• Title/Summary/Keyword: Poisson's equation

Search Result 230, Processing Time 0.031 seconds

Two-Dimensional Simulation of MOS Transistors Using Numerical Method (수치해석 방법에 의한 2차원적인 MOS Transistor의 시뮬레이션에 관한 연구)

  • 정태성;경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.93-101
    • /
    • 1985
  • A two-dimensional numerical analysis progranl, called SOMOS ( simulation of MO5 transistors), has been developed for the simulation of MOSFET's with various channel lengths and bias conditions. The finite difference approximation of the fundamental equa-tions are formulated using Newton's method for Poisson's equation and the divergence theorem for the continuity equation. For the solution of the lincariBed equations, SOR (successive over relaxation) method and Gummel's algorithm have been employed, The total simulation time for oar operating point is varying between 30 sec. and 4 min. on VAX 11/780 depending on bias conditions, The nonuniform mesh was generated and refined automatically to account for various bias values and the potential distributions.

  • PDF

Prediction of elastic constants of Timoshenko rectangular beams using the first two bending modes

  • Chen, Hung-Liang (Roger);Leon, Guadalupe
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.657-668
    • /
    • 2021
  • In this study, a relationship between the resonance frequency ratio and Poisson's ratio was proposed that can be used to directly determine the elastic constants. Using this relationship, the frequency ratio between the 1st bending mode and 2nd bending mode for any rectangular Timoshenko beam can be directly estimated and used to determine the elastic constants efficiently. The exact solution of the Timoshenko beam vibration frequency equation under free-free boundary conditions was determined with an accurate shear shape factor. The highest percent difference for the frequency ratio between the theoretical values and the estimated values for all the beam dimensions studied was less than 0.02%. The proposed equations were used to obtain the elastic constants of beams with different material properties and dimensions using the first two measured transverse bending frequencies. Results show that using the equations proposed in this study, the Young's modulus and Poisson's ratio of rectangular Timoshenko beams can be determined more efficiently and accurately than those obtained from industry standards such as ASTM E1876-15 without the need to test the torsional vibration.

The Analysis of Breakdown Voltage for the Double-gate MOSFET Using the Gaussian Doping Distribution

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.200-204
    • /
    • 2012
  • This study has presented the analysis of breakdown voltage for a double-gate metal-oxide semiconductor field-effect transistor (MOSFET) based on the doping distribution of the Gaussian function. The double-gate MOSFET is a next generation transistor that shrinks the short channel effects of the nano-scaled CMOSFET. The degradation of breakdown voltage is a highly important short channel effect with threshold voltage roll-off and an increase in subthreshold swings. The analytical potential distribution derived from Poisson's equation and the Fulop's avalanche breakdown condition have been used to calculate the breakdown voltage of a double-gate MOSFET for the shape of the Gaussian doping distribution. This analytical potential model is in good agreement with the numerical model. Using this model, the breakdown voltage has been analyzed for channel length and doping concentration with parameters such as projected range and standard projected deviation of Gaussian function. As a result, since the breakdown voltage is greatly changed for the shape of the Gaussian function, the channel doping distribution of a double-gate MOSFET has to be carefully designed.

Ignition Characteristics Analysis of Pseudospark Discharge using Fluid Method (유체법을 이용한 유사스파크 방전의 기동 특성 해석)

  • 심재학;주흥진;고광철;강형부
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.95-98
    • /
    • 1997
  • Theoritical predictions are given of the time dependence of charged particle densities and electric field in a pseudospark discharge. Our medel is based on a numerical solution of the continuity equation for electrons and positive ions and coupled with Poisson's equation for the electric field. From numerical results, we can identify phisical mechanisms that lead to the rapid rise in current in the onset of a pseudospark discharge.

  • PDF

Computation of V-I characteristics in wire-plate electrostatic precipitators (선대 평판 전기 집진기의 V-I 특성 계산)

  • Kim, Kill-Sin;Shim, Jae-Hak;Ko, Kwang-Cheol;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1675-1677
    • /
    • 1997
  • In this paper we study the voltage-current characteristics inside the wire-plate precipitators by numerically solving the Poisson's equation and current continuity equation. The effects of a wire size, wire-wire spacing, wire-plate spacing and effective mobility have been considered.

  • PDF

Application of a Fast Parallel Poisson Solver to Barotropic Prediction Model (병렬화된 고속 보아송 방정식의 예측모델에의 적용)

  • Song, Chang-Geun;Lee, Sang-Deok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.3
    • /
    • pp.720-730
    • /
    • 1997
  • In this paper, we develp the code, called the fast parallel Poisson solver, which solves the poisson's equation of arbitraty dimension and parallelize it, And we apply the fast parallel poisson solver to the barotopic predic-tion model to explore the advantages of using it.In particular, we apply this model to the track forecasting of hurricane time required to integrate the barotropic model.A 72-h track prdeiciton was made by using time step of 16 minutes on a network of about 3000 grid points.The prediction 30 seconds on the 8-processor Alliant FX/8 mini supercomputer.It was a speed-up of 3.7 wen compared to the one-processor version.

  • PDF

A New Method of Collision Mode Evolution for Three-Dimensional Rigid Body Impact With Friction

  • Park, Jong-Hoon;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1769-1775
    • /
    • 2004
  • In presence of collision between two rigid bodies, they exhibit impulsive behavior to generate physically feasible state. When the frictional impulse is involved, collision resolution can not be easily made based on a simple Newton's law or Poisson's law, mainly due to possible change of collision mode during collision, For example, sliding may change to sticking, and then sliding resumes. We first examine two conventional methods: the method of mode evolution by differential equation, and the other by linear complementarity programming. Then, we propose a new method for mode evolution by solving only algebraic equations defining mode changes. Further, our method attains the original nonlinear impulse cone constraint. The numerical simulation will elucidate the advantage of the proposed method as an alternative to conventional ones.

  • PDF

Potential Distribution Model for FinFET using Three Dimensional Poisson's Equation (3차원 포아송방정식을 이용한 FinFET의 포텐셜분포 모델)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.4
    • /
    • pp.747-752
    • /
    • 2009
  • Three dimensional(3D) Poisson's equation is used to calculate the potential variation for FinFET in the channel to analyze subthreshold current and short channel effect(SCE). The analytical model has been presented to lessen calculating time and understand the relationship of parameters. The accuracy of this model has been verified by the data from 3D numerical device simulator and variation for dimension parameters has been explained. The model has been developed to obtain channel potential of FinFET according to channel doping and to calculate subthreshold current and threshold voltage.

The Algorithm for Calculating the Base-Collector Breakdown Voltage of NPN BJT Using the Solution of the Poisson′s Equation (포아송 방정식의 해를 이용한 NPN BJT의 베이스- 컬렉터간 역방향 항복전압 추출 알고리즘)

  • 이은구;김태한;김철성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.384-392
    • /
    • 2003
  • The algorithm for calculating the base-collector breakdown voltage of NPN BJT for integrated circuits is proposed. The method of three-dimensional mesh generation to minimize the time required for device simulation is presented and the method for calculating the breakdown voltage using solutions of the Poisson´s equation is presented. To verify the proposed method, the breakdown voltage between base and collector of NPN BJT using 20V process and 30V process is compared with the measured data. The breakdown voltage from the proposed method of NPN BJT using 20V process shows an averaged relative error of 8.0% compared with the measured data and the breakdown voltage of NPN BJT using 30V process shows an averaged relative error of 4.3% compared with the measured data.

A Compact Model of Gate-Voltage-Dependent Quantum Effects in Short-Channel Surrounding-Gate Metal-Oxide-Semiconductor Field-Effect Transistors

  • Kim, Ji-Hyun;Sun, Woo-Kyung;Park, Seung-Hye;Lim, Hye-In;Shin, Hyung-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.278-286
    • /
    • 2011
  • In this paper, we present a compact model of gate-voltage-dependent quantum effects in short-channel surrounding-gate (SG) metal-oxide-semiconductor field-effect transistors (MOSFETs). We based the model on a two-dimensional (2-D) analytical solution of Poisson's equation using cylindrical coordinates. We used the model to investigate the electrostatic potential and current sensitivities of various gate lengths ($L_g$) and radii (R). Schr$\ddot{o}$dinger's equation was solved analytically for a one-dimensional (1-D) quantum well to include quantum effects in the model. The model takes into account quantum effects in the inversion region of the SG MOSFET using a triangular well. We show that the new model is in excellent agreement with the device simulation results in all regions of operation.