by
Lemma 2.2, we see that µ 6= 0 on Ω.

3. Semi-invariant submanifolds satisfying Rξφ = φRξ

We introduce the structure Jacobi operator Rξ with respect to the structure
vector field ξ which is defined by RξX = R(X, ξ)ξ for any vector field X. Then
we have from (2.29)

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + η(Kξ)KX − η(KX)Kξ

+ η(Lξ)LX − η(LX)Lξ.

Since l and m are dual 1-forms of Lξ and Kξ respectively because of (2.8)
and (2.9), the last relationship is reformed as
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RξX = c(X − η(X)ξ) +αAX − η(AX)Aξ+ kKX +m(X)Kξ− l(X)Lξ, (3.1)

where we have used (2.8)∼(2.12).
We will continue now, our arguments under the same hypotheses dt = 2θω

for a scalar θ(6= 2c) as in section 3. Then, by virtue of (2.25) and (2.26) we can
write (3.1) as

RξX = c(X − η(X)ξ) + αAX − η(AX)Aξ + kKX − k2η(X)ξ. (3.2)

In the next step suppose, throughout this paper, that Rξφ = φRξ. Then
from (3.2) we have

α(φA−Aφ)X = g(Aξ,X)U + g(U,X)Aξ + 2kLX, (3.3)

where we have used (2.25), (2.26) and (2.28).
Transforming this by A, and taking the trace obtained, we have g(A2ξ, U) = 0

because of (2.44), which together with (2.16) yields

µg(AW,U) = 0. (3.4)

Applying (3.3) by L and using (2.19), (2.27) and (2.34), we find

α{AKX − kη(X)Aξ − φALX}+ g(LU,X)Aξ + g(KU,X)U

= −2kL2X,
(3.5)

which together with (2.33) and (2.40) yields

kα{t(X)ξ − η(X)t′ + g(Aξ,X)ξ − η(X)Aξ}
+ g(LU,X)Aξ − g(Aξ,X)LU − u(X)KU + g(KU,X)U = 0.

If we take the inner product with ξ to this and use (2.26), then we get

kα{t(X)− t(ξ)η(X) + g(Aξ,X)− αη(X)}+ αg(LU,X) = 0. (3.6)

Combining the last two equations and taking account of (2.18), we obtain

µ{w(X)LU − g(LU,X)W}+ u(X)KU − g(KU,X)U = 0, (3.7)

where w(X) = g(W,X) for any vector X.

Remark 1. α 6= 0 on Ω.

In fact, if not, then we have α = 0 on this subset. We discuss our arguments
on such a place. So (3.3) reformed as

µ{w(X)U + u(X)W}+ 2kLX = 0 (3.8)

because of (2.16) with α = 0. Putting X = U or W in this we have respectively
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LU = −µβ
2k
W, LW = − µ

2k
U (3.9)

by virtue of (2.18) with α = 0. Using this and (2.36), we can write (3.5) as

−β
2

2k
w(X)W + g(KU,X)U = −2k(θ − c)(X − η(X)ξ).

Taking the inner product with W to this, we obtain β2 = 4k2(θ − c).
On the other hand, combining (3.8) and (3.9) to (2.36) we also have β2 =

4(n− 1)k2(θ− c), which implies (n− 2)(θ− c)k = 0, a contradiction because of
our assumption and Lemma 2.1. Thus, α = 0 is not impossible on Ω.

Now, putting X = U in (3.6) and remembering Remark 1, we find kt(U) +
g(LU,U) = 0.

By the way, replacing X by U in (3.3) and using (2.16) and (2.19), we find

α(φAU + µAW ) = µ2Aξ + 2kLU.

If we take the inner product with U and make use of (3.4) and Lemma 2.2, then
we obtain g(LU,U) = 0 and hence t(U) = 0.

By putting X = U in (3.7), we then have

KU = τU, (3.10)

where τ is given by τµ2 = g(KU,U) by virtue of Lemma 2.2. Applying this by
φ and using (2.28), we find

LU = τµW. (3.11)

It is, using (3.10) and (3.11), seen that

τ2 = θ − c. (3.12)

because of (2.35).

Remark 2. Ω = ∅ if θ = c.

Since we have θ = c, then (2.36) gives L = 0 and thus KX = kη(X)ξ by
virtue of (2.27). Hence, (2.32) reformed as

k{η(X)AY − η(Y )AX + η(X)t(Y )ξ − t(X)η(Y )ξ} = 0,

which shows k(t(X)+g(Aξ,X)−α′η(X)) = 0, where we have put α′ = α+t(ξ).
Thus, the last two equations imply that

AX = η(X)Aξ + g(Aξ,X)ξ − αη(X)ξ.

Since U is orthogonal to ξ and W , it is clear that AU = 0 and AW = µξ.
If we put X = µW in (3.3) and remember (2.17) and the fact that L = 0,

then we obtain µ2U = 0 and hence Aξ = αξ. Owing to Lemma 2.1, we conclude
that k = 0 and thus Ω = ∅.
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By Remark 2, we may only consider the case where τ 6= 0 on Ω. Because of
(2.16) and (3.11) we have

t(φX) = (1 +
τ

k
)g(U,X). (3.13)

Therefore, it is clear that

t(X) = t(ξ)η(X)− µ(1 +
τ

k
)w(X). (3.14)

Using (2.16), we can write (2.39) as

µKW = kµW + k(t− t(ξ)ξ),
which together with (3.14) implies that

KW = −τW (3.15)

because of Lemma 2.2.
If we take account of (2.43) and (3.13), then we find

τ2(AφX − φAX) + τ(τ − k)(u(X)ξ + η(X)U) + k(ALX + LAX) = 0. (3.16)

Differentiating (3.10) covariantly along Ω, we find

(∇XK)U +K∇XU = τ∇XU,
which together with (2.31) and (3.11) yields

µτ{t(X)w(Y )− t(Y )w(X)}+ g(K∇XU, Y )− g(K∇Y U,X)

= τ{g(∇XU, Y )− g(∇Y U,X)}.
(3.17)

By the way, because of (2.5) and (2.20) and (2.22) we verify that

∇ξU = 3φAU + αAξ − βξ + φ∇α− 2k(Kξ − kξ),
which connected to (2.16) and (2.18) gives

∇ξU = 3φAU + αµW − µ2ξ + φ∇α. (3.18)

Replacing X by ξ in (3.17) and taking account of the last two relationships,
we find

µ2(τ − k)ξ + µτ(t(ξ)− 2α)W + µ(k − τ)AW

+ 3(LAU − τφAU) = τφ∇α− L∇α,
(3.19)

where we have used the first equation of (2.20).
In a direct consequence of (2.28) and (3.10), we obtain

µLW = τU (3.20)

because of µ 6= 0 on Ω.



54 U-H. KI AND S.J. KIM

In the same way as above, we see from (3.15)

τ

µ
{t(X)u(Y )− t(Y )u(X)}+ g(K∇XW,Y )− g(K∇YW,X)

= τ{g(∇YW,X)− g(∇XW,Y )}.
(3.21)

In the next place, from (2.16) and (2.19) we have φU = −µW . Differentiating
this covariantly and using (2.4), we find

g(AU,X)ξ − φ∇XU = (Xµ)W + µ∇XW.
Putting X = ξ in this and making use of (3.18), we get

µ∇ξW = 3AU − αU +∇α− (ξα)ξ − (ξµ)W, (3.22)

which enables us to obtain
Wα = ξµ. (3.23)

Now, if we put X = U in (3.3) and take account of (2.18), (2.19) and (3.11),
then we get

φAU + µAW = (λ′ − α)Aξ +
2kτ

α
µW

because of Remark 1, where we have put β = αλ′. If we put

λ = λ′ +
2kτ

α
, (3.24)

then the last equation can be written as

φAU = λAξ −A2ξ − 2kτξ, (3.25)

where we have used (2.16). Applying this by φ and using (2.5), we find

φA2ξ = AU + λU, (3.26)

which together with (2.16) gives

µφAW = AU + (λ− α)U. (3.27)

Putting X = AU in (3.3) and using (3.4), we also obtain

α(φA2U −AφAU) = g(AU,U)Aξ + 2kLAU,

which together with (2.28) and (3.25) yields

αφA2U = αλA2ξ − αA3ξ − 2kταAξ + g(AU,U)Aξ − 2kφKAU.

By the way, we have KAU = τAU by virtue of (2.33) and (3.14). Thus, the
last relationship reformed as

αφA2U = αλA2ξ − αA3ξ − 2kταAξ + g(AU,U)Aξ − 2kτφAU.
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If we take the inner product ξ to this, then we obtain

g(AU,U) = γ − αλ2 + 2kτ(λ+ α). (3.28)

Therefore, using (3.25) and this, we can write the last equation as

αφA2U = (αλ+ 2kτ)A2ξ − αA3ξ + (γ − αλ2)Aξ + 4k2τ2ξ. (3.29)

4. Semi-invariant submanifolds with φ∇ξξ-parallel Jacobi operator

In the rest of this paper we will suppose that M is a semi-invariant subman-
ifold of codimension 3 in a complex space form Mn+1(c), c 6= 0 and that the
third fundamental form t satisfies dt = 2θω for a scalar θ 6= 2c and at the same
time Rξφ = φRξ. Further, we assume that Rξ is φ∇ξξ-parallel on M .

Differentiating (3.2) covariantly along M and using (2.5), we find

g((∇XRξ)Y,Z) = −(k2 + c){η(Z)g(∇Xξ, Y ) + η(Y )g(∇Xξ, Z)}+ (Xα)g(AY,Z)

+ αg((∇XA)Y,Z)− g(Aξ,Z){g((∇XA)ξ, Y )− g(AφAY,X)}
− g(Aξ, Y ){g((∇XA)ξ, Z)− g(AφAZ,X)}+ (Xk)g(KY,Z)

+ kg((∇XK)Y,Z)− 2k(Xk)η(Y )η(Z).

If we put X = W in this and taking account of the assumption ∇φ∇ξξRξ = 0,
we have

(Wα)AY − (k2 + c){g(φAW,Y )ξ + η(Y )φAW}
+ α(∇WA)Y − {g((∇WA)ξ, Y ) + g(AφAW,Y )}Aξ
+ k(∇WK)Y − {(∇WA)ξ +AφAW}η(AY )} = 0

since we have Wk = 0 because of (2.41) and (3.10).
Now, replacing X by ξ in (2.22) and make use of (2.5) and (3.18), we find

(∇ξA)ξ = 2AU +∇α. (4.1)

If we put Y = ξ in above relationship and use (4.1), then we get

k(∇WK)ξ = αAφAW + (k2 + c)φAW.

On the other hand, differentiating the first equation of (2.26) covariantly
with respect to W and using (2.5) and the fact that Wk = 0, we find

(∇WK)ξ +KφAW = kφAW,

which together with the last equation implies that

αAφAW + cφAW + kKφAW = 0. (4.2)

If we use (3.10) and (3.27) to this, then we obtain
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αA2U + {α(λ− α) + c}AU + (kτ + c)(λ− α)U + kKAU = 0,

which together with (2.33) and (3.14) gives

αA2U + {α(λ− α) + kτ + c}AU + (λ− α)(kτ + c)U = 0. (4.3)

Since we have η(A2U) = 0 because of Remark 1, using (3.1) and (3.10), we can
write (4.3) as

RξAU = (α− λ)RξU. (4.4)

Applying (4.3) by φ and taking account of (2.16), (2.19) and (3.25), we find

αφA2U + (α(λ− α) + kτ + c)(λAξ −A2ξ − 2kτξ)

− (λ− α)(kτ + c)(Aξ − αξ) = 0,

which connected to (3.29) yields

αA3ξ = (α2 + kτ − c)A2ξ + (γ − α2λ+ α(kτ + c))Aξ

+ {2k2τ2 − kτ(λ− α)α− 2ckτ + cα(λ− α)}ξ.

If we use (2.16), then the last relationship reformed as

αµA2W = (kτ − c)A2ξ + (γ − λα2 + α(kτ + c)Aξ + (kτ − c)(2kτ − α(λ− α))ξ,

which together with (3.26) gives

αµφA2W = (kτ − c)AU + {(kτ − c) + γ − λα2 + α(kτ + c)}U. (4.5)

On the other hand, putting X = AW in (3.3) and using (4.2), we find

αφA2W + kKφAW + cφAW = g(A2ξ,W )U + 2kLAW,

which together with (2.33), (3.10), (3.14) and (3.27) yields

µαφA2W + (kτ + c)(AU + (λ− α)U) = µg(A2ξ,W )U + 2kµLAW.

However, putting X = µW in (2.34) and using (3.14), (3.20) and (3.27), we
get

µLAW = (2k + τ)AU + k(λ− α)U.

Substituting this into the last equation, we obtain

µαφA2W = (kτ + 4k2 − c)AU + {µg(A2ξ,W ) + (λ− α)(2k2 − kτ − c)}U.
If we compare this with (4.5), then we have
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4k2AU = {γ − λα2 + 2λk(τ − k) + 2αk2 − µ2(α+ g(AW,W ))}U.
This, it follows that

AU = σU, (4.6)

where the function σ is defined by on Ω

4k2σ = γ − λα2 + 2λk(τ − k) + 2αk2 − µ2(α+ g(AW,W )) (4.7)

because of Remark 1. From (4.6) we can verify that (cf. [12], [15])

ξσ = 0, Wσ = 0. (4.8)

Applying (4.6) by φ and using (2.19) and (3.25), we find

A2ξ = (λ+ σ)Aξ − (2kτ + σα)ξ, (4.9)

which tells us that

A2ξ = ρAξ + (β − ρα)ξ, (4.10)

where we have put ρ = λ+ σ. Then we have β = ρα− 2kτ − σα.
Combining (2.16) and (2.18) to (4.10), we obtain

AW = µξ + (ρ− α)W (4.11)

on Ω. Differentiating this covariantly, we find

(∇XA)W +A∇XW = (Xµ)ξ + µ∇Xξ +X(ρ− α)W + (ρ− α)∇XW. (4.12)

If we take the inner product with W to this and use (2.21) and (4.11), then
we find

g((∇XA)W,W ) = −2g(AU,X) +Xρ−Xα. (4.13)

Applying (4.12) by ξ and using (2.21), we also find

µg((∇XA)W, ξ) = (ρ− 2α)g(AU,X) + µ(Xµ), (4.14)

or using (2.30) and (3.20).

µ(∇ξA)W = (ρ− 2α)AU + µ∇µ− (kτ + c)U. (4.15)

From this we verify, using (2.26), (2.30) and (4.14), that

µ(∇WA)ξ = (ρ− 2α)AU − 2cU + µ∇µ. (4.16)

Putting X = ξ in (4.13) and taking account of (4.14), we get

Wµ = ξρ− ξα. (4.17)
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Replacing X by ξ in (4.12) and using (3.20) and (4.15), we find

(ρ− 2α)AU + (kτ − c)U + µ∇µ+ µ{A∇ξW − (ρ− α)∇ξW}
= µ(ξµ)ξ + µ2U + µ(ξρ− ξα)W.

Substituting (3.22) and (3.23) into this, we obtain

3A2U − 2ρAU + (αρ− β − kτ − c)U +A∇α+
1

2
∇β − ρ∇α

= 2µ(Wα)ξ + (2α− ρ)(ξα)ξ + µ(ξρ− ξα)W.
(4.18)

Now, if we use (4.6) and (4.11), then (3.27) can be written as

µ(ρ− α)φW = (σ + λ− α)U,

which connected to (2.17) and Lemma 2.1 gives

σ = ρ− λ. (4.19)

By the way, it is seen, using (4.6), that (3.28) reformed as γ = σµ2 + αλ2 −
2kτ(λ+ α). Using this and (4.9) we can write (4.7) as

4σk2 = αλ2 − λ(µ2 + α2) + 2k(αk − λk − τα),

which together with (2.18) and (3.24) yields

2σk = (λ− α)(τ − k) (4.20)

on Ω. If we combine (4.6) to (4.4), then we have (σ − α+ λ)RξU = 0.

Lemma 4.1. RξU = 0 on Ω.

Proof. Suppose that RξU 6= 0. Then we have σ = α− λ on this open subset on
Ω. We restrict our arguments on this subset. Then we have ρ− α = 0 because
of (4.19) and hence AW = µξ with the aid of (4.11).

On the other hand, putting X = µW in (2.43) and remembering (2.26),
(3.14), (3.20) and the last relationship, we obtain τ(k + τ)AU = 0, which
connected to Remark 2 gives AU = 0.

In fact, if k + τ = 0, then k is a constant, which together with (2.41) and
(3.10) gives k − τ = 0, a contradiction. By virtue of (4.6), it follows that
λ − α = 0. Hence, (3.24) reformed as µ2 + 2kτ = 0 because of (2.18), which
implies that µ∇µ+ τ∇k = 0.

By the way, it is clear, using (2.41) and (3.10), that

∇k = (ξk)ξ + (k − τ)U. (4.21)

From the last two equations, it follows that Uµ+ τ(k − τ)µ = 0.
Applying (4.18) by U and using (2.18) and the fact that ρ = α and AU = 0,

we find Uµ = µ2 + kτ + c. Comparing this and above relationship, we obtain
τ2+c = 0, that is θ−2c = 0, a contradiction. Thus, RξU = 0 on Ω is proved. �
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Lemma 4.2. ξk = 0 on Ω.

Proof. Replacing X by U in (3.2) and using (3.20) and Lemma 6.1, we find
αAU + (kτ + c)U = 0, which together with (4.6) and Lemma 2.2 gives

σα+ kτ + c = 0. (4.22)

Differentiation with respect to W and remembering (4.8) and (4.21) gives
σWα = 0, which implies Wα = 0.

In fact, if not, then we have σ = 0 on this set. Hence we have τ2 + c = 0
because of (4.21) and (4.22), a contradiction because θ − 2c 6= 0 was assumed.
Hence Wα = 0 is proved on Ω.

Next, differentiating (4.20) with respect to W and using (4.8), (4.21) and
itself, we find Wλ = 0.

If we differentiate (3.24) with respect to W , and use (4.21) and the fact that
Wα = Wλ = 0, then Wβ = 0, which together with (2.18) yields Wµ = 0. Thus
we see, using (4.17), that ξρ − ξα = 0, which tells, using (4.8) and (4.19), us
that ξλ− ξα = 0.

Now, differentiating (4.20) with respect to ξ and making use of (4.8) and the
last equation, we find (2σ + λ − α)ξk = 0, which connected to (4.20) implies
that ξk = 0. This completes the proof. �

Putting X = ξ in the first equation of Section 4, and using (2.5) and (4.1),
we have

(∇ξRξ)Y = −(k2 + c)(u(Y )ξ + η(Y )U) + (ξα)AY + α(∇ξA)Y

+ (ξk)KY + k(∇ξK)Y − 2k(ξk)η(Y )ξ

− (3AU +∇α)g(Aξ, Y )− (3g(AU, Y ) + Y α)Aξ.

(4.23)

By the way, from Kξ = kξ, we have (∇XK)ξ + K∇Xξ = (Xk)ξ + k∇Xξ,
which, together with (3.10) and Lemma 4.2 gives(∇ξK)ξ = (k − τ)U .

If we put Y = ξ in (4.23) and take account of (4.1), Lemma 4.2 and the last
equation, then we find

(∇ξRξ)ξ + αAU + (kτ + c)U = 0.

However, if we replace X by U in (3.3) and make use of (3.10) and Lemma
4.1, then we obtain αAU + (kτ + c)U = 0. Accordingly we verify that R′ξ =

(∇ξRξ)ξ = 0 on Ω. Thus, by Lemma 5.3 of [15] we conclude that Ω = ∅, that
is, k = 0 on M . So (2.27) becomes K = φL which together with (2.35) yields

K2X = (θ − c)(X − η(X)ξ). (4.24)

We also have KU = 0 because of (2.41), which connected to (4.24) gives
(θ−c)U = 0. Using this fact and k = 0, (3.43) turns out to be (θ−c)(Aφ−φA) =
0.

In the following, we assume that θ − c 6= 0 on M . Then we have
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Aφ− φA = 0,

which implies Aξ = αξ. From this and (2.30) with k = 0 we can verify that (cf.
[11], [25]) A2X = αAX + c(X − η(X)ξ) for any vector field X on M , which
enables us to obtain

h(2) = αh+ 2(n− 1)c. (4.25)

On the other hand, differentiating (4.24) covariantly along M and using the
previously obtained formulas and the Ricci indentity for K, we can deduce that
(for detail, see (4.20) and (4.22) of [22])

(h+ 3α)(h− α) = 4(n− 1){(n+ 1)θ − 2c(n+ 2)}, (4.26)

(θ − 3c)(h− α) = 2(n− 1)(θ − 2c)α. (4.27)

Now, from (2.29) the Ricci tensor S of M is given by

SX = c{(2n+ 1)X − 3η(X)ξ}+ hAX −A2X −K2X − L2X,

where we have used k = l = 0, which together with (2.36) and (4.24) gives

SX = {c(2n+ 1)− 2(θ − c)}X + (2θ − 5c)η(X)ξ + hAX −A2X.

Therefore, the scalar curvature r̄ of M is given by

r̄ = 2(n− 1)(2n+ 1)c− 4(n− 1)(θ − c) + h(h− α), (4.28)

where we have used (4.25).

Lemma 4.3. θ − c = 0 if r̄ − 2(n− 1)c ≤ 0.

Proof. If we put δ = 4(n − 1){(n + 1)θ − 2c(n + 2)}, then δ 6= 0 for c < 0,
because θ − c is nonnegative. However, we also see that δ 6= 0 for c > 0.

In fact, if not, then we have δ = 0. So we have θ = 2(n− 1)c/(n+ 1). Hence,
if follows that θ − c = (n + 3)c/(n + 1). By the way, from (4.27) we see that
(h+ 3α)(h− α) = 0. Using the last relationships, we can write (4.28) as

r̄ − 2(n− 1)c = 4c(n− 1)(n2 − 3)/(n+ 1) + ε2,

where ε2 = 0 or 12α2, a contradiction because of r̄−2(n−1)c ≤ 0 was assumed.
Consequently δ 6= 0 on M is proved. Combining (4.26) to (4.27), we obtain

δ{(θ − 3c)2 − (θ − 2c)α2} = 0,

which enables us to obtain

(θ − 3c)2 = (θ − 2)α2. (4.28)
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By the way, it is clear that θ− 3c 6= 0 for c < 0 because θ− c is nonnegative.
But, we also see that θ − 3c 6= 0 for c > 0 provided that r̄ − 2(n− 1)c ≤ 0.

Indeed, if not, then we have θ − 3c = 0. So we see from (4.28) that α = 0
because θ− 2c 6= 0 was assumed. Thus, (4.26) becomes h2 = 4(n− 1)2c. Using
these facts, we can write (4.28) as

r̄ − 2(n− 1)c = 4(n− 1)(2n− 3)c,

a contradiction because of c > 0. Therefore θ − 3c 6= 0 on M is proved.
If we combine (4.28) to (4.27), then we find

α(h− α) = 2(n− 1)(θ − 3c).

Using this fact, (4.26) turns out to be

h(h− α) = 2(n− 1)(2n− 1)(θ − c)− 4n(n− 1)c,

which together with (4.28) implies that

r̄ − 2(n− 1)c = 2(n− 1)(2n− 3)(θ − c).
Accordingly we have θ− c = 0 if r̄− 2(n− 1)c ≤ 0. This completes the proof of
Lemma 4.3. �

According to Lemma 4.3 we have K = L = 0 because of (2.36) and (4.24).
And hence the normal connection of M is flat.

Let N0(p) = {υ ∈ T⊥p (M) : Aυ = 0} and H0(p) be the maximal J-invariant
subspace of N0(p). Since K = L = 0, the orthogonal complement of H0(p)
is invariant under parallel translation with respect to the normal connection
because of ∇⊥C = 0. Thus, by the reduction theorem in [10], [28] we see that
M is a real hypersurface in a complex space form Mn(c).

Since we have ∇⊥C = 0 and k = 0, we can write (2.30) and (3.3) as

(∇XA)Y − (∇YA)X = c{η(X)φY − η(Y )φX − 2g(φX, Y )ξ},

α(φA−Aφ)X − g(Aξ,X)U − g(U,X)Aξ = 0

respectively. Making use of (2.4) and (2.5), and above two equations, it is proved
in [25] that g(U,U) = 0, that is, M is a Hopf hypersurface. Hence, we conclude
that α(Aφ−φA) = 0 and thus Aξ = 0 or Aφ = φA. Here, we note that the case
α = 0 correspond to the case of radius π/4 in complex projective space PnC
([3], [18]). But, in the case complex hyperbolic space HnC it is known that α
never vanishes for Hopf hypersurfaces (cf.[5]). Thus, owing to Theorem O-MR,
we have

Theorem 4.4. Let M be a real (2n − 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex space form Mn+1(c), c 6= 0 with
constant holomorphic sectional curvature 4c such that Rξ is φ∇ξξ-parallel and
the third fundamental form t satisfies dt(X,Y ) = 2θ(φX, Y ) for a scalar θ( 6= 2c)
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and any vector fields X and Y on M . Then Rξφ = φRξ holds on M if and
only if Aξ = 0 or M is locally congruent to one of the following hypersurfaces
provided that the scalar curvature r̄ of M satisfies r̄ − 2(n− 1)c ≤ 0 :

(I) in case that Mn(c) = PnC with η(Aξ) 6= 0,
(A1) a geodesic hypersphere of radius r, where 0 < r < π/2 and r 6= π/4,
(A2) a tube of radius r over a totally geodesic PkC for some k ∈ {1, ..., n−

2}, where 0 < r < π/2 and r 6= π/4;
(II) in case that Mn(c) = HnC,

(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-

plane Hn−1C,
(A2) a tube over a totally geodesic HkC for some k ∈ {1, ..., n− 2}.
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